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Motivation

Consider a typical photoproduction reaction at GlueX energies γp → UL that is commonly illustrated as
t-channel production of say a meson U at an “upper vertex” recoiling against a baryon L at the “lower
vertex.” Let’s assume U and L each decay into u and ℓ stable particles, respectively. Let the phase space
for the reaction is then given by dΦn(Ecm; p1, . . . , pn) where n = u+ ℓ. The differential cross section for the
reaction is then proportional to

dσ ∝ |M|2 × dΦn(Ecm; p1, . . . , pn). (1)

In the above expression, the square of the matrix element |M|2 contains “the physics” that we are often
trying to study, e.g. resonances that generate a peak in some invariant mass distribution m12. In the
absence of any interesting physics then |M|2 = 1, and it is generally useful to understand how phase space
populates the various kinematic variables commonly used in data analysis, e.g., invariant mass. Furthermore
if we intend to develop a model for M that we may want to use in an amplitude analysis then in order to
performance an accurate Monte-Carlo integration of the model we must have a sample of events that are
distributed according to this phase space.

The Problem: the Monte-Carlo generators that are commonly in use in the GlueX software stack do
not properly generate n-body phase space in the above reaction. Specifically, the dependence on invariant
mass of the particles at the upper and lower vertex is not phase space and often events are generated with
an exponential t distribution, which is physics and not a byproduct of n-body phase space. Up until now
this has not been a significant limiting factor as amplitude analyses are often performed in bins of invariant
mass or by selecting narrow regions of invariant mass. Analyses can also be binned in t and the Monte-Carlo
is tuned to generate a t-distribution that matches the data – in such cases the “phase space” sample is
really phase space weighted by some physics that is not included in the model that is being fit to the data.
However, if one intends to migrate to a fitting strategy where larger regions of invariant mass are fit, then
it is important to develop generators that properly distribute the events according to phase space across
these regions. This includes a practical challenge: a simple n-body phase space generator will not strongly
populate regions that are heavily populated by the physics, e.g., at low t. The goal is then to develop a
generator suitable for doing importance sampling of the Monte-Carlo model in amplitude analysis. One
should be able to seed the generator with resonance shapes at the upper and lower vertices as well as a t
distribution, but it should produce events that can be weighted to be distributed according to n-body phase
space.

Populating phase space

The general problem of efficiently generating n-body phase space has been solved and documented many
years ago. To make use of importance sampling though, we would like to be able to draw the invariant
masses at the upper and lower vertices from some defined distribution, like a sum of Breit-Wigner functions,
which we can then re-weight to be uniform in phase space. In order to do this, we need to first determine
how n-body phase space depends on the invariant mass at the upper and lower vertices.

It can be shown [1] that the integral over n-body Lorentz-invariant space space depends only on the
center-of-mass energy and the masses of the stable particles in the final state.

Rn(
√
s,m1, . . . ,mn) =

∫
dΦn, (2)

and such phase space integrals can written in terms of integrals over a smaller-dimensional phase space:

Rn(
√
s;m1, . . . ,mn) =

∫
Rn−ℓ+1(

√
s;Mℓ,mℓ+1, . . . ,mn)Rℓ(Mℓ;m1, . . . ,mℓ) dM

2
ℓ , (3)
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where

M2
ℓ =

∣∣∣∣∣
ℓ∑

i=1

pi

∣∣∣∣∣
2

(4)

is the invariant mass squared of the ℓ particles produced at the lower vertex. Likewise, let’s define Mu as
the invariant mass at the upper vertex:

M2
u =

∣∣∣∣∣
n∑

i=ℓ+1

pi

∣∣∣∣∣
2

. (5)

We can split the first term in the integral Rn−ℓ+1 into an integral over Rn−ℓ = Ru and R2 so that we have

Rn =

∫∫
R2(

√
s;Mℓ,Mu)Ru(Mu,mℓ+1, . . . ,mn)Rℓ(Mℓ;m1, . . . ,mℓ) dM

2
ℓ dM

2
u . (6)

Using the fact that dM2 = 2MdM we see the distribution of phase space across the two invariant masses is
then given by

d2Rn

dMℓdMu
= 4MuMℓR2(

√
s;Mℓ,Mu)Ru(Mu,mℓ+1, . . . ,mn)Rℓ(Mℓ;m1, . . . ,mℓ). (7)

This now casts the problem in terms of the masses at the upper and lower vertex, which is useful if we desire
to implement importance sampling to concentrate events in regions of Mℓ and Mu. However, to go beyond
this we need to consider how to write Ru and Rℓ.

Generating N-body phase space

Following the notes James [1], let’s make a brief digression to discuss how to express multi-body phase space
in terms of two-body phase space. Assume that you have N particles, each with massmi and four-momentum
pi. We can define the invariant mass of a subset of these particles as

M2
j =

∣∣∣∣∣
j∑

i=1

pi

∣∣∣∣∣
2

. (8)

Working in the center of mass, the total energy available for the decay is then MN , and we can picture the
decay as a chain of sequential two-body decays. At the first level the masses of the two particles are mN

and MN−1, i.e., the rest mass of the N th particle and the invariant mass of all the other particles. Then at
the second level MN−1 decays into mN−1 and MN−2, and so on. The result one can write RN with repeated
use of Eq. 3 (choosing ℓ = 2) as

RN =

∫
dM2

N−1 . . .

∫
dM2

2

N−1∏
i=1

R2(Mi+1;mi,mi+1). (9)

As above, we can change variables from M2 → M and write, equivalently,

RN =

∫
. . .

∫
1

2m1

N−1∏
i=1

{2MiR2(Mi+1;Mi,mi+1)} dMN−1 . . . dM2. (10)

There are a variety of ways to write the integral of two-body phase space:

R2(M ;m1,m2) =
pcm
4πM

=

√
λ(M2,m2

1,m
2
2)

8πM2
, (11)
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where pcm is the magnitude of the momentum of one of the particles in the center-of-mass frame. This
is often expressed in terms of the Källén function which has a variety of representations. One relatively
compact form is

λ(a, b, c) = (a− b− c)2 − 4bc. (12)

Using Eqs. 11 and 10 we can write an equivalent expression for RN :

RN =

∫
. . .

∫
1

MN

N∏
i=2

{
1

2π
pcm;i

}
dMN−1 . . . dM2, (13)

where pcm;i is the center-of-mass momentum for the decay Mi → mi +Mi−1. The above equation provides
the recipe for generating N body phase space decays of a particle of mass MN . One throws invariant masses
M2, . . . ,MN−1 and then weights each event by the product of the center-of-mass momenta of the individual
decays. The factors of 2π and MN are constant and can be ignored in generation. This technique, and the
procedure discussed below for choosing the Mi, is known as the “Raubold-Lynch method” and is documented
extensively in Ref. [1]. This is also the procedure implemented in the ROOT class TGenPhaseSpace which
is the basis for the NBodyPhaseSpaceGenerator that appears in the GlueX software stack.

Special care must be taken in throwing the invariant masses. The kinematic limits are

Mi−1 +mi < Mi < Mi+1 −mi+1. (14)

However, generating Mi sequentially based on some value of Mi+1 will lead to bias. The set M2, . . . ,MN−1

must all be generated independently. If the specific values of Mi do not land within the kinematic boundary,
then the entire set must be discarded and regenerated. One can write a less restrictive bound on Mi:

i∑
j=1

mj < Mi < MN −
N∑

j=i+1

mj (15)

This boundary now only depends on the fixed initial mass of the system and the masses of the N particles
in the final state and none of the other generated Mi. One can choose Mi by selecting a random number ri
from 0 → 1 and then setting

Mi = ri

MN −
N∑

j=i+1

mj

+

i∑
j=1

mj , (16)

where the term in parentheses is the difference between the maximum and minimum values of Mi. One then
chooses a set of N − 2 values of ri independently. It can be shown that the more restrictive kinematic limits
of Eq. 14 can be met if and only if the ri are in ascending order. This can be accomplished by discarding
every random set that is not ordered (which would be very inefficient for large N) or by reordering the ri
which can be done without bias. The latter approach is used and results in efficient generation of N -body
phase space.

Before returning to the problem of GlueX Monte-Carlo generation it is worth emphasizing a few key
features of N -body phase space generators.

• Generation is done a series of sequential two-body decays, where one of the two bodies is a stable
particle and the other is a “particle” formed from all remaining particles.

• The weight of each event is given by the product of the center-of-mass momentum of all of the two-
body decays. Weighted events properly populate N -body phase space. Alternatively, one can use an
accept/reject algorithm on the weight to generate N -body phase space events with a weight of unity.

• The allowable region for generating the invariant masses in the intermediate steps is defined in terms
of the total available energy MN and the masses of all of the final state particles. (See Eq. 16.)

We will see that this last point is problematic when trying embed the results of a phase space generator into
a higher-dimensional problem.
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Populating phase space for a typical GlueX reaction

Let’s now take the result expressed in Eq. 13 and use it to rewrite Ru and Rℓ in Eq. 7. Neglecting constant
factors of 2π, we have (for n > 2)

dn−2Rn

dMℓdMu(dMℓ;2 . . . dMℓ;ℓ−1)(dMu;2 . . . dMu;u−1)
∝

R2(
√
s;Mℓ,Mu)

[
ℓ∏

i=2

pcm;ℓ;i

][
u∏

i=2

pcm;u;i

]
,

(17)

where we have used Mℓ; i and pcm;ℓ;i to index the center-of-mass momenta and intermediate invariant mass
at the ith decay step of the lower vertex and similarly for the upper vertex.

This now provides a recipe for populating phase space. We need to independently draw the n − 2
intermediate invariant masses Mℓ, Mu, Mℓ;2, . . . ,Mℓ;ℓ−1, Mu;2, . . . ,Mu;u−1 and then weight the event by the
RHS of Eq. 17. As with before, we should draw the masses from a range that is defined independently of
any of the other masses and keep only events that land within the kinematic boundary. In a similar fashion
as Eq. 15 we can write loose limits that are suitable for drawing the set of invariant masses.

ℓ∑
j=1

mℓ
j < Mℓ <

√
s−

u∑
j=1

mu
j (18)

i∑
j=1

mℓ
j < Mℓ;i <

√
s−

u∑
j=1

mu
j −

ℓ∑
j=i+1

mℓ
j (19)

Here we have used m
ℓ(u)
j to refer to the mass of the jth particle at the lower (upper) vertex. The limits

on Mu and Mu;i can be likewise be obtained by changing ℓ → u in the above equations. One a full set of
invariant masses are generated then they must be checked to ensure they land within the kinematic limits. If
they do not, an entire new set of masses must be chosen. In the relations above we see that proper generation
of the upper vertex invariant masses depends on knowing the masses of the final state particles at the lower
vertex and vice versa.

How to do it the wrong way...

Equation 17 suggests a tempting solution. One could draw Mℓ and Mu uniformly between the bounds
provided by Eq. 18. Then one could use two standard phase space generators to generate ℓ-body and u-body
phase space at the lower and upper vertex. Each of these generators would return one of the weights in
brackets on the RHS of Eq. 17. One could then apply an additional weight of R2(

√
s;Mℓ,Mu), and the

result would be distributed according to overall n-body phase space. However, this is not correct because
the generation of invariant masses in the subsequent ℓ-body or u-body phase space is biased by the choice
of Mℓ and Mu. Each of those generators will choose masses according to limits specified by Eq. 15, which is
more restrictive than the limits in Eq. 19. The result is that if ℓ or u are greater than 2 then the distribution
of Mℓ and Mu will be biased. (In cases where ℓ and u are equal to two there are no subsequent invariant
masses to randomly choose beyond Mℓ and Mu.)
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