The GDH Program at Jefferson Lab

S. Širca, U of Ljubljana, Slovenia

Tallahassee, February 21, 2024

The ABC of GDH

- GDH = Gerasimov, Drell, Hearn (1966)
- Relates difference $\Delta \sigma \equiv \sigma_{3/2} \sigma_{1/2} \equiv \sigma_P \sigma_A$ of spin-dependent total photo-production XS to anomalous magnetic moment κ and mass M of arbitrary particle:

$$I_{\rm GDH} = \int_{\nu_0}^{\infty} \frac{\sigma_{3/2}(\nu) - \sigma_{1/2}(\nu)}{\nu} \, \mathrm{d}\nu = 4\pi^2 \alpha \, S \frac{\kappa^2}{M^2}$$

- Fundamental QFT statement; valid for any spin *S* ... but:
 - ▷ RHS for proton/ neutron known to ~ 8 digits: $a^2 I_{GDH}^p \approx 205 \,\mu$ b, $I_{GDH}^n \approx 232 \,\mu$ b
 - ▷ $\Delta \sigma$ for p (n) known at few % level, but only to $\nu = E_{\gamma} \approx 2.9$ GeV (2 GeV)
 - $\triangleright \Delta \sigma$ at large ν unknown; domain of Regge theory
 - ▷ $1/\nu$ weight emphasizes threshold region, $\nu_0 \ge m_\pi (1 + m_\pi/2M_N)$ for p/n, thus sum rule saturated by $\nu \approx 3$ GeV (?)

Drechsel, Tiator, Annu. Rev. Nucl. Part. Sci. 54, 69 (2004)

GDH: why the question mark

• Unpolarized "sum rule" (for $\sigma_{tot} \equiv \sigma_{3/2} + \sigma_{1/2} \equiv \sigma_P + \sigma_A$ on p/n):

$$\int_{\nu_0}^{\infty} \left(\sigma_{3/2}(\nu) + \sigma_{1/2}(\nu) \right) \, \mathrm{d}\nu = -\frac{\pi \alpha}{M_N}$$

- \triangleright LHS > 0, RHS < 0 (?)
- ▷ Divergent integrand (?)
- ▷ Pomeron exchange (1961) Regge parameterization of the XS, good up to $s = M_N(M_N + 2\nu) \approx (250 \,\text{GeV})^2$: $\sigma_{\text{tot}} = (129 \, s^{-0.4545} + 67.7 \, s^{0.08}) \mu \text{b}$
- ▷ If $\int \sigma_{tot}(v) dv$ is divergent, what are the implications for the convergence of $\int (\Delta \sigma(v)/v) dv$ and asymptotic behaviour of $\Delta \sigma(v)$?
- ▷ ∃ several considerations why the sum rule may need to be modified

Pantförder, arXiv:hep-ph/9805434

Strakovsky++, PRC 105, 045202 (2022)

Measurements of $\Delta \sigma \neq$ evaluations of the GDH integral

- Threshold region important due to $1/\nu$ weight \Rightarrow extrapolation (Use models like MAID/SAID: both give $I_{GDH}^{p}(\nu \le 0.2 \text{ GeV}) \approx -28 \,\mu\text{b}$)
- Phenomenological input for high-v
- MAMI, ELSA: $0.2 \text{ GeV} \le \nu \le 2.9 \text{ GeV}$ (p), $0.2 \text{ GeV} \le \nu \le 1.8 \text{ GeV}$ (n) "Typical results" (proton) + standard problem near threshold:

Measurements of $\Delta \sigma(\nu)$, the grand total

Other measurements exist, e. g. CLAS g9 (JLab @ 6 GeV): $1-\pi$ contrib up to 2 GeV, $2-\pi$ contrib up to 3 GeV, under analysis, etc. etc.

Extractions of the neutron $\Delta \sigma$ from d, ³He etc. require subtractions depending on the target, e.g. LiD: $\Delta \sigma^{d,n}(v) = \operatorname{corr}(v)\Delta Y^{\operatorname{LiD}} - g^{d,n}\Delta \sigma^{p}(v)$ and involve theoretical assumptions

The (unmeasured) **high-\nu region** is interesting in its own way **in spite of** the $1/\nu$ weight ... more on this later

(Some) JLab experiments on spin SRs, spin polarizabilities etc.

- Hall B: EG1a g_1^p down to $Q^2 = 0.15$
- Hall A: E94-010 (Cates, Chen, Meziani) $g_1^{^{3}\text{He}}(x, Q^2), g_2^{^{3}\text{He}}(x, Q^2), \Gamma_1^{^{3}\text{He}}(Q^2), ...$ $\Rightarrow n$
- Hall A: E97-110 (Chen, Deur, Garibaldi) "small-angle GDH/n" $\Gamma_1^{^{3}\text{He}}(Q^2), I_{TT}^{^{3}\text{He}}(Q^2), \gamma_0^{^{3}\text{He}}(Q^2), \dots$ $\Rightarrow n$
- Hall B: EG4 / E03-006 (Ripani, Battaglieri, Deur, de Vita) "small-angle GDH/p" $\Gamma_1^p(Q^2), I_{TT}^p(Q^2), \gamma_0^p(Q^2), \dots$ at low Q^2
- Hall B: EG4 / E05-111 (Deur, Dodge, Ripani, Slifer) $\Gamma_1^d(Q^2), I_{TT}^d(Q^2), \gamma_0^d(Q^2), \dots$ at low Q^2 $\implies n$
- Hall A: E08–027 (Camsonne, Chen, Crabb, Slifer) $g_1^p(x, Q^2), g_2^p(x, Q^2), I_{TT}^p(Q^2), \dots$ at low Q^2 (only one Q^2 point for I_{TT}^p)

All these observables can be related to the GDH integral in one way or another ... here is just one example \Rightarrow

Generalized GDH sum rule ($Q^2 \neq 0$)

$$\Gamma_1^p(Q^2) = \int_0^{1^-} g_1^p(x, Q^2) \, \mathrm{d}x \to -\frac{Q^2 \kappa_p^2}{8M^2} \text{ as } Q^2 \to 0$$

- GDH sum given by the slope of $\Gamma_1^p(Q^2)$ at $Q^2 = 0$
- Proton target, very low *Q*²:

- \triangleright $W \ge 1.15$ GeV (avoid elastic tail)
- ▷ Used parameterization of previous data to evaluate contributions from the low-*x* region (down to $x \approx 10^{-3}$) and the high-*x* region (from W_{thr} up to 1.15 GeV)
- \triangleright Offers unique test of χ EFT

proton

The slope of $\Gamma_1^p(Q^2) \rightarrow$ the value of $I_{TT}^p(Q^2)$ at $Q^2 = 0$

Recall:

$$\frac{8\pi^2\alpha}{M^2}I_{TT}(0) = -\frac{2\pi^2\alpha\kappa^2}{M^2} = -I_{\text{GDH}}$$

- EG4 result on proton: $I_{TT}^{p,EG4}(0) = -0.798 \pm 0.042$ $I_{TT}^{p}(\text{GDH}) = -\frac{1}{4}\kappa_{p}^{2} = -0.804...$ $I_{TT}^{p}(\text{MAMI} = -0.832 \pm 0.023 \pm 0.063$ (from photo-production)
- Issue of $Q^2 \rightarrow 0$ extrapolation: Manifestly Lorentz-invariant B χ PT vs. heavy-baryon frameworks
- Even more pertinent (and drastic) in the case of generalized longitudinal spin polarizability

Zheng++, Nat. Phys. **17**, 736 (2021) Alarcon++, PRD **102**, 114026 (2020)

Running GDH integral

Contributions below 0.2 GeV: $\approx -28 \,\mu b$ (proton), $\approx -41 \,\mu b$ (neutron) **Red points** (not really at $\nu = 10!$): from generalized GDH integral at $Q^2 \rightarrow 0$

The GDH integrand in the Regge framework

s-dependence of real/virtual polarized photo-absorption:

$$\Delta \sigma = \left[Ic_1 s^{\alpha_{a_1} - 1} + c_2 s^{\alpha_{f_1} - 1} + c_3 \frac{\log s}{s} + \frac{c_4}{\log^2 s} \right] F(s, Q^2)$$

 $I = \pm 1 = p/n$ isospin factor, α_{a_1} , α_{f_1} = intercepts of a_1 and f_1 Regge trajectories For $Q^2 = 0$, log terms negligible, $F(s, Q^2)$ simplifies to a constant \rightarrow absorb in $c_1, c_2 \Rightarrow$ $\Delta \sigma = Ic_1 s^{\alpha_{a_1} - 1} + c_2 s^{\alpha_{f_1} - 1}$

 $c_1 = (-34.1 \pm 5.7) \,\mu$ b, $\alpha_{a_1} = 0.42 \pm 0.23$, $c_2 = (209.4 \pm 29.0) \,\mu$ b, $\alpha_{f_1} = -0.66 \pm 0.22$

Decompose κ_p , κ_n into iv/is components, $\kappa_p = (\kappa_s + \kappa_v)/2$, $\kappa_n = (\kappa_s - \kappa_v)/2$ $\Rightarrow \kappa_{p,n}^2 = \frac{1}{4}\kappa_s^2 \pm \frac{1}{2}\kappa_v\kappa_s + \frac{1}{4}\kappa_v^2$

Split the GDH sum rule accordingly (I_{GDH}^{ss} , I_{GDH}^{vv} , and I_{GDH}^{vs})

$$\implies I_{\rm GDH}^{\rm vs} = \int_{E_{\gamma}^{\rm thr}}^{\infty} \left(\sigma_{3/2}^{\rm vs} - \sigma_{1/2}^{\rm vs}\right) \frac{{\rm d}E_{\gamma}}{E_{\gamma}} = \frac{1}{2} \kappa_{\rm v} \kappa_{\rm s} \frac{2\pi^2 \alpha}{M^2}$$

Since $\kappa_p^2 - \kappa_n^2 = \kappa_v \kappa_s$, the isovector GDH sum rule amounts to $\int_{E_y^{\text{thr}}}^{\infty} \frac{\Delta \sigma_{p-n}}{E_y} \, \mathrm{d}E_y = 2I_{\text{GDH}}^{\text{vs}} \approx -27.5 \,\mu\text{b}$

Isovector GDH sum rule à la Regge

In Regge theory, $\Delta \sigma_{p-n}$ is driven by the a_1 trajectory alone:

Strakovsky++, PRC 105, 045202 (2022)

- \Rightarrow Understanding the magnitude and sign of α_{a1} is important
- \Rightarrow "**REGGE**" JLab Experiment E12-20-011

12

New GDH effort: "REGGE" — JLab Experiment E12–20–011

(M. M. Dalton, A. Deur, SŠ, J. Stevens)

• $\Delta \sigma$ at high ν **unknown**

- High v = domain of Regge theory
- If the GDH sum rule failed, it would happen at high ν (not in the low- ν region, even if it dominates in the sum)

Strategy:

- ▷ Measure on both proton and neutron (deuteron) to allow for isospin separation Regge: is/iv contributions to $\Delta \sigma$ come from different meson families: $f_1(1285)/a_1(1260)$
- \triangleright Extend energy coverage: $3 < \nu < 12 \text{ GeV}$
- ▷ Hall D @ JLab ideally suited for this study cross-check with MAMI/ELSA at $\nu < 3$ GeV would be nice, but invasive to other Halls
- \triangleright Measure yield difference $\Delta Y(\nu) = N^+ N^-$
 - \rightarrow make sure $\Delta \sigma(\nu) / \nu$ decreases rapidly enough
 - → investigate the power-law behavior of $\Delta \sigma(\nu)$, i.e. establish *b* in $\Delta \sigma(\nu) = a\nu^{b}$
- (\triangleright Determine absolute $\Delta \sigma(\nu)$: later)

"REGGE" — JLab Experiment E12–20–011

Setup:

• Circularly polarized tagged photon beam 🗸

Generated by electrons from CEBAF with $P_e \approx 80\%$ on amorphous radiator Increasing P_e at large ν compensates the decrease in bremsstrahlung flux and XS

• Longitudinally polarized target: (a new) FROST

Chosen against HDice (= does not allow extension to polarization of heavier nuclei) Dynamical nuclear polarization on butanol (C₄H₉OH), *p* and *d* polarizations up to 90% Desired sustainable flux: $\approx 10^8$ /s or more Dilution (and other unpolarized backgrounds) cancel: $(N^+ + N^0) - (N^- + N^0) = N^+ - N^-$

• Large solid angle detector 🗸

FCal (with PbWO₄ upgrade), BCal: 0.4° to 145° polar, 2π azimuthal coverage Unpolarized XS $\approx 120 \,\mu b \Rightarrow$ DAQ rate $\approx 33 \,\text{kHz}$ on H-butanol, $\approx 40 \,\text{kHz}$ on D-butanol + target window + EM backgrounds

• Note: solely to establish the fall-off of $\Delta \sigma(\nu)/\nu$, the ν -independent normalization factors (flux, ρ_t , P_e , P_t , $\int \Delta \Omega$) are irrelevant

"REGGE" — Expected results

"REGGE" — Isospin decomposition

Based on the substraction $\Delta \sigma_n = \Delta \sigma_d / (1 - 1.5 \omega_D) - \Delta \sigma_p$

- Access Compton physics without resorting to dedicated Compton setup
- Relation of $\Delta \sigma$ to spin-dependent Compton amplitude *g*:

$$\operatorname{Im} g(\varepsilon) = \frac{\varepsilon}{8\pi} \left(\sigma_{3/2} - \sigma_{1/2} \right)$$

- Access to the real part via DR: $\operatorname{Re} g(v) = \frac{2v}{\pi} P \int_0^\infty \frac{\operatorname{Im} g(\varepsilon)}{\varepsilon^2 - v^2} d\varepsilon$
- \Rightarrow Extend Re*g*—Im*g* "symbiosis" cross-check to beyond 10 GeV (sixfold energy range)

Hagelstein++, Prog. Part. Nucl. Phys. 88, 29 (2016)

• If both Re *g* and Im *g* are known precisely enough (and given *f*, the unpolarized amplitude, which is well measured), one can determine the differential XS and the beam-target asymmetry in the fwd direction:

$$\frac{d\sigma}{d\Omega}\Big|_{\theta=0} = |f|^2 + |g|^2, \qquad \Sigma_{2z}\Big|_{\theta=0} = -\frac{2\text{Re}\,(fg^*)}{|f|^2 + |g|^2}$$

- $\Sigma_{2z} = \Delta \sigma / \sigma_{tot}$ provides information on (all four) spin polarizabilities; very sensitive to chiral loops
- $\Rightarrow \text{Reduce uncertainties of } \Sigma_{2z}$ by precise measurements of $\Delta \sigma(\nu)$ at high ν

Hagelstein++, Prog. Part. Nucl. Phys. 88, 29 (2016)

• Regge: $\Delta \sigma_{p-n}$ driven by the a_1 trajectory:

$$\Delta \sigma_{\rm p-n}^{\rm Regge} = 2c_1 s^{\alpha_{a_1}-1}$$

• Conflicting determinations:

	α_{a_1}
DIS fit (approx. values)	0.45
Photo/electro-production fit	0.31 ± 0.04
Regge expectation	-0.34

- Problem: $a_1(1260)$ is the only $I^G(J^{PC}) = 1^-(1^{++})$ meson to form a "trajectory", while the second candidate, the $a_1(1640)$, has been omitted from the PDG Summary Tables (needs confirmation)
- ⇒ A precise measurement of $\Delta \sigma$ at high ν for both proton and neutron targets would help to remove this uncertainty. → Note: the intercept is given by

$$\alpha_{a_1} = 1 - \alpha' m_{a_1}^2$$

where $\alpha' = 1/(2\pi\sigma) \approx 0.88 \,\text{GeV}^{-2}$ and σ is the string tension

- Explore transition between polarized DIS and diffraction regimes
- Diffractive scattering \Leftrightarrow diquark picture

• Other mechanisms exist, connecting to DIS parton model, e.g.

• Doubly-polarized $\vec{e} - \vec{p}$ scattering filters out \mathbb{P} exchanges to reveal non-singlet \mathbb{R} exchange \Rightarrow relevant to EIC

• Polarizability correction to hyperfine splitting in hydrogen

$$E_{\text{HFS}}(nS) = \left[1 + \Delta_{\text{QED}} + \Delta_{\text{weak}} + \Delta_{\text{structure}}\right] E_{\text{Fermi}}(nS)$$

$$\Delta_{\text{structure}} = \Delta_{Z} + \Delta_{\text{recoil}} + \Delta_{\text{pol}}$$

Relative uncertainties of the three terms: 140 ppm, 0.8 ppm, 86 ppm, respectively vs. precision of forthcoming PSI measurement of E_{HFS} : 1 ppm

"REGGE" can contribute to the uncertainty reduction of Δ_{pol} :

$$\Delta_{\text{pol}} = \frac{\alpha m_{\text{e}/\mu}}{2\pi (1+\kappa)M} [\delta_1 + \delta_2]$$
$$\delta_1 = 2 \int_0^\infty \frac{\mathrm{d}Q}{Q} \left(\{\cdots\} + \frac{8M^2}{Q^2} \int_0^{x_0} \mathrm{d}x \, g_1(x, Q^2) \{\cdots\} \right)$$

The GDH integrand at general values of ν and Q^2 :

$$\Delta\sigma(\nu) = -\frac{8\pi^2\alpha}{MK_{\gamma^*}} \left(g_1(\nu, Q^2) - \frac{Q^2}{\nu^2} g_2(\nu, Q^2) \right)$$

REGGEon == REGGE on Nuclei

Magnetic moment of particle with charge e_0Q , mass *M* and spin \vec{S} :

Dirac anomalous

For a nucleus of mass $M \approx AM_p$ and charge Ze_0 :

$$\vec{\mu} \approx \frac{e_0}{AM_p}(Z+\kappa)\vec{S} \implies \kappa = \frac{A}{2|\vec{S}|}\frac{\mu}{\mu_N} - Z$$

 \Rightarrow Compute κ for all stable nuclei with non-zero spin

 \Rightarrow Compute the static part of the GDH sum

"REGGEoN" — Photo-disintegration vs. photo-production

The GDH integral for a **nucleus** has contributions from the whole photo-absorption spectrum:

(Note: no data on the polarized XS, $\Delta \sigma$, exist for A > 3!) Region below π threshold: dominated by properties of *nucleus* Region above it: dominated by properties of *nucleons* (coherent photo-production: small)

Example: ⁷Li
$$(J^P = \frac{3}{2})$$
: polarization carried by single $1p_{3/2}$ nucleon $I_{\text{GDH}}^{p^*} \approx 270 \,\mu\text{b}, I_{\text{GDH}}^{p} = 204.78 \,\mu\text{b}, I_{\text{GDH}}^{7_{\text{Li}}} = 83.4 \,\mu\text{b}$

"REGGEoN" — Modification of properties of bound nucleons

A nucleon in the nuclear medium will be modified \Rightarrow modification of **both sides** of the *nucleon* sum rule

> Bass, Acta Phys. Pol. B **52**, 42 (2021) Bass++, Eur. Phys. J. A **59**, 238 (2023)

Static side: guidance for κ^* , M^* from QMC model:

$$\frac{M_N^*}{M_N} \approx \frac{M_\Delta^*}{M_\Delta} \approx \left(1 - 0.2 \frac{\rho}{\rho_0}\right) , \quad \frac{\kappa_N^*}{\kappa_N} \approx \left(1 + 0.1 \frac{\rho}{\rho_0}\right) , \quad \rho \ll \rho_0$$

Typical QMC predictions (depending on bag radius):

$$\frac{M_N^*(\rho_0)}{M_N} \approx 0.9, \quad \frac{\kappa_N^*(\rho_0)}{\kappa_N} \approx 1.05 \quad \Longrightarrow \quad \left(\frac{\kappa^*(\rho_0)}{M_N^*(\rho_0)}\right)^2 / \left(\frac{\kappa}{M_N}\right)^2 \approx 1.3$$

Dynamic (integral) side: modification of the integral due to in-medium shifts of resonance masses "probed" by the $1/\nu$ factor in the integrand

- ▷ "large" effect for $\Delta(1232)$, $1/\nu \leftrightarrow 1/M_{\Delta}^*$
- ▷ small effect for $D_{13}(1520)$, $S_{11}(1535)$, ... (?)
- ▷ 3rd resonance region + Regge domain: situation unclear: +18 μ b - 15 μ b for proton vs. +16 μ b - 89 μ b for neutron

Saito++, Prog. Part. Nucl. Phys. 58, 1 (2007)

"REGGEoN" — Candidate nuclei

	J^{π}	μ	К	M	$I_{ m GDH}$
$^{1}\mathrm{H}$	$\frac{1}{2}^{+}$	2.793	1.793	0.9383	204.8
^{2}H	$\overline{1}^+$	0.857	-0.1426	1.875	0.6484
³ He	$\frac{1}{2}^{+}$	-2.128	-8.383	2.808	499.9
⁷ Li	$\frac{3}{2}^{-}$	3.256	4.598	6.532	83.39
¹³ C	$\frac{1}{2}^{-}$	0.702	3.131	12.11	3.753
^{17}O	$\frac{5}{2}^{+}$	-1.894	-14.44	15.83	233.4
¹⁹ F	$\frac{1}{2}^{+}$	2.628	40.94	17.69	300.5

- Choice will depend on target feasibility / FOM / other considerations
- The strongest candidate is ⁷Li:
 - ▷ Also the subject of unpolarized (E12–10–008) and polarized (E12–14–001: $Q^2 > 1 \text{ GeV}^2$) EMC experiments at JLab
 - \triangleright A GDH measurement will provide the $Q^2 \rightarrow 0$ limit ...
 - Image: Image:
- Low- ν part (up to \approx 3 GeV) at ELSA?

Conclusions

- Running GDH integral sort-of converges for proton ...
 - ... but not at all convincingly for neutron
 - \triangleright Threshold (low- ν) issues
 - \triangleright High- ν ("Regge") concerns
 - ▷ Imbalance of sum rule saturation in terms of single- π vs. all other channels (p vs. n, GDH vs. GGT)
- Reasonable agreement of real- γ results with extractions from *e*-scattering experiments extrapolated to $Q^2 = 0$
 - ▷ Understanding of $I_{\text{GDH}}(Q^2 \rightarrow 0)$, $\gamma_0(Q^2 \rightarrow 0)$, $\Gamma_1(Q^2 \rightarrow 0)$ etc. not at the same level
- New approved experiment: REGGE in Hall D @ JLab to study the high- ν behavior of $\Delta\sigma$
- JLab Letter of Intent (June 2023): REGGEoN (= REGGE on Nuclei)

Spare slides

Measurements of $\Delta \sigma$

The **threshold region** is very important due to $1/\nu$ weight \Rightarrow Use models like MAID/SAID: both give $I_{GDH}^{p}(\nu \le 0.2 \text{ GeV}) \approx -28 \,\mu\text{b}$

• Low- ν accessible at facilities like LEGS (BNL): $0.2 \text{ GeV} \le \nu \le 0.4 \text{ GeV} \dots$

Hoblit++, PRL **102**, 172002 (2009)

• ... or TUNL (e. g. deuteron with huge $\Delta \sigma$ just above the photo-disintegration threshold):

Ahmed++, PRC 77, 044005 (2008)

• (Precise) low- ν data is also crucial for extrapolations (guiding threshold models)

Generalization of the GDH sum rule to $Q^2 \neq 0$

Based on the ν -expansion of the VVCS amplitude in the dispersion relation

$$\operatorname{Re} A_{\operatorname{VVCS}}(\nu, Q^2) = \frac{1}{\pi} P \int_{-\infty}^{\infty} \frac{\operatorname{Im} A_{\operatorname{VVCS}}(\nu', Q^2)}{\nu' - \nu} \, \mathrm{d}\nu'$$

• LO: generalized GDH

 $\Delta \sigma \equiv -2\sigma_{TT}$

 $I_{TT}(Q^{2}) = \frac{M^{2}}{4\pi^{2}\alpha} \int_{\nu_{0}}^{\infty} \frac{K_{\gamma^{*}}}{\nu} \frac{\sigma_{TT}}{\nu} d\nu = \frac{2M^{2}}{Q^{2}} \int_{0}^{x_{0}} \left[g_{1}(x,Q^{2}) - \frac{4M^{2}}{Q^{2}} x^{2} g_{2}(x,Q^{2}) \right] dx$ $\frac{8\pi^{2}\alpha}{M^{2}} I_{TT}(0) = -\int_{\nu_{0}}^{\infty} \frac{\Delta\sigma(\nu)}{\nu} d\nu = -\frac{2\pi^{2}\alpha\kappa^{2}}{M^{2}} = -I_{\text{GDH}}$

• NLO: forward spin polarizability: Gell-Mann-Goldberger-Thirring SR:

$$y_0(Q^2) = \frac{1}{2\pi^2} \int_{\nu_0}^{\infty} \frac{K_{\gamma^*}}{\nu} \frac{\sigma_{TT}}{\nu^3} d\nu = \frac{16\alpha M^2}{Q^6} \int_0^{x_0} x^2 \left[\cdots \text{ as above } \cdots \right] dx$$
$$y_0 = -\frac{1}{4\pi^2} \int_{\nu_0}^{\infty} \frac{\Delta \sigma(\nu)}{\nu^3} d\nu \equiv I_{\text{GGT}}$$

Details of the formalism, conventions etc.: Deur++, Rep. Prog. Phys. **82**, 076201 (2019)

Spin polarizability γ_0 , proton

Same exercise, deuteron ...

• Photo-disintegration part excluded \Rightarrow "deuteron" \approx p+n ($I_{TT}^{d} = I_{TT}^{p} + I_{TT}^{n}$) $I_{TT}^{d,EG4}(0) = -1.724 \pm 0.027 \pm 0.050$ $I_{TT}^{d}(\text{GDH}) = -1.59...$

 $\Rightarrow \text{ extracted neutron information:}$ $I_{TT}^{n,EG4}(0) = -0.955 \pm 0.040 \pm 0.113$ $I_{TT}^{n}(\text{GDH}) = -0.803 \dots$ (agreement not so good ...)

Results on $\Gamma_1^n(Q^2)$ from E97–110 (³He) and EG4 (d)

- Good mutual agreement $E97-110 \iff EG4$
- Good description in terms of NLO χ PT at lowest Q^2

$I_{TT}^n(Q^2)$ and γ_0^n from E97-110 alone

- Agreement with older data (E94–010, EG1b) at larger Q^2
- Poor match to either of the competing NLO χ PT calculations
- Disagreement with MAID

Individual contributions to the running GDH integral

TABLE 2 The contribution of various decay channels to the GDH integral *I* and the forward spin polarizability γ_0 . The integration extends to $\nu_{\text{max}} = 1.67 \text{ GeV} (W_{\text{max}} = 2 \text{ GeV})$ except that the two-pion contribution is integrated only up to $\nu_{\text{max}} = 800 \text{ MeV}$

Reference	Proton	I _p	γ^p_0	Neutron	I _n	${\gamma}_0^n$
(34)/(49)	$\pi^0 p$	157/142	-1.46/-1.40	$\pi^0 n$	145/147	-1.44/-1.44
(34)/(49)	$\pi^+ n$	7.5/44	0.82/0.55	$\pi^- p$	-21/-13	1.53/1.36
(54)	ηp	-9.0	0.01	ηn	-5.9	0.01
(55)	$\pi\pi N$	28	-0.07	$\pi\pi N$	19	-0.05
(53)	$K\Lambda, K\Sigma$	-4.0	< 0.01	$K\Lambda, K\Sigma$	2.0	< 0.01
(53)	$\omega p, \ \rho N$	-3.0	< 0.01	$\omega n, \ \rho N$	2.1	< 0.01
(44)/(45)*	Regge	-25/-9	< 0.01	Regge	31/16	< 0.01

p, contribution below v_0 is of EM origin & suppressed by $\kappa_{\text{QED}}/\kappa_p \approx 10^{-3}$ ($\kappa_{\text{QED}} = \alpha/2\pi$ = Schwinger correction) Drechsel, Walcher, Annu. Rev. Nucl. Part. Sci. **54**, 69 (2004)

Strakovsky++, PRC 105, 045202 (2022)

Isovector GDH sum rule vs. Bjorken sum at very low Q^2

Best fit of the world data on $\overline{\Gamma}_1^{p-n}(Q^2)$ (full integral, with low-x contribution) using a fit function $bQ^2 + cQ^4$. The fit is performed up to $Q^2 = 0.244$ GeV². The "*uncor*" uncertainty designates the point-to-point uncorrelated uncertainty. It is the quadratic sum of the statistical uncertainty and a fraction of the systematic uncertainty determined so that $\chi^2/n.d.f = 1$ for the best fit, see Appendix. The "*cor*" uncertainty is the correlated uncertainty estimated from the remaining fraction of the systematic uncertainty. Also listed are results of fits applied to the predictions from χ EFT and models.

Data set	$(b \pm uncor \pm cor)$ [GeV ⁻²]	$c \pm uncor \pm cor \ [GeV^{-4}]$
World data	$0.182 \pm 0.016 \pm 0.034$	$-0.117 \pm 0.091 \pm 0.095$
GDH Sum Rule [17]	0.0618	-
χ EFT Bernard et al. [13]	0.07	0.3
χ EFT Alarcón et al. [15]	0.066(4)	0.25(12)
Burkert-loffe [29]	0.09	0.3
Pasechnik et al. [30]	0.09	0.4
LFHQCD [35]	0.177	-0.067

 \Rightarrow only marginal agreement with χ EFT (somewhat surprising as contribution of $\Delta(1232)$ suppressed in this observable)

> EG4 (p, d), E97–110 (³He) Deur++, PLB **825**, 136878 (2022)

Recall the decades of FF-medium-modification efforts!

An example: *p* recoil polarization components in ${}^{12}C(\vec{e}, e'\vec{p})$:

Fig. 3. The measured polarization components P'_x (top), P'_z (middle), and their ratio P'_x/P'_z (bottom) as a function of missing momentum (left) and virtuality (right). Shown are statistical uncertainties only. The lines represent RDWIA and PWIA calculations for the corresponding shell obtained using a slightly modified program from [2] (see text). The shaded colored regions correspond to RDWIA calculations with the form-factor ratio, G_E/G_M , modified by $\pm 5\%$.

Kolar++, PLB 811, 135903 (2020)