Hyperon spectroscopy prospects with a polarized target

Workshop on Polarized Target Studies with Real Photons in Hall D

Farah Afzal for Bonn (Y. Wunderlich, A. Thiel), FSU (V. Crede), JLab (M.M. Dalton) and Glasgow (P. Hurck, D.G. Glazier and K. Livingston)

21.02.2024

University of Bonn

Motivation - hyperon spectroscopy

- Goal: Study excited states (Λ^{*}, Σ^{*}) and properties
- More states expected than have been found so far!
 - \rightarrow Do these states exist?
 - \rightarrow Is SU(6)xO(3)-symmetry realized?
 - \rightarrow At least 23 missing Σ^*
- What is the nature of the observed states. e.g. $\Lambda(1405)$ two-pole structure

PDG2021[.]" the field is starved for data the established (Λ^*, Σ^*) resonances are the same ones that were listed in our 1984 edition"

 \rightarrow High demand for data in strange baryon sector!

Ν	(D, L_N^P)	S	J^{P}	Octet Members			Singlets		
0	$(56, 0^+_0)$	1/2	1/2+	N(939)	****	A(1116)	Σ(1193)	Ξ (1318)	-
1	$(70, 1_1^-)$	1/2	$1/2^{-}$	N(1535)	* * * *	A(1670)	$\Sigma(1620)$	Ξ (1690)	A(1405)
			3/2-	N(1520)	* * * *	A(1690)	$\Sigma(1670)$	Ξ (1820)	A(1520)
		3/2	$1/2^{-}$	N(1650)	* * * *	A(1800)	$\Sigma(1750)$		-
			3/2-	N(1700)	* * *				-
			5/2-	N(1675)	* * * *	A(1830)	$\Sigma(1775)$		-
2	$(56, 0^+_2)$	1/2	$1/2^+$	N(1440)	* * * *	A(1600)	$\Sigma(1660)$		-
	$(70, 0^+_2)$	1/2	$1/2^+$	N(1710)	* * * •	$\Lambda(1810)^{\dagger}$	$\Sigma(1770)^{\dagger}$		
		3/2	$3/2^+$	1					-
	$(56, 2^+_2)$	1/2	3/2+	$N(1720)^{\dagger}$	* * * *	$\Lambda(1890)^{\dagger}$	$\Sigma(1840)^{\dagger}$		-
			5/2+	N(1680)	* * * *	$\Lambda(1820)^{\dagger}$	$\Sigma(1915)^{\dagger}$		-
	$(70, 2^+_2)$	1/2	$3/2^+$						
	_		5/2+	N(1860)	**				
		3/2	$1/2^+$	N(1880)	***			-	
			3/2+	$N(1900)^{\dagger}$	* * * *		$\Sigma(2080)^{\dagger}$		-
			5/2+	N(2000)	* *	$\Lambda(2110)^{\dagger}$	$\Sigma(2070)^{\dagger}$		-
			$7/2^+$	N(1990)	* *	A(2020)	$\Sigma(2030)^{\dagger}$		-
	$(20, 1^+_2)$	1/2	$1/2^+$	$N(2100)^{\dagger}$	***				
			$3/2^+$	$N(2040)^{\dagger}$					
			$5/2^+$	-		-	-	-	
3	$(56, 1_3^-)$	1/2	$1/2^{-}$	$N(1895)^{\dagger}$	****				-
			3/2-	$N(1875)^{\dagger}$			$\Sigma(1940)^{\dagger}$		-
	$(70, 1_3^-)$			5 x					
	$(70, 1_3^-)$			5 x					
	$(20, 1_3^-)$	1/2		2 x					
	$(70, 2_3^-)$			6 x					
	$(56, 3^3)$	1/2		2 x					-
	$(70, 3^{-}_{3})$	1/2	7/2-	$N(2190)^{\dagger}$	* * * *	$\Lambda(2100)^{\dagger}$			
		3/2	9/2-	N(2250)	* * * *				V Crody
	$(20, 3^{-}_{3})$	1/2		2 x					v. Crede
4			9/2+	N(2220)	****	A(2350)			
5			11/2-	N(2600)	** *				

- Significant overlap of strange baryons and strange mesons (K^{*})
- Knowledge of strange baryons important for the search of exotic states

R. Aaij et al. [LHCb], Phys. Rev. Lett. 122, no.22,222001 (2019)

- Almost same data used by PWA groups
- Existing data does not constrain models well
- Several new possible states and a lot of 1* resonances need confirmation
- Some 3^{*} or 4^{*} resonances not seen by all models
- Different resonance parameters

E. Klempt et al., Eur.Phys.J.A 56 (2020) 10, 261

- Almost same data used by PWA groups
- Existing data does not constrain models well
- Several new possible states and a lot of 1* resonances need confirmation
- Some 3^{*} or 4^{*} resonances not seen by all models
- Different resonance parameters

E. Klempt et al., Eur.Phys.J.A 56 (2020) 10, 261

Electromagnetic beam:

- Electroproduction: $e^- N \rightarrow e^- K \Lambda^* / \Sigma^*$ (CLAS-12 (JLab))
- Photoproduction: $\gamma N \rightarrow K \Lambda^* / \Sigma^*$ (A2 (MAMI), CBELSA/TAPS (ELSA), GlueX, CLAS-6 (JLab))

Hadron beam:

- π -induced production: HADES (GSI)
- K-induced production: KLF in Hall D (JLab), J-PARC

Proposed project will give complementary data to KLF program!

Experiment	Photon energy /GeV	Experimental tools	planned/past physics program			
A2 Up to 1.6		Polarized photon beams	Focus on Λ, Σ ground state			
		Polarized target				
		Recoil polarimeter				
CBELSA/TAPS	Up to 3.2	Polarized photon beams	Large interest in studying Λ^*, Σ^*			
		Polarized target	Focus on threshold region			
CLAS-6	Up to 6.0	Polarized photon beams	Had a dedicated program to measure			
		Polarized target	pol. observables (Up to 2.2 GeV!)			
			Focused mainly on Λ,Σ ground states			
GlueX	Up to 12	Polarized photon beams	Study of cross section, beam asymmetry			
		Polarized target?	and SDMEs (e.g. $\Lambda(1520))$			

Photoproduction of hyperons - Overview of different experiments

N	(D, L_N^P)	S	J^P			Octet Membe	ers		Singlets			
0	$(56, 0^+_0)$	1/2	1/2+	N(939)	****	A(1116)	Σ(1193)	$\Xi(1318)$	-	2	0	
1	$(70, 1_1^-)$	1/2	1/2-	N(1535)	****	A(1670)	$\Sigma(1620)$	$\Xi(1690)$	A(1405)	A	č.	
			3/2-	N(1520)	****	A(1690)	$\Sigma(1670)$	$\Xi(1820)$	A(1520)		\mathbf{A}	
		3/2	$1/2^{-}$	N(1650)	****	A(1800)	$\Sigma(1750)$		-		Η.	
			3/2-	N(1700)	* * *				- 1		\mathbf{A}	
			5/2-	N(1675)	****	$\Lambda(1830)$	$\Sigma(1775)$		- 1		Ś	
2	$(56, 0^+_2)$	1/2	$1/2^+$	N(1440)	****	A(1600)	$\Sigma(1660)$		-			
	$(70, 0^+_2)$	1/2	$1/2^+$	N(1710)	* * * *	$\Lambda(1810)^{\dagger}$	$\Sigma(1770)^{\dagger}$				щ	
		3/2	$3/2^+$						-		m.	
	$(56, 2^+_2)$	1/2	$3/2^+$	$N(1720)^{\dagger}$	****	$\Lambda(1890)^{\dagger}$	$\Sigma(1840)^{\dagger}$		-		\circ	
			$5/2^+$	N(1680)	****	$\Lambda(1820)^{\dagger}$	$\Sigma(1915)^{\dagger}$		-			
	$(70, 2^+_2)$	1/2	$3/2^+$									
			$5/2^+$	N(1860)	**							
		3/2	$1/2^+$	N(1880)	***			-				м
			$3/2^+$	N(1900) [†]	****		$\Sigma(2080)^{\dagger}$		-			1
			$5/2^+$	N(2000)	* *	$\Lambda(2110)^{\dagger}$	$\Sigma(2070)^{\dagger}$		- 1			n
			$7/2^+$	N(1990)	**	$\Lambda(2020)$	$\Sigma(2030)^{\dagger}$		- 1			65
	$(20, 1^+_2)$	1/2	$1/2^+$	$N(2100)^{\dagger}$								\cup
			$3/2^+$	$N(2040)^{\dagger}$								
			$5/2^+$	-		-	-	-				
3	$(56, 1_3^-)$	1/2	$1/2^{-}$	$N(1895)^{\dagger}$	****				- 1			
			3/2-	$N(1875)^{\dagger}$			$\Sigma(1940)^{\dagger}$		- 1			
	$(70, 1_3^-)$			5 x								
	$(70, 1_3^-)$			5 x								
	$(20, 1_3^-)$	1/2		2 x								
	$(70, 2^3)$			6 x								
	$(56, 3^3)$	1/2		2 x					- 1			
	$(70, 3^3)$	1/2	7/2-	$N(2190)^{\dagger}$	****	$\Lambda(2100)^{\dagger}$						
		3/2	9/2-	N(2250)	* * * *							
	$(20, 3^3)$	1/2		2 x								
4			9/2+	N(2220)	****	$\Lambda(2350)$				~ .		
5			11/2-	N(2600)	***				V.	Crede		

GlueX is only (photoproduction) experiment that can access high-mass Λ^*, Σ^* states!

All states can be accessed by GlueX!

Final State	Sensitive to	Important because			
K^+ pK^-	Λ*, Σ*	high statistics			
$K^+ \Sigma^0 \pi^0$	Λ^*	isospin filter			
${\cal K}^+$ $\Lambda\eta$	Λ^*	$\Lambda(1670)rac{1}{2}^{-}$, $\Lambda(1670)rac{3}{2}^{+}$?			
K^+ $\Lambda\pi$	Σ^*	isospin filter			
${\cal K}^+ \; {f \Sigma} \eta$	Σ^*	$\Sigma(1750)\frac{1}{2}^{-1}$			
$(K^+ \ \Sigma(1385)\pi)$	Λ*, Σ*	high mass resonances			
$(K^+ \ pK^{*-})$	Λ^* , Σ^*				

Polarization observables of interest

Photoproduction of two pseudo-scalars: W. Roberts, T. Oed, Phys.Rev.C 71 (2005) 055201

- Considering spins of initial and final state particles, $N = 2 \times 2 \times 2 = 8$ Amplitudes needed
- N² = 8² = 64 observables can be defined using polarization of beam, target and recoil baryon
- Minimal complete set consists of 2N = 16 (1 unpol. cross section + 15 polarization observables) \rightarrow P. Kroenert, Y. Wunderlich, F. Afzal, A. Thiel, Phys.Rev.C 103 (2021) 1, 014607

$$I(\Phi, \Omega_{Y^*}) = \frac{d\sigma}{dt} [1 - p_T I^s \sin 2\Phi - p_T I^c (\widehat{=} \Sigma) \cos 2\Phi + p_\odot I^\odot \qquad \text{lin.+ circ. pol. beam} \\ - p_T p_z P_z^s (\widehat{=} G) \sin 2\Phi - p_T p_z P_z^c \cos 2\Phi + p_\odot p_z P_z^\odot (\widehat{=} E) + p_z P_z \qquad + \text{long. pol. target}$$

Polarization observables of interest

Photoproduction of two pseudo-scalars: W. Roberts, T. Oed, Phys.Rev.C 71 (2005) 055201

- Considering spins of initial and final state particles, $N = 2 \times 2 \times 2 = 8$ Amplitudes needed
- N² = 8² = 64 observables can be defined using polarization of beam, target and recoil baryon
- Minimal complete set consists of 2N = 16 (1 unpol. cross section + 15 polarization observables) \rightarrow P. Kroenert, Y. Wunderlich, F. Afzal, A. Thiel, Phys.Rev.C 103 (2021) 1, 014607

Moment-analysis formalism for the meson-baryon subsystem $\gamma(\lambda_{\gamma}, p_{\gamma}) + N(\lambda_1, p_N) \longrightarrow \varphi_1(k_1) + \varphi_2(k_2) + B(\lambda_2, k_B)$ 5-dimensional phase-space: $(s, t, m_{\varphi_2B}^2 = (k_2 + k_B)^2, \Omega_{\varphi_2B} \equiv (\theta_{\varphi_2}, \phi_{\varphi_2}))$

$$I(\Omega_{\varphi_2 B}, \Phi) = \kappa_B \sum_{\lambda_{\gamma}, \lambda_{\gamma}', \lambda_1, \lambda_2} \mathcal{A}_{\lambda_{\gamma}; \lambda_1 \lambda_2}(\Omega_{\varphi_2 B}) \rho_{\lambda_{\gamma}, \lambda_{\gamma}'}^{\gamma}(\Phi) \mathcal{A}_{\lambda_{\gamma}'; \lambda_1 \lambda_2}^{*}(\Omega_{\varphi_2 B})$$

Y. Wunderlich

Moment-analysis formalism for the meson-baryon subsystem $\gamma(\lambda_{\gamma}, p_{\gamma}) + N(\lambda_1, p_N) \longrightarrow \varphi_1(k_1) + \varphi_2(k_2) + B(\lambda_2, k_B)$ 5-dimensional phase-space: $(s, t, m_{\varphi_2B}^2 = (k_2 + k_B)^2, \Omega_{\varphi_2B} \equiv (\theta_{\varphi_2}, \phi_{\varphi_2}))$

$$I(\Omega_{arphi_2B}, \Phi) = \kappa_B \sum_{\lambda_\gamma, \lambda'_\gamma, \lambda_1, \lambda_2} \mathcal{A}_{\lambda_\gamma; \lambda_1 \lambda_2}(\Omega_{arphi_2B})
ho^\gamma_{\lambda_\gamma, \lambda'_\gamma}(\Phi) \mathcal{A}^*_{\lambda'_\gamma; \lambda_1 \lambda_2}(\Omega_{arphi_2B})$$

Partial-wave expansion of the baryonic helicity amplitude $A_{\lambda_{\gamma};\lambda_1\lambda_2}$:

Y. Wunderlich

$$I(\Omega_{\varphi_{2}B}, \Phi) = I^{0}(\Omega_{\varphi_{2}B}, \Phi) + \boldsymbol{P}_{\gamma}(\Phi) \cdot \boldsymbol{I}(\Omega_{\varphi_{2}B}, \Phi),$$
$$I^{0}(\Omega_{\varphi_{2}B}, \Phi) = \sum_{\tilde{J}, \tilde{M}, \tilde{N}} H^{0}(\tilde{J}, \tilde{M}, \tilde{N}) D^{\tilde{J}}_{\tilde{M}, \tilde{N}}(\Omega_{\varphi_{2}B}), \qquad \boldsymbol{I}(\Omega_{\varphi_{2}B}, \Phi) = \sum_{\tilde{J}, \tilde{M}, \tilde{N}} \boldsymbol{H}(\tilde{J}, \tilde{M}, \tilde{N}) D^{\tilde{J}}_{\tilde{M}, \tilde{N}}(\Omega_{\varphi_{2}B}).$$

Moment-analysis formalism for the meson-baryon subsystem $\gamma(\lambda_{\gamma}, p_{\gamma}) + N(\lambda_1, p_N) \longrightarrow \varphi_1(k_1) + \varphi_2(k_2) + B(\lambda_2, k_B)$ 5-dimensional phase-space: $(s, t, m_{\varphi_2B}^2 = (k_2 + k_B)^2, \Omega_{\varphi_2B} \equiv (\theta_{\varphi_2}, \phi_{\varphi_2}))$

$$I(\Omega_{arphi_2B}, \Phi) = \kappa_B \sum_{\lambda_\gamma, \lambda'_\gamma, \lambda_1, \lambda_2} \mathcal{A}_{\lambda_\gamma; \lambda_1 \lambda_2}(\Omega_{arphi_2B})
ho^\gamma_{\lambda_\gamma, \lambda'_\gamma}(\Phi) \mathcal{A}^*_{\lambda'_\gamma; \lambda_1 \lambda_2}(\Omega_{arphi_2B})$$

Partial-wave expansion of the baryonic helicity amplitude $\mathcal{A}_{\lambda_{\gamma};\lambda_{1}\lambda_{2}}$:

Y. Wunderlich

$$I(\Omega_{\varphi_{2}B}, \Phi) = I^{0}(\Omega_{\varphi_{2}B}, \Phi) + \boldsymbol{P}_{\gamma}(\Phi) \cdot \boldsymbol{I}(\Omega_{\varphi_{2}B}, \Phi),$$

$$I^{0}(\Omega_{\varphi_{2}B}, \Phi) = \sum_{\tilde{J},\tilde{M},\tilde{N}} H^{0}(\tilde{J}, \tilde{M}, \tilde{N}) D_{\tilde{M},\tilde{N}}^{\tilde{J}}(\Omega_{\varphi_{2}B}), \qquad \boldsymbol{I}(\Omega_{\varphi_{2}B}, \Phi) = \sum_{\tilde{J},\tilde{M},\tilde{N}} \boldsymbol{H}(\tilde{J}, \tilde{M}, \tilde{N}) D_{\tilde{M},\tilde{N}}^{\tilde{J}}(\Omega_{\varphi_{2}B}).$$

$$H^{0}(\tilde{J}, \tilde{M}, \tilde{N}) = \sum_{J,M,J',M'} \frac{2\tilde{J} + 1}{2J + 1} C_{J'M',\tilde{J}\tilde{N}}^{JN} \rho_{MM'}^{(0),JJ'}(\tilde{J}, \tilde{M}) \qquad \boldsymbol{H}(\tilde{J}, \tilde{M}, \tilde{N}) = \sum_{J,M,J',M'} \frac{2\tilde{J} + 1}{2J + 1} C_{J'M',\tilde{J}\tilde{N}}^{JN} \rho_{MM'}^{(0),JJ'}(\tilde{J}, \tilde{M})$$

10

Moment-analysis formalism for the meson-baryon subsystem $\gamma(\lambda_{\gamma}, p_{\gamma}) + N(\lambda_1, p_N) \longrightarrow \varphi_1(k_1) + \varphi_2(k_2) + B(\lambda_2, k_B)$ 5-dimensional phase-space: $(s, t, m_{\varphi_2B}^2 = (k_2 + k_B)^2, \Omega_{\varphi_2B} \equiv (\theta_{\varphi_2}, \phi_{\varphi_2}))$

$$I(\Omega_{arphi_2B}, \Phi) = \kappa_B \sum_{\lambda_\gamma, \lambda'_\gamma, \lambda_1, \lambda_2} \mathcal{A}_{\lambda_\gamma; \lambda_1 \lambda_2}(\Omega_{arphi_2B})
ho^\gamma_{\lambda_\gamma, \lambda'_\gamma}(\Phi) \mathcal{A}^*_{\lambda'_\gamma; \lambda_1 \lambda_2}(\Omega_{arphi_2B})$$

Partial-wave expansion of the baryonic helicity amplitude $\mathcal{A}_{\lambda_{\gamma};\lambda_{1}\lambda_{2}}$:

 $\lambda_{\gamma}, \lambda'_{\gamma}, \lambda_1, \lambda_2$

Y. Wunderlich

$$I(\Omega_{\varphi_{2}B}, \Phi) = I^{0}(\Omega_{\varphi_{2}B}, \Phi) + P_{\gamma}(\Phi) \cdot I(\Omega_{\varphi_{2}B}, \Phi),$$

$$I^{0}(\Omega_{\varphi_{2}B}, \Phi) = \sum_{\tilde{J},\tilde{M},\tilde{N}} H^{0}(\tilde{J}, \tilde{M}, \tilde{N}) D_{\tilde{M},\tilde{N}}^{\tilde{J}}(\Omega_{\varphi_{2}B}), \qquad I(\Omega_{\varphi_{2}B}, \Phi) = \sum_{\tilde{J},\tilde{M},\tilde{N}} H(\tilde{J}, \tilde{M}, \tilde{N}) D_{\tilde{M},\tilde{N}}^{\tilde{J}}(\Omega_{\varphi_{2}B}).$$

$$H^{0}(\tilde{J}, \tilde{M}, \tilde{N}) = \sum_{J,M,J',M'} \frac{2\tilde{J} + 1}{2J + 1} C_{J'M',\tilde{J}\tilde{N}}^{JM} \rho_{MM'}^{(0),JJ'}(\tilde{J}, \tilde{M}) \qquad H(\tilde{J}, \tilde{M}, \tilde{N}) = \sum_{J,M,J',M'} \frac{2\tilde{J} + 1}{2J + 1} C_{J'M',\tilde{J}\tilde{N}}^{JM} \rho_{MM'}^{(0),JJ'}(\tilde{J}, \tilde{M})$$

$$\rho_{MM'}^{(0),JJ'}(\tilde{J}, \tilde{M}) = \frac{\kappa_{B}}{2} \sum_{\lambda_{\gamma},\lambda_{1},\lambda_{2}} C_{J'-\lambda_{2},\tilde{J}\tilde{M}}^{J-\lambda_{2}} T_{\lambda_{\gamma},M;\lambda_{1}\lambda_{2}}^{(J)} \sigma_{\lambda_{\gamma},M';\lambda_{1}\lambda_{2}}^{*(J')} \sigma_{\lambda_{\gamma},M';\lambda_{1}\lambda_{2}}^{*(J')}.$$

Different exchanges in *t* channel process

GlueX: Phys.Rev.C 105 (2022) 3, 035201

P. Hurck

Studies for polarization observables with toy models

BnGa Toy model:

- Only K exchange is considered in t-channel
- Couplings $NK\Sigma^*$ taken from BnGa solution (based on KN data)
- Resonance parameters also taken from BnGa solution

 \rightarrow Phasespace MC weighted with predicted BnGa toy model solution

 $\mathsf{ANL}/\mathsf{Osaka}$ Toy model:

ANL/Osaka pole positions used to fit BnGa data

Studies for polarization observables with toy models

Isospin filter for Σ^*

CosTheta_GG_GJ:M_LambdaGG (Weight*(E_Beam>8.0 && E_Beam<9.0 && mandel_t<1.5))

Data quality - Final state $K^+ p K^-$

 $M(pK^{-}) \approx 1.52 \text{ GeV}, E_{\gamma} = 8.5 \text{ GeV}, 2 \text{ diff. } t \text{ bins}$

φ_{GJ}

จ์ 10(

Data quality - Final state ${\it K}^+$ $\Sigma^0\pi^0$ and ${\it K}^+$ $\Sigma(1385)\pi$

- Isospin filter for Λ^* with $K^+\Sigma^0\pi^0$ final state
- Several Λ^* and Σ^* are expected to decay to $\Sigma(1385)\pi$

Measurement with

- Elliptically polarized photon beam:
 - \rightarrow lin. polarization degree: 38% (coh. peak)
 - \rightarrow circ. polarization degree: 70% (coh. peak)
- FROST target design:
- Longitudinally polarized target: $p_z \approx 90\%$
- Material: Butanol (C₄H₉OH)
 - \rightarrow requires additional measurement with a carbon target for subtraction of unpolarized
 - ightarrow dilution factor: 50 80% (depends on applied cuts)
- Approximately, amount of data of GlueX-Phase I and II combined, would give good good statistics for $K^+\Lambda\pi^0$ and K^+pK^- final states over large mass range
- Needs to be studied in detail!

Summary

- High demand for data in the strange baryon sector
 - \rightarrow Important tests for quark model and lattice QCD predictions
 - \rightarrow Many potentially new or 1^{\ast} resonances need confirmation!
- Different facilities will investigate hyperon spectrum, e.g. with K_L beam in Hall D → Expected to make high impact in finding missing states It is planned to measure unpolarized cross section and recoil polarization observable One missing piece: No measurement with a polarized target planned!
- GlueX experiment with photon beam can provide essential contribution for this missing piece:
 - \rightarrow Measurement with a high-intensity photon beam (ellipt. polarized) and a longitudinally polarized target
 - \rightarrow Polarization observables crucial for sensitivity to not-dominantly contributing resonances!

 \rightarrow data shows clear signals with good statistics for known resonances, $K^+ \Lambda \pi^0$ and $K^+ p K^-$ final states look promising

 \rightarrow Need a polarized target for measurements!

Many thanks to Andrey Sarantsev, Kirill Nikonov and Vincent Mathieu!