

JLAB η Factory Experiment in Hall D

A. Somov, Jefferson Lab

for the GlueX Collaboration

The 10th International Workshop on Chiral Dynamics 2021 Beijing, China, November 16, 2021

- GlueX detector in Hall D
- Jefferson Lab η Factory (JEF) experiment with the GlueX detector
- Physics Program
- Upgrade of the GlueX Forward Calorimeter

GlueX Detector in Hall D

- Beam of photons (linear polarization)
- Optimized to detect multi-particle final states

Experiments with the GlueX detector

GlueX experiment: search for mesons with exotic quantum numbers; a study of meson and baryon decays to strange final states		2016 – present collected ~30% of data			
A precision measurement of the η radiative decay width via the Primakoff effect (see talk by I. Jaegle)	Calorimeter prototype	Spring 2019, Fall 2021 (~50 % of data)			
Measuring the charged pion polarizability (see talk by R. Miskimen)		Scheduled for 2022			
Studying short range correlations with real photon beams at GlueX	Taking data				
Upgrade Forward Calorimeter					
Eta decays with emphasis on rare neutral modes: The JLab Eta Factory experiment (JEF)		2023 Run in parallel with GlueX			

JEF Experiment using GlueX Detector

> Upgrade the inner part of the lead glass Forward Calorimeter with high-granularity high-resolution PbWO₄ crystals to improve reconstruction of multi-photon final states
> Produce η / η ' using a beam of tagged photons with the energy between 8.4 - 11.7 GeV
> Reconstruct η / η ' in exclusive reactions:

$$\gamma + p \rightarrow \eta / \eta' + p \qquad \eta / \eta' \rightarrow \gamma \gamma, \pi^0 \gamma \gamma, \ldots$$

Run in parallel with other GlueX experiments: collect large data set of η / η' mesons

Expected Rate of η/η'

Previous Experiments:

Experiment	Total η	Total η'	
CB at AGS	10 ⁷	-	
CB MAMI-B	2x10 ⁷	-	
CB MAMI-C	6x10 ⁷	10 ⁶	
WASA-COSY	~3x10 ⁷ (p+d), ~5x10 ⁸ (p+p)	-	
KLOE-II	3x10 ⁸	5x10 ⁵	
BESIII	~10 ⁷	~5x10 ⁷	

JEF for 100 days of beam:

	η	η΄
Tagged mesons	6.5x10 ⁷	4.9×10^{7}

JEF will produce a competitive sample of η/η' events

(see also proposed experiment REDTOP, talk by Corrado Gatto)

Unique Capabilities of JEF

- > High production rate of $\eta / \eta '$ mesons
 - about 5×10^7 tagged η per 100 days of beam time
 - large data sample compared to existing η(') experiments, such as A2-MAMI, WASA-at-COSY, KLOE-II, BES-III
- Produce η / η ' with high boost. Good reconstruction of photons in the upgraded lead tungstate Forward Calorimeter
 - significantly smaller background compared to other low-energy experiments

JEF Physics Program

Mode	Branching Ratio	Physics Highlight	Photons
priority:			
$\pi^0 2\gamma$ L	$\pi^{0}2\gamma$ Upgrade the Forward Calorimeter		4
$\gamma + B$	beyond SM	leptophobic dark boson	4
$3\pi^0$	$(32.6 \pm 0.2)\%$	$m_u - m_d$	6
$\pi^+\pi^-\pi^0$	$(22.7 \pm 0.3)\%$	$m_u - m_d$, CV	2
3γ	$< 1.6 \times 10^{-5}$	CV, CPV	3
ancillary:			
4γ	$< 2.8 \times 10^{-4}$	$< 10^{-11}[112]$	4
$2\pi^0$	$< 3.5 \times 10^{-4}$	CPV, PV	4
$2\pi^0\gamma$	$< 5 \times 10^{-4}$	CV, CPV	5
$3\pi^0\gamma$	$< 6 \times 10^{-5}$	CV, CPV	6
$4\pi^0$	$< 6.9 \times 10^{-7}$	CPV, PV	8
$\pi^0\gamma$	$< 9 imes 10^{-5}$	CV,	3
		Ang. Mom. viol.	
normalization:			
2γ	$(39.3 \pm 0.2)\%$	anomaly, η - η' mixing	
		PR12-10-011	2

Main physics topics:

- 1. Test of low-energy QCD
- 2. Search for dark matter
- 3. Directly constrain CVPC new physics
- 4. Constrain the light quark mass ratio

Impact of $\eta \rightarrow \pi^0 \gamma \gamma$ measurements on Chiral Perturbation Theory

Unique probe for the high order ChPT: L. Ametller, et.al, Phys. Lett., B276, 185 (1992)
- contribution from two O(p⁶) counter-terms in the chiral Lagrangian

- Study contribution of scalar resonances in calculation of O(p⁶) low-energy constants (LEC) in the chiral Lagrangian
- Shape of Dalitz distribution is sensitive to the role of scalar resonances

J.N. Ng, et al., Phys. Rev., D46, 5034 (1992)

Dark Matter Search in η Decays

Light pseudoscalar (axion-like particle)

$$\eta, \eta' \rightarrow \pi \pi \gamma \gamma, \pi \pi e^+ e^-$$
¹⁰

Search for B-boson in **n** decay

A.E. Nelson, N. Tetradis, Phys. Lett., B221, 80 (1989)

$$\eta \rightarrow B\gamma$$
 decay (m_B < m_η)

B decay:

 $B \rightarrow \pi^0 \gamma$ in 140-600 MeV mass range

Triangle diagram

JEF Experimental Reach ($\eta \rightarrow B\gamma \rightarrow \pi^0 \gamma \gamma$)

A stringent constraint on the leptophobic B-boson in 140 - 550 MeV range

Calorimeter Upgrade

- A factor of 4 better detector granularity - significantly improve shower separation
- Improves the energy and position resolution by about a factor of 2

Calorimeter Prototype

- Beam test of calorimeter prototype
 - -12 x 12 modules
 - used as a Compton calorimeter in the PrimEx experiment in 2019 / 2021

Energy resolution

Electromagnetic calorimeters based on scintillating lead tungstate crystals for experiments at Jefferson Lab $^{\diamond}$

A. Asaturyan^a, F. Barbosa^c, V. Berdnikov^b, E. Chudakov^c, J. Crafts^{b,c}, H. Egiyan^c, L. Gan^f, A. Gasparian⁸, K. Harding^c, T. Horn^b, V. Kakoyan^{*}, H. Mkrtchyan^{*}, Z. Papandreou^{*}, V. Popov^c, N. Sandoval^{*}, A. Somov^{-†}, S. Somov⁴, A. Smith^{*}, C. Stanislav^c, S. Taylor^c, H. Voskanyan^{*}, T. Whitlatch^c, S. Worthington^{*}

Finalizing Module Design

- Magnetic shielding studies
 - use soft iron and mu-metal PMT housing
 - use light-guides
- Optimize geometry of light guides (light collection studies)

- Optimize design of PMT divider (active base)
- Study properties of PbWO crystals, perform quality checks: NIM A 956 (2020) 163375
 - procure from two vendors: SICCAS (China) and CRYTUR (Czech Republic)
 - measure dimensions, light transmittance and yield

Beam Tests of Fabricated PbWO Modules

- Test fabricated modules using electrons/positrons with known energies provided by the GlueX Pair Spectrometer NIM A 956 (2020) 163375, NIM A 795 (2015)
- Perform tests in parallel with GlueX data taking

Test up to 12 PbWO modules

- Fabrication of FCAL2 modules in progress
- Installation in Hall D: 2023

Pair Spectrometer setup in Hall D

Energy resolution of a single module

Summary

- The new JEF experiment in Hall D will extend the physics potential of the GlueX detector. The JEF physics program spans from the study of rare decays of η mesons to the dark matter searches in the sub-GeV mass region.
- The experiment requires upgrade of the lead glass GlueX forward calorimeter with high-granularity, high-resolution PbWO₄ crystals
- The new calorimeter will be installed in Hall D in 2023

Backup Slides

Search for **B** boson

Dark leptophobic B-boson

$$L = \frac{1}{3} g_B \overline{q} \gamma^\mu q B_\mu + \dots$$

• Arises from a new gauge baryon symmetry $U(1)_B$

Early studies by Lee and Yang, Phys.Rev.,98 (1955) 1501; Okun, Yad.Fiz., 10 (1969) 358,

• Unified genesis of baryonic and dark matter

• the $m_B < m_\rho$ region is strongly constrained by long-range forces search exp.; the $m_B > 50 GeV$ has been investigated by the collider experiments

 GeV-scale domain is poorly constrained discovery opportunity!

Projections for $\eta \rightarrow \pi^0 \gamma \gamma$ Decay

Constrain contribution of scalar resonances in the calculation of $O(p^6)$ low-energy constants

A2 at MAMI arXiv:1405.4904, 2014

21

C Invariance

- Maximally violated in the weak force and is well tested
- SM prediction: BR(η→3γ) <10⁻¹⁹ via P-violating weak interaction.
- Study constraints on CVPC from EDM
 - no constraints in the presence of a conspiracy or new symmetry; only the direct searches are unambiguous
 - M. Ramsey-Musolf, phys. Rev., D63 (2001); talk at the AFCI workshop, studies are in progress

C Violating η neutral decays

Final State	Branching Ratio (upper limit)	Gammas in Final State
3γ	< 1.6•10 ⁻⁵	S
$\pi^0\gamma$	< 9•10⁻⁵	5
2π ⁰ γ	< 5 · 10 ⁻⁴	
		5
3γπ ⁰	Nothing published	
3π ⁰ γ	< 6•10 ⁻⁵	7
3γ2π ⁰	Nothing published	-