A Polarized Target in Hall D: Design & Capabilities

Chris Keith

- Implant unpaired electrons in target sample
- Polarize electrons at high *B*, low *T*
- Use microwaves to transfer electron polarization to nuclear spins
- Measure polarization with NMR

A DNP target sample has two components:

- A solid, dielectric matrix containing the nuclear spin of interest (ammonia, butanol, LiH, CaF, ...)
- A persistent radical that provides an unpaired electron spins

The sample is usually in mm-sized granular form and immersed in superfluid for optimum heat transfer				
	Material Dil. Factor (%) Polarization (%)	Butanol, C₄H9OH 13.5 > 90%	Ammonia, NH ₃ 17.7 > 90%	Lithium hydride, ⁷ LiH 25.0 90%
	Material Dil. Factor (%) Polarization (%)	D-Butanol, C ₄ D ₉ OD 23.8 > 80%	D-Ammonia, ND ₃ 30.0 50%	Lithium deuteride, ⁶ LiD 50.0 55%
	Doping method Rad. resistance	Chemical moderate	Radiation high	Radiation extremely high
	Comments	Easy to produce and handle	Works well at 5T and 1K	Slow polarization, long relaxation

A DNP target sample has two components:

- A solid, dielectric matrix containing the nuclear spin of interest (ammonia, butanol, LiH, CaF, ...)
- A persistent radical that provides an unpaired electron spins

The TEMPO radical

- Soluble in alcohols and diols
- Polarizes protons well

The Trityl radical(s)

- Possess a very narrow EPR line
- Good for polarizing low- γ nuclei (²H, ¹³C...)

The Amine radical (NH₂)

• Produced by irradiating solid ammonia at cryogenic temperatures

Ionizing radiation can damage the radical and/or produce unwanted radicals that destroy the polarization \rightarrow **Radiation Damage**

Warming the sample to about 100 K for several minutes (annealing) can restore the polarization.

Continuously Polarized Targets

DNP Targets can operate up to $\gtrsim 10^{12}$ particles s⁻¹ cm⁻² if the microwaves stay ON

For electron beam experiments in Halls A, B, & C our targets utilize irradiated NH_3 and ND_3 that are polarized at 5 T & 1 K

- Rad-hard
- ➤ "High" cooling power
- ➤ "Easy" operation

Proton pol. > 90% Deuteron pol. > 40%

Continuously Polarized Targets

<u>1 K Polarizations are much worse at 2.5 T</u>

Data from g2p/GpE experiments in Hall A (2012) J. Pierce et al. NIM A 738 (2014) 54.

Proton polarization @ 1 K, 5 T Proton polarization @ 1 K, 2.5 T 100 30 90 25 8(Absolute Polarization (%) Absolute Polarization (%) 5 70 10 nA 2060 80 nA 50 15 40 30 20 Positive Positive 10 Negative Negative 2.5 0 0.5 1.5 2 3 3.5 1 15 20 0 5 10 25 30 35 Dose Accumulated (Pe/cm²) Dose Accumulated (Pe/cm^2) <u>Solution</u>: Polarize at T < 1 K (³He-⁴He dilution refrigerator)

2.5 T & 0.3 K is "standard" for low-intensity beams & Frozen Spin Targets

Frozen Spin Targets

Frozen Spin targets are primarily used with low-intensity, secondary beam and high acceptance detectors.

The target sample must be cooled to an ultra-low temperature ≥50 mK to maintain its polarization without the microwaves.

Beam-heating and radiation damage limit the beam intensity for heavily ionizing particles to about 10⁸ s⁻¹ cm⁻²

Frozen Spin Targets

FROST, Hall B 2007

- Polarize outside CLAS, 0.3 K & 5 T
- Take beam inside CLAS, 0.03 K & 0.5 T
- Proton Pol: 90%
- Deuteron Pol: -87%
- Relaxation time: 2000-4000 hr

<u>FROST ³He-⁴He dilution refrigerator</u> base temperature: < 25mK cooling power: 0.1 W @ 0.3 K

FROST Polarizing Solenoid, 5 T

FROST Holding Coils, 0.5 – 0.6 T

Time (hours)

Q: Which target is best for Hall D, Continuously Polarized or Frozen Spin?

A: Both!

I propose a dynamically polarized target very similar to FROST.

- A high cooling power dilution refrigerator to polarize samples inside the 2.5 T field of the Hall D solenoid
 - Polarize up to 20 cm³ target
- Keep the microwaves on and polarize the target samples continuously, unless there is a good reason not to...
 - Cool ≤ 50 mK and maintain frozen-spin polarization with 2.5 T field for possible tensor-polarization experiments (see Mark Dalton's talk later today)

My hope is that the polarized target doesn't take up a lot more space than the current Hall D cryotarget.

Problem: The Hall D solenoid isn't 2.5 T. And it isn't very homogeneous.

At the nominal cryotarget position, 75 cm, the field is 1.6 T, with a gradient of 5 mT/cm

Problem: The Hall D solenoid isn't 2.5 T. And it isn't very homogeneous.

Hall D Magnetic Field

For optimal DNP, the solenoid field must be flatter:

 $\rightarrow \Delta B/B \sim \text{few } 10^{-4} \text{ over the length of the target (or about 0.25 mT/cm)}$

Capabilities

These are results previously demonstrated by the polarized target community

Nucleus	Spin	Polarization	Material	Conditions
¹ H	1/2	90%	$CH_3(CH_2)_3OH + TEMPO$	0.3 K, 2.5 T
² H	1	80%	$CD_3(CD_2)_3OD + Trityl$	0.3 K, 2.5 T
⁶ Li	1	55%	⁶ LiD + irradiation	0.3 K, 2.5 T
⁷ Li	3/2	90%	⁷ LiH + irradiation	0.3 K, 2.5 T
¹³ C	1/2	75%	$C_3H_4O_3$ + Trityl	0.9 K, 5 T
¹⁴ N	1	15%	NH ₃ + irradiation	0.3 K, 2.5 T
¹⁵ N	1/2	15%	NH ₃ + irradiation	0.3, 2.5 T
¹⁹ F	3/2	80%	$(CF_3)_2$ CHOH + EHBA-Cr(V)	0.4 K, 2.5 T
¹³⁹ La	7/2	50%	Nd ³⁺ : LaAlO ₃	0.3 K, 2.3 T

Dynamically polarized by the MRI & Solid State ¹⁷O, ²⁹Si, ¹¹⁹Sn ... Communities:

The JLab Target Group has extensive experience building these devices
➤ Very high proton and deuteron polarizations can be expected at 2.5 T & 0.3 K
➤ Heavier nuclei can also be polarized with high confidence: ^{6,7}Li, ¹³C, ^{14,15}N, ¹⁹F

In frozen spin operation, interesting things can be done to the deuteron polarization

See Mark Dalton's flash talk @ 11:50am