
Documentation for the gluex root analysis software

The GlueX Software Group

July 30, 2020

Abstract

The GlueX ROOT analysis software is used to analyze data the standard PART (Physics Analysis
ROOT Tree) format based on the DSelector software concept. The raw experimental data in EVIO format
are input to the GlueX reconstruction software that reconstructs charged particle tracks and neutral
particle showers and stores this information into the REST data format. Using the ReactionFilter plugin,
the GlueX Analysis library will build combinations of final state particles and apply standard loose
event selections to generate skims of the reconstructed data based on the event reaction supplied by the
analyzer. The output of ReactionFilter is a ROOT file which can be read by the DSelector software
package and provides the base for the a GlueX ROOT analysis that is the subject of this document. We
will discuss basic concepts of the DSelector, the fields available in the PART format, and methods to
perform various typical analysis activities. In the following discussion it is assumed you have configured
a working GlueX software environment.

1 Introduction

The GlueX ROOT analysis software package provides an executable named MakeDSelector that allow the
user to generate a basic framework of DSelector program files for the analysis of a particular reaction. This
code will be different for each reaction. The location of this executable is defined by the environment variable
ROOT ANALYSIS HOME, which is configured by the standard GlueX software configuration scrripts. An example
of how to use this is shown below:

MakeDSelector input-root-tree-file-name root-tree-name program-name

where input-root-tree-file-name is the name of an arbitrary input ROOT file, root-tree-name is the
name of the TTree contained in this file program-name can be any label you choose. The command above
will create two files in the current directory with the name DSelector program-name with the extensions .C
and .h and contains the basic template to read and analyze the specified ROOT tree. The files contain the
general functionality with comments and example code for the user to expand on.

2 The DSelector class structure

In the .h header file you find a class defined as DSelector program-name that inherits from the DSelector

class that is defined in the GlueX root analysis package library and provides all necessary methods to read the
ROOT tree. The DSelector class also inherits from the ROOT TSelector class that provides the methods
Init(), Process() and Finalize() that form the base of the generated .C file and the structure to loop
over all of the entries in the ROOT tree.

The DSelector program-name can be run with a root script that has the following form:

TChain chain("name-of-the-root-tree");

chain.Add("root-file-name");

gROOT->ProcessLine(".x $ROOT_ANALYSIS_HOME/scripts/Load_DSelector.C");

chain.Process("DSelector_program-name.C++");

Note, that you should supply either one or two plus signs at the end of the DSelector file name to increase
the processing speed of your analysis. If you specify +, the DSelector will only be recompiled if you modify

1

either of the DSelector files. The preferred option is ++, which will force recompilation at every execution,
which can be help protect against errors that occur when switching between software versions.

Alternatively, the DSelector program-name can be run in parallel on multiple cores with PROOF-Lite:

int NThreads = 16; // or as many as you want to use

TChain *chain = new TChain("name-of-the-root-tree");

chain.Add("root-file-name");

gROOT->ProcessLine(".x $ROOT_ANALYSIS_HOME/scripts/Load_DSelector.C");

DPROOFLiteManager *dproof = new DPROOFLiteManager();

dproof->Process_Chain(chain, "DSelector_program-name.C+", NThreads, "outputHistFileName",

"outputTreeFileName");

2.1 The Wrapper concept

Each piece of information is stored as a branch in the ROOT tree. To provide an interface to access this in-
formation corresponding more closely to the reconstructed physics object, various types of wrappers are imple-
mented. These wrappers are provided by the DSelector and are defined in ROOT ANALYSIS HOME/libraries/DSelector.
There are four basic type of objects in the tree – charged particle tracks, neutral particles, combos and beam
photons – which leads to the definition of four standard wrapper objects:

// OBJECT ARRAYS: RECONSTRUCTED

DChargedTrackHypothesis* dChargedHypoWrapper;

DNeutralParticleHypothesis* dNeutralHypoWrapper;

DBeamParticle* dBeamWrapper;

DParticleCombo* dComboWrapper;

The first three wrappers are used to access the reconstructed final state particles, charged and neutral, and the
reconstructed initial state beam photons. The forth wrapper represents the output of the standard analysis
library used by ReactionFilter, which combines the initial and final state particles, with kinematic fitting by
default, to generate the full event. The resulting final state particles and intermediate states (if so defined)
from the ReactionFilterare accessed by additional wrappers specific to the reaction at hand. As an example,
in the case of an exclusive final state like π+ + π− + π0 + p with the π0 decaying into two photons and its
mass being constrained in the kinematic fit will lead to 8 additional wrappers in the generated DSelector that
include a wrapper for the initial state beam photon and the decay of the π0 with its mass being constrained
by the fit:

//Step 0

DParticleComboStep* dStep0Wrapper;

DBeamParticle* dComboBeamWrapper;

DChargedTrackHypothesis* dPiPlusWrapper;

DChargedTrackHypothesis* dPiMinusWrapper;

DChargedTrackHypothesis* dProtonWrapper;

//Step 1

DParticleComboStep* dStep1Wrapper;

DKinematicData* dDecayingPi0Wrapper;

DNeutralParticleHypothesis* dPhoton1Wrapper;

DNeutralParticleHypothesis* dPhoton2Wrapper;

For example, to loop over all charged particle tracks of an event and perform a calculation using the value
of the start counter energy-loss one would think to do something like the following:

// check if any charged track has a ST hit by looking at its dEdx value

int NChargedTracksHypos = (int)Get_NumChargedHypos();

int FoundStartCounterHits = 0;

for (int k=0; k<NChargedTracksHypos; k++){

dChargedHypoWrapper->Set_ArrayIndex(k);

float ST_dEdx = dChargedHypoWrapper->Get_dEdx_ST();

2

if (ST_dEdx>0.){

FoundStartCounterHits++; // NOTE THAT THIS CODE OVERCOUNTS THE NUMBER OF HITS!

}

}

The key to this loop is that one sets pointer of the wrapper to the right index by using the method
Set ArrayIndex(k). Now that the wrapper points to the desired object one can access the desired value
from that object.

Note that this code will not do what the user desires for several reasons. First, by default ReactionFil-
terwill only write out the initial and final state particles used in the combos saved to the ROOT tree, unless
the U1 option is specified. Second, each charged track is reconstructed under several different mass hypothe-
ses (e, π, K, p/p̄ by default), and it is these specific hypotheses which are used in the reconstructed combos
which are saved to the ROOT tree. The mapping between charged particle hypotheses and reconstructed
tracks is given by the DChargedTrackHypothesis::Get TrackID() function, so one could in principle keep
track of the number of unique track IDs, but in general this is an issue to be very careful about.

2.2 Init(TTree *locTree) Method

This function is used to initialize histograms and any other class variables which will be used by the analysis
code for every event. This method can and most likely will be called more than once, in particular when using
a TChain with more than one root file or when using PROOF in the context of multi-threading. This method
is inherited from the ROOT TSelector class and overridden in the DSelector class. The code snippet in
the Init() method shown below will ensure that the code that follows after will be executed only once:

bool locInitializedPriorFlag = dInitializedFlag; //save whether have been initialized previously

DSelector::Init(locTree); //This must be called to initialize wrappers for each new TTree

//gDirectory now points to the output file with name dOutputFileName (if any)

if(locInitializedPriorFlag)

return; //have already created histograms, etc. below: exit

Therefore any initialization of variables or histogram definitions intended for the whole analysis need to be
done after this part of the code. This includes any definitions of Analysis Actions and Cut Actions as well
as custom branches for an output ROOT tree.

The call to the method Get ComboWrappers() initializes all instances of wrappers available for the analysis
of the ROOT tree. This call will configure a wrapper for each particle in the reaction. For example if the
reaction is γp→ pπ0π+π−, π0 → γγ the following pointers defined in the class header will be initialized

//Step 0

dComboBeamWrapper = static_cast<DBeamParticle*>(dStep0Wrapper->Get_InitialParticle());

dPiPlusWrapper = static_cast<DChargedTrackHypothesis*>(dStep0Wrapper->Get_FinalParticle(1));

dPiMinusWrapper = static_cast<DChargedTrackHypothesis*>(dStep0Wrapper->Get_FinalParticle(2));

dProtonWrapper = static_cast<DChargedTrackHypothesis*>(dStep0Wrapper->Get_FinalParticle(3));

//Step 1

dStep1Wrapper = dComboWrapper->Get_ParticleComboStep(1);

dDecayingPi0Wrapper = dStep1Wrapper->Get_InitialParticle();

dPhoton1Wrapper = static_cast<DNeutralParticleHypothesis*>(dStep1Wrapper->Get_FinalParticle(0));

dPhoton2Wrapper = static_cast<DNeutralParticleHypothesis*>(dStep1Wrapper->Get_FinalParticle(1));

These wrapper objects are instances of classes as shown in the above example and are pointers to the
corresponding instances of the particles for a given combo and information about the combo itself. All
instances are defined in the DSelector library and provide methods to access any data within the tree for a
given combo. So for example with the line

TLorentzVector xv4 = dPhoton1Wrapper->Get_X4_Shower();

you will access the Lorentz 4-vector for the calorimeter shower associated with the first photon used in this
example reaction for a given combo within the combo loop. This will be discussed in more detail below when

3

describing the Process() method.
The full particle combination corresponding to the reconstructed reaction is described by a DParticleCombo

object, which contains one or more DParticleComboStep objects. Each DParticleComboStep corresponds
to an intermediate decay step in the overall reaction. For example, the reaction γp → pπ+π− has only one
step (Step0), while γp→ pπ0π+π−, π0 → γγ has two steps, with Step0 being the primary photoproduction
reaction and Step1 being the π0 → γγ decay.

Each final state particle is either charged or neutral and is accessed through a wrapper of type DNeutralParticleHypothesis
or DChargedTrackHypothesis. There are many methods associated with these two classes and provide access
to all relevant variables in the tree associated with these particles within a combo. Intermediate particles
that decay into some final state particles will also be represented by a wrapper class of type DKinenaticData

but only if the mass of this intermediate state particle is constrained in the kinematic fit when requested
by the reaction filter. If the intermediate particle mass is not constrained in the kinematic fit, then its
properties (e.g. 4-momentum) can be constructed by the user based on the other reconstructed particles. All
beam photons are represented by the wrapper class DBeamParticle. Note that the beam photon energies are
not altered by the kinematic fitter. More details about these wrappers and their methods will be discussed
further below when discussing the loop over all combos of an event.

2.2.1 Histogram definitions

Histograms can be defined easily as in any root script. The user will need to define histograms as needed
for their analysis. Note that you should define the histogram variables in the class definition in the .h file
before creating them in the DSelector::Init() function.

2.2.2 AnalysisAction

NEED TEXT TO EXPLAIN

2.2.3 CutAction

NEED TEXT TO EXPLAIN

2.3 Process(Long64 t locEntry) Method

This is the main event loop which is called for each event. There are three main sections in the default code
which is provided. The first is for any event-level initialization or calculations. The second comprises the
loop over all available combinations in the event. The third is for additional event-level calculations and
output.

The data for the event is read from the tree with the following code section:

//CALL THIS FIRST

DSelector::Process(locEntry); //Gets the data from the tree for the entry

Note that this method Process() is inherited from the ROOT class TSelector This method is overridden
by the DSelector class and calls the method Get Entry() defined in the class DTreeInterface, which reads
the event data from file into memory. Remember that in the case a TChain is used and a new tree file is
opened, the method Init() will be executed again first.

If you are using analysis actions, then they need to be initialized for each event:

/*** SETUP UNIQUENESS TRACKING ****/

//ANALYSIS ACTIONS: Reset uniqueness tracking for each action

//For any actions that you are executing manually, be sure to call Reset_NewEvent() on them here

Reset_Actions_NewEvent();

dAnalyzeCutActions->Reset_NewEvent(); // manual action, must call Reset_NewEvent()

If you are filling histograms yourself, the combinatorics must be carefully handled to avoid double-counting,
either by “uniqueness tracking” or some other method. The discussion of these techniques is the focus of
another document. [Add reference here when it’s ready]

4

2.3.1 Looping over combos in an event

At this point the loop over all combos for this event is stared. A combo is a combinations of a beam
photon with the final state particles, which pass some loose event selection criteria. Note that even if
you have a unique combination of final state particles in an event, you will have multiple combinations if
there are multiple beam photons sufficiently in time with this event, which is often the case in the intense
GlueX photon beam. Typically, combos are kept if the reconstructed final state particles are in time with
the tagged beam photons within 3 or 4w of the 4 ns beam bunches. For example, if you are looking
at the reaction γp → pπ+π−, and find an event with only one candidate each for a negatively charged
pion, a postively charged pion, and a proton, and 3 tagged photons within the required timing window,
then you will end up with 3 combos for an event. All necessary wrappers are configured by calling the
dComboWrapper->Set ComboIndex(UInt t) function, as shown below. qa Note that the DSelector can be
run not just over the output of the ReactionFilter plugin, but the DSelector can also write out ROOT trees
which contain a set of reduced events and/or branches containing additional information. When these trees
are created, if additional selections are being applied on the combos being analyzed, an event will still be
written out as long as least one combo in the event passes the selections. To keep track of which combos have
been rejected and which are kept for further analysis, we use the “ComboCut” flag. This can be set using
dComboWrapper->Set IsComboCut(bool) and its value retrieved using dComboWrapper->Get IsComboCut().

An example beginning of the combo loop is shown below:

for(UInt_t loc_i = 0; loc_i < Get_NumCombos(); ++loc_i)

{

//Set branch array indices for combo and all combo particles

dComboWrapper->Set_ComboIndex(loc_i);

// Is used to indicate when combos have been cut

if(dComboWrapper->Get_IsComboCut()) // Is false when tree originally created

continue; // Combo has been cut previously

// ***

// now from here on out you can do your stuff!

// ***

A detailed discussion of the data available through the different particle wrappers is given in Section 3.
By default, code is added to configure variables to store the unique ID numbers of each particle in the
combination, along with their measured and kinematically-fitted momentum 4-vectors. Equipped with the
data access methods described below and the wrappers that provide the access to these methods, we can
get any data within the tree. Continuing with the above example of three pions and a recoil proton in the
final state, we can calculate the invariant mass of the 3-pion system using either the measured momentum
4-vectors or those determined by the kinematic fitter. In the below example, we also give examples of how to
access other information, in particular the shower quality factor for a neutral particles and and the z-position
of the associated shower in the calorimeter:

// These quantities are from the kinematic fitter

TLorentzVector locBeamP4 = dComboBeamWrapper->Get_P4();

TLorentzVector locPiPlusP4 = dPiPlusWrapper->Get_P4();

TLorentzVector locPiMinusP4 = dPiMinusWrapper->Get_P4();

TLorentzVector locProtonP4 = dProtonWrapper->Get_P4();

TLorentzVector locPhoton1P4 = dPhoton1Wrapper->Get_P4();

TLorentzVector locPhoton2P4 = dPhoton2Wrapper->Get_P4();

// 3-Pion Final state based on kinematic fit quantities:

TLorentzVector ThreePiFinalState = locPiPlusP4 + locPiMinusP4 + locPhoton1P4 + locPhoton2P4;

// These quantities are the measured quantities

TLorentzVector locBeamP4_Measured = dComboBeamWrapper->Get_P4_Measured();

TLorentzVector locPiPlusP4_Measured = dPiPlusWrapper->Get_P4_Measured();

TLorentzVector locPiMinusP4_Measured = dPiMinusWrapper->Get_P4_Measured();

TLorentzVector locProtonP4_Measured = dProtonWrapper->Get_P4_Measured();

5

TLorentzVector locPhoton1P4_Measured = dPhoton1Wrapper->Get_P4_Measured();

TLorentzVector locPhoton2P4_Measured = dPhoton2Wrapper->Get_P4_Measured();

// 3-Pion Final state based on measured quantities:

TLorentzVector ThreePiFinalState_Measured = locPiPlusP4_M + locPiMinusP4_M + locPhoton1P4_M +

locPhoton2P4_M;

// Get the shower quality factor of the first photon and find the z-position of the shower

float qf = dPhoton1Wrapper->Get_Shower_Quality();

TLorentzVector Gamma1_Shower = dPhoton1Wrapper->Get_X4_Shower();

float Shower1Zposition = Gamma1_Shower.Z();

2.3.2 Handling Accidental Beam Photon Contributions

The reconstructed final state particle combination is associated with the timing of a particular accelerator
beam bunch (which we will call the “RF time”). The measured initial state beam photon time will then
either be consistent, or “in-time” with this selected beam bunch, or “out-of-time” with it. While signal
events are generally always associated with in-time beam photons, there is also an in-time contribution due
to combinations where the beam photon is not the real photon which created the reconstructed final state
particles (for example, due to multiple in-time photons or due to the correct photon not being reconstructed).
There are several methods which can be used to subtract this background contribution, the most common
of which is to estimate it using out-of-time beam photon combos and subtract the background by filling
histograms with appropriate weights, or propagating these weights to later analysis stages.

In this method, in-time beam photons are assigned a weight of 1, while out-of-time beam photons are
assigned a weight of 1/n, where n is the number of out-of-time beam bunches that are considered in the
analysis. The RF time is determined from the combo using the dComboBeamWrapper()->Get RFTime()

method. The following code shows an example of how to determine the RF time of the beam photon used
in a given combo and how to define the weight for the combo based on the RF time of the beam photon.
In this particular example it is expected that 4 beam bunches on either side of the in-time beam bunch
(at t = 0) are available leading to a −1/8 weight factor. An additional run-dependent multiplicitive factor
should be applied, to correct for non-uniformities in the out-of-time peaks, which can be acccessed through
DAnalysisUtilities::GetAccidentalScalingFactor().

TLorentzVector locVertex = dComboBeamWrapper->Get_X4_Measured();

float locRFTime = dComboWrapper->Get_RFTime();

TLorentzVector locBeamP4 = dComboBeamWrapper->Get_P4();

.....

float DT_RF = locVertex.T() - (locRFTime + (locVertex.Z() - dTargetCenter.Z())/29.9792458);

// Now an event weight can be assigned:

// if DT_RF = +/- 2ns within zero the beam photon is in time

// within +-4, +-8, +-12, ... the beam photon is out of time

double weight = 1.;

if (TMath::Abs(DT_RF)>2.){ // TOFIX: should actually pull the real beam bunch spacing for this

weight = -0.125; // -1/8

}

weight *= dAnalysisUtilities->Get_AccidentalScalingFactor(); // correct for correlation effects

// the weight then can be used to fill a histogram with the weight

// thereby automatically subtract accidental background

// for example, dEBeam->Fill(locBeamP4.E(), weight);

2.3.3 Kinematic Fit Quality

The ReactionFilter ROOT trees are generated with no constraint on the quality of the kinematic

fit by default. This quantity can be very powerful for separating signal from background.

This information can be accessed in one of two ways: by looking at the χ2 of the kinematic

6

fit (suggested), which should have some distribution peaking at 1 (when normalized by the number

of degrees of freedom in the fit) and falling towards higher values for the signal, or the

confidence level of the fit, which should have a roughly flat distribution of the signal, with

the background piling up around 0. There is no preferred cut value for a general case; you

should choose a value by studying these distributions for your signal and some background contribution

that you would like to reject. This information can be accessed in the following way:

// Kinematic fit confidence level and chi^2/d.o.f.

double chi2dof = dComboWrapper->Get_ConfidenceLevel_KinFit("") /

dComboWrapper->Get_NDF_KinFit("");

double chi2dof = dComboWrapper->Get_ChiSq_KinFit("") / dComboWrapper->Get_NDF_KinFit("");

// reject events with a poor chi^2 for this reaction

if(chi2dof > 5.) {

dComboWrapper->Set_IsComboCut(true); // reject this combo for future consideration

continue;

}

2.3.4 Long-Lived Particles

As previously discussed, particle combinations can have multiple steps in order to model the

effect of additional decays of narrow resonances. These decaying particles can be short-lived

(ω, η, . . .) or long-lived (KS ,Λ, . . .). In the case of long-lived particles, additional event selections

can be made to separate them from combinatorial background. The most accurate information

on the displacement of the secondary vertex from the primary vertex is obtained from the kinematic

fit, particularly when a vertex constraint is included. Two common variables to cut on are

the magnitude of this displacement, or ‘‘flight distance’’, and this magnitude divided by the

uncertainty in the position of these vertices, or ‘‘flight significance’’. Below, we give

an example for the reaction γp → K+K+Ξ−(1320), which has two detatched vertices: Ξ− →
π−Λ0, Λ0 → pπ−.

The cases in which the decaying particle is and is not mass constrained in the fit are handled

differently. If no mass constraint is applied in the fit, first obtain the production X4 (vertex

spatial position and time) and the X4 for the decaying particle. The pathlength of the decaying

particle is the magnitude of the difference between the two vertices. The uncertainty of the

pathlength is saved directly to the tree, but must be extracted by hand. The flight significance

is then the pathlength divided by the uncertainty in the pathlength.

TLorentzVector locProdSpacetimeVertex = dComboBeamWrapper->Get_X4();

TLorentzVector locDecayingXiX4 =

dTreeInterface->Get_TObject<TLorentzVector>("DecayingXiMinus__X4",loc_i); // change if the

mass is constrained in the fit

TLorentzVector locDeltaSpacetimeXi = locProdSpacetimeVertex - locDecayingXiX4;

double locPathLengthXi = locDeltaSpacetimeXi.Vect().Mag();

float locPathLengthSigmaXi = Get_Fundamental<Float_t>("DecayingXiMinus__PathLengthSigma", loc_i);

double locPathLengthSignificanceXi = locPathLengthXi/locPathLengthSigmaXi;

If a mass constraint on the decaying particle was applied, then a wrapper for the decaying

particle is configured and should be used to obtain the vertex position instead:

TLorentzVector locDecayingXiX4 = dDecayingXiMinusWrapper->Get_X4();

For a secondary detached vertex, for example the Λ decay in Ξ− → Λπ−, the only difference

in the calculation is to compare it to the parent detatched vertex:

TLorentzVector locDecayingLambX4 =

dTreeInterface->Get_TObject<TLorentzVector>("DecayingLambda__X4",loc_i);

TLorentzVector locDeltaSpacetimeLamb = locDecayingXiX4 - locDecayingLambX4;

double locPathLengthLamb = locDeltaSpacetimeLamb.Vect().Mag();

7

float locPathLengthSigmaLamb = Get_Fundamental<Float_t>("DecayingLambda__PathLengthSigma", loc_i);

double locPathLengthSignificanceLamb = locPathLengthLamb/locPathLengthSigmaLamb;

2.3.5 Analyzing Thrown Information

When analyzing simulated data (MC), information about the particles thrown by the physics event

generator is also stored for each event. The data is stored in objects of type DMCThrown and

is also accessible through a wrapper interface. This information can be accessed in several

different ways. Each DChargedTrackHypothesis and DNeutralParticleHypothesis has a member function

named Get ThrownIndex(), which can be passed as an argument to dThrownWrapper->Set ArrayIndex().

The list of thrown particles can also be studied directly, such as in the following example:

//Thrown beam: just use directly

if(dThrownBeam != NULL)

double locEnergy = dThrownBeam->Get_P4().E();

//Loop over throwns

for(UInt_t loc_i = 0; loc_i < Get_NumThrown(); ++loc_i)

{

//Set branch array indices corresponding to this particle

dThrownWrapper->Set_ArrayIndex(loc_i);

//Do stuff with the wrapper here ...

//Example - fill a histogram of the momentum distribution of protons

if(dThrownWrapper->Get_PID() == Proton)

dProtonPmag->Fill(dThrownWrapper->Get_P4().Vect().Mag());

}

2.4 ROOT Tree Output

Besides histograms, the DSelector can also output TTrees for further analysis, either by another

DSelector or by another program. Two types of TTree output are support: the standard ReactionFilter output

PART format, which stores data mostly in various arrays of objects, and a ‘‘flat’’ tree with

a simpler structure.

The code to handle ROOT tree output is in several locations, and generally works through

the (thread-safe) DTreeInterface class. In the Init() function, besides defining the names

of output files, you can optionally add branches to store additional event/combo information.

The following shows an example of these features:

// In Init() function...

//USERS: SET OUTPUT FILE NAME //can be overriden by user in PROOF

dOutputFileName = "ggg.root"; //"" for none

dOutputTreeFileName = ""; //"" for none

dFlatTreeFileName = ""; //output flat tree (one combo per tree entry), "" for none

dFlatTreeName = ""; //if blank, default name will be chosen

/************************** EXAMPLE USER INITIALIZATION: CUSTOM OUTPUT BRANCHES - MAIN TREE

*************************/

//EXAMPLE MAIN TREE CUSTOM BRANCHES (OUTPUT ROOT FILE NAME MUST FIRST BE GIVEN!!!! (ABOVE: TOP)):

//The type for the branch must be included in the brackets

//1st function argument is the name of the branch

//2nd function argument is the name of the branch that contains the size of the array (for

fundamentals only)

dTreeInterface->Create_Branch_Fundamental<Int_t>("my_int"); //fundamental = char, int, float,

double, etc.

8

dTreeInterface->Create_Branch_FundamentalArray<Int_t>("my_int_array", "my_int");

dTreeInterface->Create_Branch_FundamentalArray<Float_t>("my_combo_array", "NumCombos");

dTreeInterface->Create_Branch_NoSplitTObject<TLorentzVector>("my_p4");

dTreeInterface->Create_Branch_ClonesArray<TLorentzVector>("my_p4_array");

/************************** EXAMPLE USER INITIALIZATION: CUSTOM OUTPUT BRANCHES - FLAT TREE

*************************/

//EXAMPLE FLAT TREE CUSTOM BRANCHES (OUTPUT ROOT FILE NAME MUST FIRST BE GIVEN!!!! (ABOVE: TOP)):

//The type for the branch must be included in the brackets

//1st function argument is the name of the branch

//2nd function argument is the name of the branch that contains the size of the array (for

fundamentals only)

dFlatTreeInterface->Create_Branch_Fundamental<Int_t>("flat_my_int"); //fundamental = char, int,

float, double, etc.

dFlatTreeInterface->Create_Branch_FundamentalArray<Int_t>("flat_my_int_array", "flat_my_int");

dFlatTreeInterface->Create_Branch_NoSplitTObject<TLorentzVector>("flat_my_p4");

dFlatTreeInterface->Create_Branch_ClonesArray<TLorentzVector>("flat_my_p4_array");

In the Process() function, these trees can be filled either once per event (i.e. before the

combo loop)

/** EXAMPLE: FILL CUSTOM OUTPUT BRANCHES

**************************************/

Int_t locMyInt = 7;

dTreeInterface->Fill_Fundamental<Int_t>("my_int", locMyInt);

TLorentzVector locMyP4(4.0, 3.0, 2.0, 1.0);

dTreeInterface->Fill_TObject<TLorentzVector>("my_p4", locMyP4);

for(int loc_i = 0; loc_i < locMyInt; ++loc_i)

dTreeInterface->Fill_Fundamental<Int_t>("my_int_array", 3*loc_i, loc_i); //2nd argument =

value, 3rd = array index

Or once per combo (i.e. inside the combo loop)

/** EXAMPLE: FILL CUSTOM OUTPUT BRANCHES

**************************************/

TLorentzVector locMyComboP4(8.0, 7.0, 6.0, 5.0);

//for arrays below: 2nd argument is value, 3rd is array index

//NOTE: By filling here, AFTER the cuts above, some indices won’t be updated (and will be

whatever they were from the last event)

//So, when you draw the branch, be sure to cut on "IsComboCut" to avoid these.

dTreeInterface->Fill_Fundamental<Float_t>("my_combo_array", -2*loc_i, loc_i);

dTreeInterface->Fill_TObject<TLorentzVector>("my_p4_array", locMyComboP4, loc_i);

For the normal tree output, the tree should be written out at the end of Process():

/************************************ EXAMPLE: FILL CLONE OF TTREE HERE WITH CUTS APPLIED

************************************/

Bool_t locIsEventCut = true;

for(UInt_t loc_i = 0; loc_i < Get_NumCombos(); ++loc_i) {

//Set branch array indices for combo and all combo particles

dComboWrapper->Set_ComboIndex(loc_i);

// Is used to indicate when combos have been cut

if(dComboWrapper->Get_IsComboCut())

continue;

locIsEventCut = false; // At least one combo succeeded

break;

}

9

if(!locIsEventCut && dOutputTreeFileName != "")

Fill_OutputTree();

For a flat tree, this format has one entry per combo, and so it should be filled and written

out right at the end of the combo loop, for example:

/** FILL FLAT TREE (IF DESIRED)

**/

//FILL ANY CUSTOM BRANCHES FIRST!!

Int_t locMyInt_Flat = 7;

dFlatTreeInterface->Fill_Fundamental<Int_t>("flat_my_int", locMyInt_Flat);

TLorentzVector locMyP4_Flat(4.0, 3.0, 2.0, 1.0);

dFlatTreeInterface->Fill_TObject<TLorentzVector>("flat_my_p4", locMyP4_Flat);

for(int loc_j = 0; loc_j < locMyInt_Flat; ++loc_j)

{

dFlatTreeInterface->Fill_Fundamental<Int_t>("flat_my_int_array", 3*loc_j, loc_j); //2nd

argument = value, 3rd = array index

TLorentzVector locMyComboP4_Flat(8.0, 7.0, 6.0, 5.0);

dFlatTreeInterface->Fill_TObject<TLorentzVector>("flat_my_p4_array", locMyComboP4_Flat,

loc_j);

}

//FILL FLAT TREE

Fill_FlatTree(); //for the active combo

3 DSelector Data Classes

All the quantities in the ROOT file are accessed through some wrapper objects defined in your

DSelector. The variable names used in the ROOT trees and the generated DSelector code have

distinct qualifiers to help to indicate their meaning and are explained here in more detail.

Variable names prefixes and suffixes

Beam Beam photon related quantity/ies for a given event before Kinematic Fit

NeutralHypo Neutral Particle related quantity/ies for a given event before Kinematic Fit

ChargedHypo Charged Particle related quantity/ies for a given event before Kinematic Fit

Measured A measured quantity as determined by the reconstruction software

KinFit A measured quantity that has been altered by the Kinematic Fitter.

X4 4-vector containing position and time (TLorentzVector).

P4 4-vector containing momentum and energy (TLorentzVector).

BeamCombo Initial state beam photon for a given combo.

Proton Final state proton for a given combo.

PiPlus Final state π+ for a given combo.

PiMinus Final state π− for a given combo.

Photon1 First final state photon for a given combo. Subsequent photons are labeled Photon2 , Photon3 ,

...

PiZero Final state π0 for a given combo if the mass was constrained in by the kinematic fitter.

Other particles, such as Eta, Kshort, and Lambda can also be specified.

10

Note, in the above example the π0 is not a final state particle, as it does decay into photons

and only those are detected directly. Therefore, such a particle is only explicitly listed

as a separate particle in the ROOT tree if its mass was constrained by the kinematic fit to

a fixed value, usually its mass as given by the PDG value.

In order to access the variables in the tree, one must use the above mentioned wrappers

and their methods. The detailed functionality and implementations of all these wrapper methods

can be found in DBeamParticle.h, DChargedTrackHypothesis.h, DNeutralParticleHypothesis.h, and

DParticleCombo.h located in gluex root analysis library. These methods are discussed in the

following in more detail.

3.0.1 DBeamParticle.h

Most of the methods needed by the incoming photon are inherited from DKinematicData.h

PID & KINEMATIC DATA

Get PID() Returns type Particle t defined in halld recon/src/libraries/include/particleType.h

Get P4() Get the 4-momentum of this particle

Get X4() Get the 4-vector position (time and position) of this particle at the production vertex

from the kinematic fit

Get P4 Measured() Same as above

Get X4 Measured() Same as above but the measured quantities, see example code above using the wrapper dComboBeamWrapper

to get the vertex 4-vector.

Note that since the kinematic fitter does not change the 4-momentum of the beam photon P4()

and P4 Measured() are the same in for the incident beam particle! The vertex position still

can change though.

3.0.2 DChargedTrackHypothesis.h

Note that this class does inherit from DKinematicData.h and as such has the above listed methods

as well the following ones:

IDENTIFIERS

Get TrackID() Each physical particle has its own identifier but is fit by multiple mass hypotheses, refers

back to the parent particle, returns int.

Get ThrownIndex() Array index of thrown particle if match found, returns int (-1 otherwise). MC data only.

Get ID() Same as Get TrackID()

TRACKING INFO

Get ChiSq Tracking() The χ2 from the charged particle fit (Kalman filter), returns float

Get NDF Tracking() The number of degrees of freedom in the fit, equal to the number of hits - 5, returns uint

Get ChiSq DCdEdx() The χ2 between the measured energy loss in the drift chamber and the value expected for

the given mass hypotheses, where the most appropriate value between the CDC and FDC dE/dx’s
is used, returns float

Get NDF DCdEdx() The number of degrees of freedom in the fit, returns uint

Get dEdx CDC() The calculated energy lose in the CDC, returns float

Get dEdx FDC() The calculated energy loss in the FDC, returns float

TIMING INFO

11

Get HitTime() The time of the hit in whatever timing detector the charged particle is matched to, returns

float

Get RFDeltaTVar() The variance of the ∆tRF variable using the above hit time, returns float

Get Beta Timing() The calculated β from the above hit time, returns float

Get ChiSq Timing() The corresponding χ2 from the above hit time for the given mass hypothesis, returns float

Get NDF Timing() The number of degrees of freedom used in this χ2, returns uint

Get ConfidenceLevel Timing() The corresponding confidence level, returns float

Get Beta Timing Measured() The same as above, but using the measured momentum, returns float

Get ChiSq Timing Measured() The same as above, but using the measured momentum, returns float

Get ConfidenceLevel Timing Measured() The same as above, but using the measured momentum, returns float

Get Detector System Timing() The detector in which the matched timing hit was measured (BCAL/FCAL/SC/TOF), returns DetectorSystem t

HIT ENERGY

Get dEdx TOF() Measured energy loss in the TOF paddles, returns float

Get dEdx ST() Measured energy loss in the Start Counter paddles, returns float

Get Energy BCAL() Energy of a matched BCAL shower, returns float

Get Energy BCALPreshower() Energy deposited in the first layer of a matched BCAL shower, returns float

Get Energy BCALLayer2() Energy deposited in the second layer of a matched BCAL shower, returns float

Get Energy BCALLayer3() Energy deposited in the third layer of a matched BCAL shower, returns float

Get Energy BCALLayer4() Energy deposited in the fourth layer of a matched BCAL shower, returns float

Get SigLong BCAL() The r.m.s. deviation (?) of the BCAL shower energy in the logitudinal direction, returns

float

Get SigTheta BCAL() The r.m.s. deviation (?) of the BCAL shower energy in the polar angle, returns float

Get SigTrans BCAL() The r.m.s. deviation (?) of the BCAL shower energy in the transverse direction, returns

float

Get RMSTime BCAL() The r.m.s. deviation (?) of the BCAL shower time, returns float

Get Energy FCAL() Energy of a matched FCAL shower, returns float

Get E1E9 FCAL() The E1/E9 ratio for the matched FCAL shower, returns float

Get E9E25 FCAL() The E9/E25 ratio for the matched FCAL shower, returns float

Get SumU FCAL() The SumU value for the matched FCAL shower, returns float

Get SumV FCAL() The SumV value for the matched FCAL shower, returns float

SHOWER MATCH

Get TrackBCAL DeltaPhi() Difference in azimuthal positions of the shower and matched track along the face of the

BCAL, returns float, 999.0 if not matched, units are radians

Get TrackBCAL DeltaZ() Difference in z positions of the shower and matched track along the face of the BCAL, returns

float, 999.0 if not matched

Get TrackFCAL DOCA() Difference in positions of the shower and matched track along the face of the FCAL, returns

float, 999.0 if not matched

12

DIRC INFO

GetT rackNumPhotonsDIRC() Number of DIRC photons associated with the track, returns float, 999.0 if no DIRC info

GetT rackThetaCDIRC() Measured Cherenkov angle, returns float, 999.0 if no DIRC info

GetT rackLeleDIRC() Measured Likelihood for the electron hypothesis, returns float, 999.0 if no info

GetT rackLpiDIRC() Measured Likelihood for the pion hypothesis, returns float, 999.0 if no info

GetT rackLkDIRC() Measured Likelihood for the kaon hypothesis, returns float, 999.0 if no info

GetT rackLpDIRC() Measured Likelihood for the proton hypothesis, returns float, 999.0 if no info

3.0.3 DNeutralParticleHypothesis.h

Note that this class does inherit from DKinematicData.h and as such has those methods as well

the following ones:

IDENTIFIERS

Get NeutralID() Each physical particle has its own number, returns int.

Get ThrownIndex() Array index of thrown particle if match found, returns int (-1 otherwise). MC data only.

Get ID() Same as Get NeutralID()

TIMING

Get HitTime() The reconstructed shower time, returns float

Get RFDeltaTVar() The variance of the ∆tRF variable using the above shower time, returns float

Get Beta Timing() The calculated β from the above hit time, returns float

Get ChiSq Timing() The corresponding χ2 from the above hit time for the given mass hypothesis, returns float

Get NDF Timing() The number of degrees of freedom used in this χ2, returns uint

Get ConfidenceLevel Timing() The corresponding confidence level, returns float

Get Beta Timing Measured() The same as above, but using the measured momentum, returns float

Get ChiSq Timing Measured() The same as above, but using the measured momentum, returns float

Get ConfidenceLevel Timing Measured() The same as above, but using the measured momentum, returns float

Get Detector System Timing() The detector in which the matched timing hit was measured (BCAL/FCAL/SC/TOF), returns DetectorSystem t

SHOWER INFO

Get Energy BCAL() Energy of the BCAL shower, returns float

Get Energy BCALPreshower() Energy deposited in the first layer of the BCAL shower, returns float

Get Energy BCALLayer2() Energy deposited in the second layer of the BCAL shower, returns float

Get Energy BCALLayer3() Energy deposited in the third layer of the BCAL shower, returns float

Get Energy BCALLayer4() Energy deposited in the fourth layer of the BCAL shower, returns float

Get SigLong BCAL() The r.m.s. deviation (?) of the BCAL shower energy in the logitudinal direction, returns

float

Get SigTheta BCAL() The r.m.s. deviation (?) of the BCAL shower energy in the polar angle, returns float

13

Get SigTrans BCAL() The r.m.s. deviation (?) of the BCAL shower energy in the transverse direction, returns

float

Get RMSTime BCAL() The r.m.s. deviation (?) of the BCAL shower time, returns float

Get Energy FCAL() Energy of a FCAL shower, returns float

Get E1E9 FCAL() The E1/E9 ratio for the FCAL shower, returns float

Get E9E25 FCAL() The E9/E25 ratio for the FCAL shower, returns float

Get SumU FCAL() The SumU value for the FCAL shower, returns float

Get SumV FCAL() The SumV value for the FCAL shower, returns float

SHOWER MATCH

Get TrackBCAL DeltaPhi() Difference in azimuthal positions of the shower and matched track along the face of the

BCAL, returns float, 999.0 if not matched, units are radians

Get TrackBCAL DeltaZ() Difference in z positions of the shower and matched track along the face of the BCAL, returns

float, 999.0 if not matched

Get TrackFCAL DOCA() Difference in positions of the shower and matched track along the face of the FCAL, returns

float, 999.0 if not matched

As an important reminder note that in order to make the Energy BCALLayerX data available in

the root tree the reaction filter requires to be run with the following command line parameter:

-PANALYSIS:BCAL VERBOSE ROOT OUTPUT=1

and similarly for FCAL if the E1E9, E9E25, SumU and SumV data should be in the root tree the

following command line parameter is required on the command line when running the reaction

filter:

-PANALYSIS:FCAL VERBOSE ROOT OUTPUT=1

3.0.4 DParticleCombo.h

SHOWER MATCH

Get RFTime Measured() RF bucket time for the given combination, measured at the center of the target, returns

float.

Get RFTime() Same as above, returns float.

TARGET

Get TargetPID() Particle type of target, returns Particle t.

Get TargetCenter() Position of target center, returns TVector3.

KINFIT

Get ChiSq KinFit() χ2 of kinematic fit of this combo to the assumed reaction, returns float.

Get NDF KinFit() Number of degrees of freedom for the above kinematic fit, returns float.

Get ConfidenceLevel KinFit() Confidence level determined from χ2 and number of degrees of freedom, returns float.

UNUSED ENERGY

Get Energy UnusedShowers() Total energy of unmatched showers that are in time with the combo, but are not part of

the combo, returns float.

UNUSED TRACKS

14

Get NumUnusedTracks() Number of charged particle tracks in the event and not used in the combo, returns UChar t.

Get NumUnusedShowers() Number of unmatched showers in the event and not used in the combo, returns UChar t.

EVENT INFO

Get RunNumber() Run number of the event, returns UInt t.

Get EventNumber() Event number of the event, returns ULong64 t.

Get L1TriggerBits() Trigger bit information, returns UInt t.

Get MCWeight() Optional event weight factor for MC events, returns float. =

3.0.5 DParticleComboStep.h

Get X4() Vertex position and time for this step of the reaction, returns TLorentzVector.

15

