
Photoproduction of the b1(1235) Meson

off the proton at Egamma = 6-12 GeV

A Thesis

Submitted to the Faculty of Graduate Studies and Research

In Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

in

Physics

University of Regina

by

Ahmed Marwan Abdelrahman Foda

Regina, Saskatchewan

January, 2021

© Copyright 2021: A. M. Foda



Abstract

The GlueX Experiment at Jefferson Lab directs a linearly polarized photon beam

on a liquid hydrogen target surrounded by an almost hermetic detector. The ex-

periment aims to study the meson spectrum in the light-quark sector and search for

exotic spin-parity states predicted by lattice QCD calculations. The lightest exotic

candidate is the π1 meson, which is predicted to decay dominantly to b1π. In this

thesis, we present efforts to characterize the ωπ0 decay channel of the b1 meson as

precursor to an analysis of the sought-after π1 exotic state.

We present an introduction to the physics involved and an overview of the detector

subsystems with a focus on the Barrel Calorimeter gain monitoring system, as part

of the service work expected by the GlueX Collaboration.

We discuss the data analysis method used and present two frameworks, for angu-

lar moments and partial waves analyses. Details of the simulation used to calculate

the detector acceptance. A proof of concept partial wave analysis is presented along

with experimental angular moments as first step to a full analysis of the angular dis-

tribution. Our partial wave analysis indicates that both S- and D-waves are needed,

in qualitative agreement with theoretical expectations. The cross-section of the ωπ0
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channel is extracted to be of the scale of 1 µb in agreement with previous mea-

surements. The differential cross-section indicates the presence of two production

processes with p1 = −5.24 ± 0.04 for 0.25 < −t < 0.95 GeV 2/c2 and p2 = −1.24 ± 0.05

for 0.95 < −t < 2.0 GeV 2/c2, which does not agree with results from previous exper-

iments. The s-channel helicity conservation and helicity amplitudes of the b1 meson

are presented as additional experimental observables. Our results confirm that the

b1 photoproduction process does not conserve s-channel helicity though they do not

align with previous measurements. The helicity amplitude of the ω are extracted

to be ∣F1∣2 = 0.3037 ± 0.0003 which does not agree with the expected value of a b1

decay or results from a previous experiment. Future steps in all these analyses will

be continued by a new graduate student in the group, culminating in a publication.
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Close your eyes & dance lightly & indulgently

The world is the damsel & you are the prodigy

Seeing the agility of your steps, she worships you

but gaze at your feet & you shall fall

Salah Jahin, Egyptian Poet, (1930-1986)
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Chapter 1

Introduction

The GlueX experiment is designed to help understand how quarks and gluons

interact inside hadrons. Quarks are the building blocks of protons and neutrons

(formed of quark triplets), which form the bulk of our universe's matter, along with

a large number of other strongly interacting particles, termed hadrons, ranging from

light mesons (quark-antiquark pairs) to heavy pentaquarks (consisting of �ve quarks).

Gluons form the "glue" which holds quarks together. The experiment is studying the

spectrum of hadrons produced by directing a linearly polarized photon beam on a liq-

uid hydrogen (LH 2) target with the aim of collecting experimental evidence toward

the existence of exotic and hybrid mesons. These are particles that are predicted to

exist by theory but so far the evidence presented by other experiments in the past

for the existence of these states has been scarce, and GlueX is designed to produce

many of these states at a relatively high rate, which it is hoped will provide guidance

to expand our current understanding of the strong interaction.

A brief overview of the current understanding of particle physics is given in this

chapter, along with experimental evidence for hybrid or exotic states, the physics

goals of GlueX, including the motivation for the work presented in this thesis on

the data analysis of theb1ˆ1235• meson. Chapters 2 and 3 provide a description of
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the accelerator facility at Thomas the Thomas Je�erson National Accelerator Facility

JLab, the GlueX detector and the gain monitoring system for the barrel calorimeter

subsystem. Chapters 4 through 7 describe the data analysis, simulations, results, and

systematic studies for theb1ˆ1235• data analysis. Finally, Chapter 8 contains the

conclusions and future directions of this line of research.

1.1 The Standard Model

The current understanding of particle physics is summarized in the Standard

Model (SM) in which fundamental particles are categorized according to their intrinsic

spin into particles with half-integer spin denoted as fermions which are the building

blocks of matter, and particles with integer spin termed bosons which act as mediators

of di�erent forces acting between particles. Each particle is identi�ed by a unique

set of quantum numbers that include the aforementioned intrinsic spin, along with

�avour, and electric and colour charge. The SM describes three of the four forces

that govern these particles: the electromagnetic, the strong, and the weak forces.

The gravitational force is not included in the current description of the SM.

Fermions are further divided into quarks which possess a colour charge and so are

a�ected by the strong force, and leptons which are not a�ected by the strong force as

shown in Fig 1.1. In the following sections, we will discuss the di�erent ways quarks

are grouped to form hadrons. As mentioned before, bosons are the mediators of the

forces, which means that any observed repulsive or attractive interaction between

two particles is described by the exchange of a mediator boson (exchange boson)

between the two particles. This is because the SM is a gauge theory, a type of �eld

theory in which the Lagrangian (equations of motion) is invariant under certain local

transformations. This invariance is manifested by including a corresponding (the

gauge �eld) term in the Lagrangian. When such a theory is quantized, the quanta of

the gauge �eld arise as the force mediating particles and are called gauge bosons. In
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