The GDH Program at Jefferson Lab

S. Širca, U of Ljubljana, Slovenia

Tallahassee, February 21, 2024

The ABC of GDH

- GDH = Gerasimov, Drell, Hearn (1966)
- Relates difference $\Delta \sigma \equiv \sigma_{3 / 2}-\sigma_{1 / 2} \equiv \sigma_{\mathrm{P}}-\sigma_{\mathrm{A}}$ of spin-dependent total photo-production XS to anomalous magnetic moment κ and mass M of arbitrary particle:

$$
I_{\mathrm{GDH}}=\int_{v_{0}}^{\infty} \frac{\sigma_{3 / 2}(v)-\sigma_{1 / 2}(v)}{v} \mathrm{~d} v=4 \pi^{2} \alpha S \frac{\kappa^{2}}{M^{2}}
$$

- Fundamental QFT statement; valid for any spin S... but:
\triangleright RHS for proton/ neutron known to ~ 8 digits: $I_{\mathrm{GDH}}^{p} \approx 205 \mu \mathrm{~b}, I_{\mathrm{GDH}}^{n} \approx 232 \mu \mathrm{~b}$
$\triangleright \Delta \sigma$ for $\mathrm{p}(\mathrm{n})$ known at few $\%$ level, but only to $v=E_{y} \approx 2.9 \mathrm{GeV}(2 \mathrm{GeV})$
$\triangleright \Delta \sigma$ at large v unknown; domain of Regge theory
$\triangleright 1 / v$ weight emphasizes threshold region, $v_{0} \geq m_{\pi}\left(1+m_{\pi} / 2 M_{N}\right)$ for p / n, thus sum rule saturated by $v \approx 3 \mathrm{GeV}$ (?)

GDH: why the question mark

- Unpolarized "sum rule" (for $\sigma_{\text {tot }} \equiv \sigma_{3 / 2}+\sigma_{1 / 2} \equiv \sigma_{\mathrm{P}}+\sigma_{\mathrm{A}}$ on p / n):

$$
\int_{v_{0}}^{\infty}\left(\sigma_{3 / 2}(v)+\sigma_{1 / 2}(v)\right) \mathrm{d} v=-\frac{\pi \alpha}{M_{N}}
$$

\triangleright LHS >0, RHS <0 (?)
\triangleright Divergent integrand (?)
\triangleright Pomeron exchange (1961)
Regge parameterization of the XS, good up to $s=M_{N}\left(M_{N}+2 v\right) \approx(250 \mathrm{GeV})^{2}$: $\sigma_{\text {tot }}=\left(129 s^{-0.4545}+67.7 s^{0.08}\right) \mu \mathrm{b}$
\triangleright If $\int \sigma_{\text {tot }}(v) \mathrm{d} v$ is divergent, what are the implications for the convergence of $\int(\Delta \sigma(v) / v) \mathrm{d} \nu$ and asymptotic behaviour of $\Delta \sigma(\nu)$?
$\triangleright \exists$ several considerations why the sum rule may need to be modified

Pantförder, arXiv:hep-ph/9805434

Strakovsky++, PRC 105, 045202 (2022)

Measurements of $\Delta \sigma \neq$ evaluations of the GDH integral

- Threshold region important due to $1 / v$ weight \Rightarrow extrapolation (Use models like MAID/SAID: both give $I_{\text {GDH }}^{p}(v \leq 0.2 \mathrm{GeV}) \approx-28 \mu \mathrm{~b}$)
- Phenomenological input for high- v
- MAMI, ELSA: $0.2 \mathrm{GeV} \leq v \leq 2.9 \mathrm{GeV}(\mathrm{p}), 0.2 \mathrm{GeV} \leq v \leq 1.8 \mathrm{GeV}$ (n) "Typical results" (proton) + standard problem near threshold:

Measurements of $\Delta \sigma(v)$, the grand total

Other measurements exist, e. g. CLAS g9 (JLab @ 6 GeV): 1-m contrib up to $2 \mathrm{GeV}, 2-\pi$ contrib up to 3 GeV , under analysis, etc. etc.
Extractions of the neutron $\Delta \sigma$ from $\mathrm{d},{ }^{3} \mathrm{He}$ etc. require subtractions depending on the target, e.g. LiD: $\Delta \sigma^{d, n}(v)=\operatorname{corr}(v) \Delta Y^{\mathrm{LiD}}-g^{d, n} \Delta \sigma^{p}(v)$ and involve theoretical assumptions

The (unmeasured) high-v region is interesting in its own way in spite of the $1 / \nu$ weight \ldots more on this later

(Some) JLab experiments on spin SRs, spin polarizabilities etc.

- Hall B: EG1a
g_{1}^{p} down to $Q^{2}=0.15$
- Hall A: E94-010 (Cates, Chen, Meziani)
$g_{1}^{3}{ }^{\mathrm{He}}\left(x, Q^{2}\right), g_{2}^{3}{ }^{\mathrm{He}}\left(x, Q^{2}\right), \Gamma_{1}^{3} \mathrm{He}\left(Q^{2}\right), \ldots$
$\Rightarrow n$
- Hall A: E97-110 (Chen, Deur, Garibaldi) - "small-angle GDH/n"
$\Gamma_{1}^{3} \mathrm{He}\left(Q^{2}\right), I_{T T}^{3} \mathrm{He}\left(Q^{2}\right), \gamma_{0}^{3}{ }^{\mathrm{He}}\left(Q^{2}\right), \ldots$
$\Rightarrow n$
- Hall B: EG4 / E03-006 (Ripani, Battaglieri, Deur, de Vita) - "small-angle GDH/p" $\Gamma_{1}^{p}\left(Q^{2}\right), I_{T T}^{p}\left(Q^{2}\right), \gamma_{0}^{p}\left(Q^{2}\right), \ldots$ at low Q^{2}
- Hall B: EG4 / E05-111 (Deur, Dodge, Ripani, Slifer)
$\Gamma_{1}^{d}\left(Q^{2}\right), I_{T T}^{d}\left(Q^{2}\right), \gamma_{0}^{d}\left(Q^{2}\right), \ldots$ at low Q^{2}
$\Longrightarrow n$
- Hall A: E08-027 (Camsonne, Chen, Crabb, Slifer) $g_{1}^{p}\left(x, Q^{2}\right), g_{2}^{p}\left(x, Q^{2}\right), I_{T T}^{p}\left(Q^{2}\right), \ldots$ at low Q^{2} (only one Q^{2} point for $I_{T T}^{p}$)

All these observables can be related to the GDH integral in one way or another ...
... here is just one example \Rightarrow

Generalized GDH sum rule ($Q^{2} \neq 0$)

$$
\Gamma_{1}^{p}\left(Q^{2}\right)=\int_{0}^{1^{-}} g_{1}^{p}\left(x, Q^{2}\right) \mathrm{d} x \rightarrow-\frac{Q^{2} \kappa_{p}^{2}}{8 M^{2}} \quad \text { as } \quad Q^{2} \rightarrow 0
$$

- GDH sum given by the slope of $\Gamma_{1}^{p}\left(Q^{2}\right)$ at $Q^{2}=0$
- Proton target, very low Q^{2} :

$\triangleright W \geq 1.15 \mathrm{GeV}$ (avoid elastic tail)
\triangleright Used parameterization of previous data to evaluate contributions from the low- x region (down to $x \approx 10^{-3}$) and the high- x region (from $W_{\text {thr }}$ up to 1.15 GeV)
\triangleright Offers unique test of χ EFT
Zheng++, Nat. Phys. 17, 736 (2021)
proton

The slope of $\Gamma_{1}^{p}\left(Q^{2}\right) \rightarrow$ the value of $I_{T T}^{p}\left(Q^{2}\right)$ at $Q^{2}=0$

Recall:
$\frac{8 \pi^{2} \alpha}{M^{2}} I_{T T}(0)=-\frac{2 \pi^{2} \alpha \kappa^{2}}{M^{2}}=-I_{\text {GDH }}$

- EG4 result on proton:

$$
I_{T T}^{p, \text { EG4 }}(0)=-0.798 \pm 0.042
$$

$I_{T T}^{p}(\mathrm{GDH})=-\frac{1}{4} \kappa_{p}^{2}=-0.804 \ldots$
$I_{T T}^{p}(\mathrm{MAMI}=-0.832 \pm 0.023 \pm 0.063$ (from photo-production)

- Issue of $Q^{2} \rightarrow 0$ extrapolation:

Manifestly Lorentz-invariant $\mathrm{B} \chi$ PT vs. heavy-baryon frameworks

- Even more pertinent (and drastic) in the case of generalized longitudinal spin polarizability

proton

Zheng++, Nat. Phys. 17, 736 (2021) Alarcon++, PRD 102, 114026 (2020)

Running GDH integral

Contributions below 0.2 GeV: $\approx-28 \mu \mathrm{~b}$ (proton), $\approx-41 \mu \mathrm{~b}$ (neutron)
Red points (not really at $v=10$!): from generalized GDH integral at $Q^{2} \rightarrow 0$

The GDH integrand in the Regge framework

s-dependence of real/virtual polarized photo-absorption:

$$
\Delta \sigma=\left[I c_{1} s^{\alpha_{a_{1}}-1}+c_{2} s^{\alpha_{f_{1}-1}}+c_{3} \frac{\log s}{s}+\frac{c_{4}}{\log ^{2} s}\right] F\left(s, Q^{2}\right)
$$

$I= \pm 1=\mathrm{p} / \mathrm{n}$ isospin factor, $\alpha_{a_{1}}, \alpha_{f_{1}}=$ intercepts of a_{1} and f_{1} Regge trajectories
For $Q^{2}=0, \log$ terms negligible, $F\left(s, Q^{2}\right)$ simplifies to a constant \rightarrow absorb in $c_{1}, c_{2} \Rightarrow$

$$
\Delta \sigma=I c_{1} s^{\alpha_{a_{1}}-1}+c_{2} s^{\alpha_{f_{1}}-1}
$$

$c_{1}=(-34.1 \pm 5.7) \mu \mathrm{b}, \alpha_{a_{1}}=0.42 \pm 0.23, c_{2}=(209.4 \pm 29.0) \mu \mathrm{b}, \alpha_{f_{1}}=-0.66 \pm 0.22$
Decompose κ_{p}, κ_{n} into iv/is components, $\kappa_{p}=\left(\kappa_{\mathrm{s}}+\kappa_{\mathrm{V}}\right) / 2$, $\kappa_{n}=\left(\kappa_{\mathrm{s}}-\kappa_{\mathrm{V}}\right) / 2$

$$
\Longrightarrow \boldsymbol{\kappa}_{p, n}^{2}=\frac{1}{4} \kappa_{\mathrm{s}}^{2} \pm \frac{1}{2} \kappa_{\mathrm{v}} \kappa_{\mathrm{s}}+\frac{1}{4} \kappa_{\mathrm{v}}^{2}
$$

Split the GDH sum rule accordingly ($I_{\mathrm{GDH}}^{\mathrm{SS}}, I_{\mathrm{GDH}}^{\mathrm{V}}$, and $I_{\mathrm{GDH}}^{\mathrm{VS}}$)

$$
\Rightarrow I_{\mathrm{GDH}}^{\mathrm{vs}}=\int_{E_{\gamma}^{\mathrm{thr}}}^{\infty}\left(\sigma_{3 / 2}^{\mathrm{vs}}-\sigma_{1 / 2}^{\mathrm{vs}}\right) \frac{\mathrm{d} E_{y}}{E_{\gamma}}=\frac{1}{2} \kappa_{\mathrm{v}} \kappa_{\mathrm{s}} \frac{2 \pi^{2} \alpha}{M^{2}}
$$

Since $\kappa_{p}^{2}-\kappa_{n}^{2}=\kappa_{\mathrm{v}} \kappa_{\mathrm{s}}$, the isovector GDH sum rule amounts to

$$
\int_{E_{Y}^{\mathrm{thr}}}^{\infty} \frac{\Delta \sigma_{p-n}}{E_{\gamma}} \mathrm{d} E_{Y}=2 I_{\mathrm{GDH}}^{\mathrm{vs}} \approx-27.5 \mu \mathrm{~b}
$$

Isovector GDH sum rule à la Regge

In Regge theory, $\Delta \sigma_{p-n}$ is driven by the a_{1} trajectory alone:

$$
\Delta \sigma_{p-n}^{\text {Regge }}=2 c_{1} s^{\alpha_{a_{1}}-1}
$$

Strakovsky++, PRC 105, 045202 (2022)
\Longrightarrow Understanding the magnitude and sign of $\alpha_{a 1}$ is important
\Rightarrow "REGGE" - JLab Experiment E12-20-011

New GDH effort: "REGGE" - JLab Experiment E12-20-011

- $\Delta \sigma$ at high v unknown
- High $v=$ domain of Regge theory
- If the GDH sum rule failed, it would happen at high v (not in the low- v region, even if it dominates in the sum)

Strategy:

\triangleright Measure on both proton and neutron (deuteron) to allow for isospin separation Regge: is/iv contributions to $\Delta \sigma$ come from different meson families: $f_{1}(1285) / a_{1}(1260)$
\triangleright Extend energy coverage: $3<v<12 \mathrm{GeV}$

\triangleright Hall D @ JLab ideally suited for this study cross-check with MAMI/ELSA at $v<3 \mathrm{GeV}$ would be nice, but invasive to other Halls
\triangleright Measure yield difference $\Delta Y(v)=N^{+}-N^{-}$
\rightarrow make sure $\Delta \sigma(v) / v$ decreases rapidly enough
\rightarrow investigate the power-law behavior of $\Delta \sigma(v)$,
i.e. establish b in $\Delta \sigma(v)=a v^{b}$
(\triangleright Determine absolute $\Delta \sigma(v)$: later)

Setup:

- Circularly polarized tagged photon beam $($

Generated by electrons from CEBAF with $P_{e} \approx 80 \%$ on amorphous radiator Increasing P_{e} at large v compensates the decrease in bremsstrahlung flux and XS

- Longitudinally polarized target: (a new) FROST

Chosen against HDice (= does not allow extension to polarization of heavier nuclei)
Dynamical nuclear polarization on butanol $\left(\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{OH}\right), p$ and d polarizations up to 90%
Desired sustainable flux: $\approx 10^{8} /$ s or more
Dilution (and other unpolarized backgrounds) cancel:

$$
\left(N^{+}+N^{0}\right)-\left(N^{-}+N^{0}\right)=N^{+}-N^{-}
$$

- Large solid angle detector (\checkmark)

FCal (with PbWO_{4} upgrade), BCal: 0.4° to 145° polar, 2π azimuthal coverage
Unpolarized $\mathrm{XS} \approx 120 \mu \mathrm{~b} \Rightarrow \mathrm{DAQ}$ rate $\approx 33 \mathrm{kHz}$ on H -butanol, $\approx 40 \mathrm{kHz}$ on D-butanol + target window + EM backgrounds

- Note: solely to establish the fall-off of $\Delta \sigma(v) / v$, the v-independent normalization factors (flux, $\rho_{\mathrm{t}}, P_{e}, P_{\mathrm{t}}, \int \Delta \Omega$) are irrelevant

"REGGE" - Expected results

proton

neutron (from deuteron)

"REGGE" - Isospin decomposition

Based on the substraction $\Delta \sigma_{\mathrm{n}}=\Delta \sigma_{\mathrm{d}} /\left(1-1.5 \omega_{D}\right)-\Delta \sigma_{\mathrm{p}}$

(Select) motivation for "REGGE"

- Access Compton physics without resorting to dedicated Compton setup
- Relation of $\Delta \sigma$ to spin-dependent Compton amplitude g :

$$
\operatorname{Im} g(\varepsilon)=\frac{\varepsilon}{8 \pi}\left(\sigma_{3 / 2}-\sigma_{1 / 2}\right)
$$

- Access to the real part via DR:
$\operatorname{Re} g(v)=\frac{2 v}{\pi} P \int_{0}^{\infty} \frac{\operatorname{Im} g(\varepsilon)}{\varepsilon^{2}-v^{2}} \mathrm{~d} \varepsilon$
\Longrightarrow Extend $\operatorname{Re} g$-Img "symbiosis" cross-check to beyond 10 GeV (sixfold energy range)

Hagelstein++, Prog. Part. Nucl. Phys. 88, 29 (2016)

(Select) motivation for "REGGE"

- If both $\operatorname{Re} g$ and $\operatorname{Im} g$ are known precisely enough (and given f, the unpolarized amplitude, which is well measured), one can determine the differential XS and the beam-target asymmetry in the fwd direction:

$$
\left.\frac{\mathrm{d} \sigma}{\mathrm{~d} \Omega}\right|_{\theta=0}=|f|^{2}+|g|^{2},\left.\quad \Sigma_{2 z}\right|_{\theta=0}=-\frac{2 \operatorname{Re}\left(f g^{*}\right)}{|f|^{2}+|g|^{2}}
$$

- $\Sigma_{2 z}=\Delta \sigma / \sigma_{\text {tot }}$ provides information on (all four) spin polarizabilities; very sensitive to chiral loops
\Rightarrow Reduce uncertainties of $\Sigma_{2 z}$ by precise measurements of $\Delta \sigma(v)$ at high v

Hagelstein++, Prog. Part. Nucl. Phys. 88, 29 (2016)

(Select) motivation for "REGGE"

- Regge: $\Delta \sigma_{\mathrm{p}-\mathrm{n}}$ driven by the a_{1} trajectory:

$$
\Delta \sigma_{\mathrm{p}-\mathrm{n}}^{\text {Rege }}=2 c_{1} s^{\alpha_{a_{1}}-1}
$$

- Conflicting determinations:

	$\alpha_{a_{1}}$
DIS fit (approx. values)	0.45
Photo/electro-production fit	0.31 ± 0.04
Regge expectation	-0.34

- Problem: $a_{1}(1260)$ is the only $I^{G}\left(J^{P C}\right)=1^{-}\left(1^{++}\right)$meson to form a "trajectory", while the second candidate, the $a_{1}(1640)$, has been omitted from the PDG Summary Tables (needs confirmation)
\Longrightarrow A precise measurement of $\Delta \sigma$ at high v for both proton and neutron targets would help to remove this uncertainty. \longrightarrow Note: the intercept is given by

$$
\alpha_{a_{1}}=1-\alpha^{\prime} m_{a_{1}}^{2}
$$

where $\alpha^{\prime}=1 /(2 \pi \sigma) \approx 0.88 \mathrm{GeV}^{-2}$ and σ is the string tension

(Select) motivation for "REGGE"

- Explore transition between polarized DIS and diffraction regimes
- Diffractive scattering \Leftrightarrow diquark picture

not so high Q^{2}

low Q^{2}

- Other mechanisms exist, connecting to DIS parton model, e. g.

- Doubly-polarized $\vec{e}-\vec{p}$ scattering filters out \mathbb{P} exchanges to reveal non-singlet \mathbb{R} exchange \Rightarrow relevant to EIC

(Select) motivation for "REGGE"

- Polarizability correction to hyperfine splitting in hydrogen

$$
\begin{aligned}
E_{\mathrm{HFS}}(n S) & =\left[1+\Delta_{\mathrm{QED}}+\Delta_{\text {weak }}+\Delta_{\text {structure }}\right] E_{\text {Fermi }}(n S) \\
\Delta_{\text {structure }} & =\Delta_{Z}+\Delta_{\text {recoil }}+\Delta_{\text {pol }}
\end{aligned}
$$

Relative uncertainties of the three terms: $140 \mathrm{ppm}, 0.8 \mathrm{ppm}, 86 \mathrm{ppm}$, respectively vs. precision of forthcoming PSI measurement of $E_{\mathrm{HFS}}: 1 \mathrm{ppm}$
"REGGE" can contribute to the uncertainty reduction of $\Delta_{\text {pol }}$:

$$
\begin{gathered}
\Delta_{\mathrm{pol}}=\frac{\alpha m_{\mathrm{e} / \mu}}{2 \pi(1+\kappa) M}\left[\delta_{1}+\delta_{2}\right] \\
\delta_{1}=2 \int_{0}^{\infty} \frac{\mathrm{d} Q}{Q}\left(\{\cdots\}+\frac{8 M^{2}}{Q^{2}} \int_{0}^{x_{0}} \mathrm{~d} x g_{1}\left(x, Q^{2}\right)\{\cdots\}\right)
\end{gathered}
$$

The GDH integrand at general values of v and Q^{2} :

$$
\Delta \sigma(v)=-\frac{8 \pi^{2} \alpha}{M K_{\gamma^{*}}}\left(g_{1}\left(v, Q^{2}\right)-\frac{Q^{2}}{v^{2}} g_{2}\left(v, Q^{2}\right)\right)
$$

Work in progress: "REGGEoN" - JLab LOI12-23-004

REGGEon == REGGE on Nuclei

Magnetic moment of particle with charge $e_{0} Q$, mass M and spin \vec{S} :

$$
\vec{\mu}=\frac{e_{0}}{M}(Q+\kappa) \vec{S}
$$

Dirac anomalous
For a nucleus of mass $M \approx A M_{p}$ and charge $Z e_{0}$:

$$
\vec{\mu} \approx \frac{e_{0}}{A M_{p}}(Z+\kappa) \vec{S} \quad \Rightarrow \quad \kappa=\frac{A}{2|\vec{S}|} \frac{\mu}{\mu_{N}}-Z
$$

\Rightarrow Compute κ for all stable nuclei with non-zero spin
\Rightarrow Compute the static part of the GDH sum

"REGGEoN" - Photo-disintegration vs. photo-production

The GDH integral for a nucleus has contributions from the whole photo-absorption spectrum:

(Note: no data on the polarized XS, $\Delta \sigma$, exist for $A>3!$)
Region below π threshold: dominated by properties of nucleus
Region above it: dominated by properties of nucleons
(coherent photo-production: small)
Example: ${ }^{7} \mathbf{L i}\left(J^{P}=\frac{3^{-}}{}{ }^{-}\right)$: polarization carried by single $1 p_{3 / 2}$ nucleon

$$
I_{\mathrm{GDH}}^{p^{*}} \approx 270 \mu \mathrm{~b}, I_{\mathrm{GDH}}^{p}=204.78 \mu \mathrm{~b}, I_{\mathrm{GDH}}^{7 \mathrm{Li}}=83.4 \mu \mathrm{~b}
$$

"REGGEoN" - Modification of properties of bound nucleons

A nucleon in the nuclear medium will be modified
\Rightarrow modification of both sides of the nucleon sum rule
Bass, Acta Phys. Pol. B 52, 42 (2021)
Bass++, Eur. Phys. J. A 59, 238 (2023)
Static side: guidance for κ^{*}, M^{*} from QMC model:

$$
\frac{M_{N}^{*}}{M_{N}} \approx \frac{M_{\Delta}^{*}}{M_{\Delta}} \approx\left(1-0.2 \frac{\rho}{\rho_{0}}\right), \frac{\kappa_{N}^{*}}{\kappa_{N}} \approx\left(1+0.1 \frac{\rho}{\rho_{0}}\right), \quad \rho \ll \rho_{0}
$$

Typical QMC predictions (depending on bag radius):

$$
\frac{M_{N}^{*}\left(\rho_{0}\right)}{M_{N}} \approx 0.9, \quad \frac{\kappa_{N}^{*}\left(\rho_{0}\right)}{\kappa_{N}} \approx 1.05 \quad \Rightarrow \quad\left(\frac{\kappa^{*}\left(\rho_{0}\right)}{M_{N}^{*}\left(\rho_{0}\right)}\right)^{2} /\left(\frac{\kappa}{M_{N}}\right)^{2} \approx 1.3
$$

Saito++, Prog. Part. Nucl. Phys. 58, 1 (2007)
Dynamic (integral) side: modification of the integral due to in-medium shifts of resonance masses "probed" by the $1 / v$ factor in the integrand
\triangleright "large" effect for $\Delta(1232), 1 / v \leftrightarrow 1 / M_{\Delta}^{*}$
\triangleright small effect for $D_{13}(1520), S_{11}(1535), \ldots$ (?)
\triangleright 3rd resonance region + Regge domain: situation unclear: $+18 \mu \mathrm{~b}-15 \mu \mathrm{~b}$ for proton vs. $+16 \mu \mathrm{~b}-89 \mu \mathrm{~b}$ for neutron

"REGGEoN" - Candidate nuclei

	J^{π}	μ	κ	M	I_{GDH}
${ }^{1} \mathrm{H}$	$\frac{1}{2}^{+}$	2.793	1.793	0.9383	204.8
${ }^{2} \mathrm{H}$	1^{+}	0.857	-0.1426	1.875	0.6484
${ }^{3} \mathrm{He}$	$\frac{1}{2}^{+}$	-2.128	-8.383	2.808	499.9
${ }^{7} \mathrm{Li}$	$\frac{3}{2}^{-}$	3.256	4.598	6.532	83.39
${ }^{13} \mathrm{C}$	$\frac{1}{2}^{-}$	0.702	3.131	12.11	3.753
${ }^{17} \mathrm{O}$	$\frac{5}{2}^{+}$	-1.894	-14.44	15.83	233.4
${ }^{19} \mathrm{~F}$	$\frac{1}{2}^{+}$	2.628	40.94	17.69	300.5

- Choice will depend on target feasibility / FOM / other considerations
- The strongest candidate is ${ }^{7} \mathrm{Li}$:
\triangleright Also the subject of unpolarized (E12-10-008) and polarized (E12-14-001: $Q^{2}>1 \mathrm{GeV}^{2}$) EMC experiments at JLab
\triangleright A GDH measurement will provide the $Q^{2} \rightarrow 0$ limit ...
$\triangleright \ldots$ and help to establish which of the two competing explanations of the EMC effect (MF or SRC) is most likely
- Low-v part (up to $\approx 3 \mathrm{GeV}$) at ELSA?

Conclusions

- Running GDH integral sort-of converges for proton ...
... but not at all convincingly for neutron
\triangleright Threshold (low- v) issues
\triangleright High- v ("Regge") concerns
\triangleright Imbalance of sum rule saturation in terms of single- π vs. all other channels (p vs. n, GDH vs. GGT)
- Reasonable agreement of real- γ results with extractions from e-scattering experiments extrapolated to $Q^{2}=0$ \triangleright Understanding of $I_{\mathrm{GDH}}\left(Q^{2} \rightarrow 0\right), \gamma_{0}\left(Q^{2} \rightarrow 0\right), \Gamma_{1}\left(Q^{2} \rightarrow 0\right)$ etc. not at the same level
- New approved experiment: REGGE in Hall D @ JLab to study the high $-v$ behavior of $\Delta \sigma$
- JLab Letter of Intent (June 2023): REGGEoN (= REGGE on Nuclei)

Spare slides

Measurements of $\Delta \sigma$

The threshold region is very important due to $1 / v$ weight
\Longrightarrow Use models like MAID/SAID: both give $I_{\mathrm{GDH}}^{p}(\nu \leq 0.2 \mathrm{GeV}) \approx-28 \mu \mathrm{~b}$

- Low- v accessible at facilities like LEGS (BNL): $0.2 \mathrm{GeV} \leq v \leq 0.4 \mathrm{GeV}$
- ... or TUNL (e. g. deuteron with huge $\Delta \sigma$ just above the photodisintegration threshold):

Ahmed++, PRC 77, 044005 (2008)

- (Precise) low- \boldsymbol{v} data is also crucial for extrapolations (guiding threshold models)

Generalization of the GDH sum rule to $Q^{2} \neq 0$

Based on the v-expansion of the VVCS amplitude in the dispersion relation

$$
\operatorname{Re} A_{\mathrm{VVCS}}\left(v, Q^{2}\right)=\frac{1}{\pi} P \int_{-\infty}^{\infty} \frac{\operatorname{Im} A_{\mathrm{VVCS}}\left(v^{\prime}, Q^{2}\right)}{v^{\prime}-v} \mathrm{~d} v^{\prime}
$$

- LO: generalized GDH

$$
\Delta \sigma \equiv-2 \sigma_{T T}
$$

$$
\begin{aligned}
I_{T T}\left(Q^{2}\right) & =\frac{M^{2}}{4 \pi^{2} \alpha} \int_{\nu_{0}}^{\infty} \frac{K_{\gamma^{*}}}{v} \frac{\sigma_{T T}}{v} \mathrm{~d} v=\frac{2 M^{2}}{Q^{2}} \int_{0}^{x_{0}}\left[g_{1}\left(x, Q^{2}\right)-\frac{4 M^{2}}{Q^{2}} x^{2} g_{2}\left(x, Q^{2}\right)\right] \mathrm{d} x \\
\frac{8 \pi^{2} \alpha}{M^{2}} I_{T T}(0) & =-\int_{\nu_{0}}^{\infty} \frac{\Delta \sigma(v)}{v} \mathrm{~d} v=-\frac{2 \pi^{2} \alpha \kappa^{2}}{M^{2}}=-I_{\mathrm{GDH}}
\end{aligned}
$$

- NLO: forward spin polarizability: Gell-Mann-Goldberger-Thirring SR:

$$
\begin{aligned}
\gamma_{0}\left(Q^{2}\right) & =\frac{1}{2 \pi^{2}} \int_{v_{0}}^{\infty} \frac{K_{\gamma^{*}}}{v} \frac{\sigma_{T T}}{v^{3}} \mathrm{~d} v=\frac{16 \alpha M^{2}}{Q^{6}} \int_{0}^{x_{0}} x^{2}[\cdots \text { as above } \cdots] \mathrm{d} x \\
\gamma_{0} & =-\frac{1}{4 \pi^{2}} \int_{v_{0}}^{\infty} \frac{\Delta \sigma(v)}{v^{3}} \mathrm{~d} v \equiv I_{\mathrm{GGT}}
\end{aligned}
$$

Spin polarizability γ_{0}, proton

$\gamma_{0}\left(Q^{2}\right)=\frac{16 \alpha M^{2}}{Q^{6}} \int_{0}^{x_{0}} x^{2} g_{1}\left(x, Q^{2}\right) \mathrm{d} x$ (if $x^{2} g_{2}\left(x, Q^{2}\right)$ contribution neglected)
proton

Zheng++, Nat. Phys. 17, 736 (2021)
Strakovsky++, PRC 105, 045202 (2022)
... compare to single- π contribution to the "running" GGT integral
$I_{\mathrm{GGT}}(v)=-\frac{1}{4 \pi^{2}} \int_{\nu_{0}}^{v} \frac{\Delta \sigma\left(v^{\prime}\right)}{v^{\prime 3}} \mathrm{~d} v^{\prime}$

Same exercise, deuteron ...

- Photo-disintegration part excluded \Rightarrow "deuteron" $\approx \mathrm{p}+\mathrm{n}\left(I_{T T}^{\mathrm{d}}=I_{T T}^{\mathrm{p}}+I_{T T}^{\mathrm{n}}\right)$ $I_{T T}^{\mathrm{d}, \mathrm{EG} 4}(0)=-1.724 \pm 0.027 \pm 0.050$ $I_{T T}(\mathrm{GDH})=-1.59 \ldots$
\Rightarrow extracted neutron information:
$I_{T T}^{\text {n,EG4 }}(0)=-0.955 \pm 0.040 \pm 0.113$
$I_{T T}^{\mathrm{n}}(\mathrm{GDH})=-0.803 \ldots$
(agreement not so good ...)

Results on $\Gamma_{1}^{n}\left(Q^{2}\right)$ from E97-110 $\left({ }^{3} \mathrm{He}\right)$ and EG4 (d)

$$
\Gamma_{1}^{n}=2 \Gamma_{1}^{d} /\left(1-1.5 \omega_{D}\right)-\Gamma_{1}^{p}, \quad \Gamma_{1}^{p}=\int_{0}^{1-} g_{1}^{p}\left(x, Q^{2}\right) \mathrm{d} x
$$

- Good mutual agreement E97-110 \Longleftrightarrow EG4
- Good description in terms of NLO χ PT at lowest Q^{2}

$I_{T T}^{n}\left(Q^{2}\right)$ and \mathcal{Y}_{0}^{n} from E97-110 alone

Sulkosky++, PLB 805, 135428 (2020)

Sulkosky++, Nat. Phys. 17, 687 (2021)

- Agreement with older data (E94-010, EG1b) at larger Q^{2}
- Poor match to either of the competing NLO χ PT calculations
- Disagreement with MAID

Individual contributions to the running GDH integral

TABLE 2 The contribution of various decay channels to the GDH integral I and the forward spin polarizability γ_{0}. The integration extends to $\nu_{\max }=1.67 \mathrm{GeV}\left(W_{\max }=2 \mathrm{GeV}\right)$ except that the two-pion contribution is integrated only up to $v_{\max }=800 \mathrm{MeV}$

Reference	Proton	$\boldsymbol{I}_{\boldsymbol{p}}$	$\gamma_{\boldsymbol{0}}^{\boldsymbol{p}}$	Neutron	$\boldsymbol{I}_{\boldsymbol{n}}$	$\gamma_{\boldsymbol{0}}^{\boldsymbol{n}}$
$(34) /(49)$	$\pi^{0} p$	$157 / 142$	$-1.46 /-1.40$	$\pi^{0} n$	$145 / 147$	$-1.44 /-1.44$
$(34) /(49)$	$\pi^{+} n$	$7.5 / 44$	$0.82 / 0.55$	$\pi^{-} p$	$-21 /-13$	$1.53 / 1.36$
(54)	ηp	-9.0	0.01	ηn	-5.9	0.01
(55)	$\pi \pi N$	28	-0.07	$\pi \pi N$	19	-0.05
(53)	$K \Lambda, K \Sigma$	-4.0	<0.01	$K \Lambda, K \Sigma$	2.0	<0.01
(53)	$\omega p, \rho N$	-3.0	<0.01	$\omega n, \rho N$	2.1	<0.01
$(44) /(45)^{*}$	Regge	$-25 /-9$	<0.01	Regge	$31 / 16$	<0.01

p, contribution below v_{0} is of EM origin \& suppressed by $\kappa_{\mathrm{QED}} / \kappa_{p} \approx 10^{-3}$ ($\kappa_{\mathrm{QED}}=\alpha / 2 \pi=$ Schwinger correction) Drechsel, Walcher, Annu. Rev. Nucl. Part. Sci. 54, 69 (2004)

Strakovsky++, PRC 105, 045202 (2022)

Isovector GDH sum rule vs. Bjorken sum at very low Q^{2}

\Longrightarrow only marginal agreement with χ EFT

 (somewhat surprising as contribution of Δ (1232) suppressed in this observable)EG4 (p, d), E97-110 ($\left.{ }^{3} \mathrm{He}\right)$
Deur++, PLB 825, 136878 (2022)

Recall the decades of FF-medium-modification efforts!

An example: p recoil polarization components in ${ }^{12} \mathrm{C}\left(\vec{e}, e^{\prime} \vec{p}\right)$:

Fig. 3. The measured polarization components P_{x}^{\prime} (top), P_{z}^{\prime} (middle), and their ratio $P_{x}^{\prime} / P_{z}^{\prime}$ (bottom) as a function of missing momentum (left) and virtuality (right). Shown are statistical uncertainties only. The lines represent RDWIA and PWIA calculations for the corresponding shell obtained using a slightly modified program from [2] (see text), The shaded colored regions correspond to RDWIA calculations with the form-factor ratio, $G_{\mathrm{E}} / G_{\mathrm{M}}$, modified by $\pm 5 \%$.

