## Search for the $\Xi(1620)$



## $\Xi(1620)$ : From 1-star to 2-star

### Nucleon resonances are rated using the "star" system:

- Poor evidence of existence
- \*\* Fair evidence of existence

\*

$$J^P$$
) =  $\frac{1}{2}(?^2)$  Status:   
P need confirmation.

- OMITTED FROM SUMMARY TABLE
  - What little evidence there is consists of weak signals in the  $\Xi\pi$  channel. A number of other experiments (e.g., BORENSTEIN 72 and HASSALL 81) have looked for but not seen any effect.

#### Ξ(1620) MASS

| VALUE (MeV)      | EVTS | DOCUMENT ID |             | TECN | COMMENT                                    |
|------------------|------|-------------|-------------|------|--------------------------------------------|
| ≈ 1620 OUR ESTIM | ATE  |             |             |      |                                            |
| $1624 \pm 3$     | 31   | BRIEFEL     | 77          | HBC  | K <sup></sup> p 2.87 GeV/c                 |
| $1633 \pm 12$    | 34   | DEBELLEFON  | <b>75</b> B | HBC  | $K^- p \rightarrow \Xi^- \overline{K} \pi$ |
| $1606 \pm 6$     | 29   | ROSS        | 72          | HBC  | К <sup>—</sup> р 3.1–3.7 GeV/с             |
|                  |      |             |             |      |                                            |

Citation: S. Navas et al. (Particle Data Group), Phys. Rev. D 110, 030001 (2024)

1.65

1.6

 $I(J^P) = \frac{1}{2}(?^?)$  Status: \*\* J, P need confirmation.

OMITTED FROM SUMMARY TABLE

- HBC 1972 - HBC 1975

HBC 1977 BELL 2019

1.7

1.75

The clearest evidence is a peak in  $\Xi^-\pi^+$  seen by SUMIHAMA 19. Older low-statistics experiments (e.g., BORENSTEIN 72 and HAS-SALL 81) have looked for the state but have not seen any effect.

#### **Ξ(1620) MASS**

| VALUE (MeV)                     | EVTS | DOCUMENT ID |             | TECN | COMMENT                                    |
|---------------------------------|------|-------------|-------------|------|--------------------------------------------|
| ≈ 1620 OUD ESTIMA               | II E |             |             |      |                                            |
| $1610.4\pm \ 6.0^{+6.1}_{-4.2}$ |      | SUMIHAMA    | 19          | BELL | $\Xi_c^+ \rightarrow \Xi(1620) \pi^+$      |
| $1624 \pm 3$                    | 31   | DRIEFEL     | 77          | HBC  | n p 2.87 GeV/c                             |
| 1633 ±12                        | 34   | DEBELLEFON  | <b>75</b> B | HBC  | $K^- p \rightarrow \Xi^- \overline{K} \pi$ |
| $1606 \pm 6$                    | 29   | ROSS        | 72          | HBC  | K <sup>-</sup> p 3.1–3.7 GeV/c             |





## Assumed bump structure, compared to Belle



• No accidental subtraction

Background (red) : [First order polynomial]\*[sigmoid]



## Assumed bump structure, compared to Belle





## CLAS $\Xi$ and $\Xi(1530)$



- Reaction:  $\gamma p \rightarrow K^+ K^+ X$
- Here, *X* represent the missing particle(s)
- Ostensibly, X is  $\Xi^{-}$  or  $\Xi^{-*}$ 
  - from  $\gamma p \to K^+ Y^*$ , where  $Y^* \to K^+ \Xi^-$
  - $E_{\gamma} < 5.4 \text{ GeV}$
- A lot of background from many types of final states
  - $\gamma p \rightarrow K^+ K^+ X$  is very inclusive of  $\Xi^{-*}$  type states with decays NOT limited to
    - Ξπ
    - $\Xi^*\pi$
    - *AK*
    - *K*\Sigma
    - or ?

## CLAS comparison



6

## Reaction

where and

- $\gamma p \longrightarrow K^{+}K^{+}\Xi^{-}\pi^{0},$  $\Xi^{-} \longrightarrow \Lambda\pi^{-}$  $\Lambda \longrightarrow p\pi^{-}$
- Mass of  $\Xi^-$  not constrained
- The  $\Xi^-$  has a long lifetime

#### *<u>-</u> MEAN LIFE*

Measurements with an error  $> 0.2 \times 10^{-10}$  s or with systematic errors not included have been omitted.

| VALUE ( $10^{-10}$ s)                              | EVTS        | DOCUMENT ID |             | TECN | COMMENT                                   |
|----------------------------------------------------|-------------|-------------|-------------|------|-------------------------------------------|
| 1.639±0.015 OUR AV                                 | ERAGE       |             |             |      |                                           |
| $1.65 \pm 0.07 \pm 0.12$                           | $2478\pm68$ | ABDALLAH    | 06E         | DLPH | from Z decays                             |
| $1.652 \!\pm\! 0.051$                              | 32k         | BOURQUIN    | 84          | SPEC | Hyperon beam                              |
| $1.665 \!\pm\! 0.065$                              | 41k         | BOURQUIN    | 79          | SPEC | Hyperon beam                              |
| $1.609 \pm 0.028$                                  | 4286        | HEMINGWAY   | 78          | HBC  | 4.2 GeV/ <i>c K</i> <sup>−</sup> <i>p</i> |
| $1.67 \pm 0.08$                                    |             | DIBIANCA    | 75          | DBC  | 4.9 GeV/c $K^-d$                          |
| $1.63 \pm 0.03$                                    | 4303        | BALTAY      | 74          | HBC  | 1.75 GeV/c K <sup>-</sup> p               |
| $1.73 \ {}^{+0.08}_{-0.07}$                        | 680         | MAYEUR      | 72          | HLBC | 2.1 GeV/ <i>c K</i> <sup></sup>           |
| $1.61 \pm 0.04$                                    | 2610        | DAUBER      | 69          | HBC  |                                           |
| $1.80 \pm 0.16$                                    | 299         | LONDON      | 66          | HBC  |                                           |
| $1.70 \pm 0.12$                                    | 246         | PJERROU     | <b>65</b> B | HBC  |                                           |
| $1.69 \pm 0.07$                                    | 794         | HUBBARD     | 64          | HBC  |                                           |
| $1.86 \begin{array}{c} +0.15 \\ -0.14 \end{array}$ | 517         | JAUNEAU     | <b>63</b> D | FBC  |                                           |



# Pathlength study

- Vertex analysis uses pathlength significance as given on page 13 of <a href="https://halldweb.jlab.org/DocDB/0046/004607/004/DSelectorDoc.pdf">https://halldweb.jlab.org/DocDB/0046/004607/004/DSelectorDoc.pdf</a>
- As was suggested, I made sure that the end of the  $\Xi^-$  path was downstream of the origin



## Overall best (lowest value of $\sigma_Y/Y$ )



## $\Xi^* \rightarrow \Xi \pi^0$ hybrid subtraction

Each photon is associated only with best combo for that photon



# Accidental subtraction using hybrid method





## Ground State $\Xi$ - Fits

## From 1477.5 to 1557.5 MeV





## Ground State $\Xi$ - Fits

## Next: From 1567.5 to 1647.5 MeV





## Ground State $\Xi$ - Fits

## Next: From 1657.5 to 1737.5 MeV





## Ground State $\Xi$ - Fits

## Last: From 1747.5 to 1777.5 MeV













- Threw 3.4 million events (so far)
- Generated flat in mass[ $\Xi^{-}\pi^{0}$ ] from 1.46 GeV to 1.75GeV





- Threw 3.4 million events (so far)
- Generated flat in mass[ $\Xi^{-}\pi^{0}$ ] from 1.46 GeV to 1.75GeV



- Threw 3.4 million events (so far)
- Generated flat in mass[ $\Xi^{-}\pi^{0}$ ] from 1.46 GeV to 1.75GeV





- Threw 3.4 million events (so far)
- Generated flat in mass[ $\Xi^{-}\pi^{0}$ ] from 1.46 GeV to 1.75GeV



# Monte Carlo: Resolution of mass[ $\Xi^{-}\pi^{0}$ ]



¥ASU

*Ξ*(1690):

- Fits have shape of  $\Xi(1690)$  due entirely to detector resolution
- In general: Not enough statistics for the  $\Xi(1690)$
- If we can say anything at all, the best we can do for the  $\Xi(1690)$  will probably be an upper limit

*Ξ*(1620):

• With current statistics, the best we can do for the  $\Xi(1620)$  will probably be an upper limit





- *Ξ*(1530):
  - Center = 1536(2) MeV
  - Width = 13(17) MeV



- *Ξ*(1530):
  - Center = 1536(2) MeV
  - Width = 13(17) MeV

| <b>Ξ(1530)</b> <sup>-</sup> | MASS                   |                            |         |                                               |
|-----------------------------|------------------------|----------------------------|---------|-----------------------------------------------|
| VALUE (MeV)                 | EVTS                   | DOCUMENT ID                | TECN    | COMMENT                                       |
| $1535.0 \pm 0.6$            | OUR FIT                |                            |         |                                               |
| $1535.2 \pm 0.8$            | OUR AVERAGE            |                            |         |                                               |
| $1534.5 \!\pm\! 1.2$        |                        | DEBELLEFON 75B             | HBC     | $K^- p \rightarrow \Xi^- \overline{K} \pi$    |
| $1535.3\!\pm\!2.0$          |                        | ROSS 73B                   | HBC     | $K^- p \rightarrow \Xi \overline{K} \pi(\pi)$ |
| $1536.2\!\pm\!1.6$          | 185                    | KIRSCH 72                  | HBC     | <i>К<sup>—</sup> р</i> 2.87 GeV/ <i>с</i>     |
| $1535.7 \!\pm\! 3.2$        | 38                     | LONDON 66                  | HBC     | <i>К<sup>—</sup> р</i> 2.24 GeV/ <i>с</i>     |
| • • • We de                 | o not use the followin | g data for averages, fits, | limits, | etc. • • •                                    |
| $1540 \pm 3$                | 48                     | BERTHON 74                 | HBC     | Quasi-2-body $\sigma$                         |
| $1534.7 \!\pm\! 1.1$        | 334                    | BALTAY 72                  | HBC     | $K^- p$ 1.75 GeV/ $c$                         |

| <b>Ξ(1530)<sup>—</sup> WIDTH</b><br>VALUE (MeV) | DOCUMENT ID |             | TECN | COMMENT                                       |
|-------------------------------------------------|-------------|-------------|------|-----------------------------------------------|
| 9.9 <sup>+1.7</sup> OUR AVERAGE                 |             |             |      |                                               |
| 9.6±2.8                                         | DEBELLEFON  | <b>75</b> B | HBC  | $K^- p \rightarrow \Xi^- \overline{K} \pi$    |
| $8.3 \pm 3.6$                                   | ROSS        | <b>73</b> B | HBC  | $K^- p \rightarrow \Xi \overline{K} \pi(\pi)$ |
| $7.8^{+3.5}_{-7.8}$                             | BALTAY      | 72          | HBC  | $K^- p$ 1.75 GeV/ $c$                         |
| $16.2 \pm 4.6$                                  | KIRSCH      | 72          | HBC  | $\Xi^{-}\pi^{0}$ , $\Xi^{0}\pi^{-}$           |



- *E*(1530):
  - Center = 1536(2) MeV
  - Width = 13(17) MeV
- $\Xi(1620)$ :
  - Center = 1597(7) MeV
  - Width = 28(39) MeV



- *E*(1530):
  - Center = 1536(2) MeV
  - Width = 13(17) MeV
- $\Xi(1620)$ :
  - Center = 1597(7) MeV
  - Width = 28(39) MeV

#### Ξ(1620) MASS

| VALUE (M | eV)                     | EVTS | DOCUMENT ID |     | TECN | COMMENT                                    |
|----------|-------------------------|------|-------------|-----|------|--------------------------------------------|
| ≈ 1620   | OUR ESTIMA              | TE   |             |     |      |                                            |
| 1610.4   | $\pm 6.0^{+6.1}_{-4.2}$ |      | SUMIHAMA    | 19  | BELL | $\Xi_c^+ \rightarrow \Xi(1620)\pi^+$       |
| 1624     | $\pm$ 3                 | 31   | BRIEFEL     | 77  | HBC  | <i>K<sup>-</sup> p</i> 2.87 GeV/ <i>c</i>  |
| 1633     | $\pm 12$                | 34   | DEBELLEFON  | 75B | HBC  | $K^- p \rightarrow \Xi^- \overline{K} \pi$ |
| 1606     | ± 6                     | 29   | ROSS        | 72  | HBC  | $K^- p$ 3.1–3.7 GeV/ $c$                   |

#### Ξ(1620) WIDTH

| VALUE (MeV)                        | <u>EVTS</u> | DOCUMENT ID          |             | TECN      | COMMENT                                      |
|------------------------------------|-------------|----------------------|-------------|-----------|----------------------------------------------|
| 32 + 8<br>9 OUR AVI                | ERAGE       | Error includes sca   | le fac      | tor of 2. | 2. See the ideogram below.                   |
| $59.9 \pm \ 4.8 {+2.8 \atop -7.1}$ |             | SUMIHAMA             | 19          | BELL      | $\Xi_c^+ \rightarrow \Xi(1620) \pi^+$        |
| $22.5 \pm 7.5$                     | 31          | <sup>1</sup> BRIEFEL | 77          | HBC       | <i>К<sup>—</sup> р</i> 2.87 GeV/ <i>с</i>    |
| 40 ±15                             | 34          | DEBELLEFON           | <b>75</b> B | HBC       | $K^- p \rightarrow \Xi^- \overline{K} \pi$   |
| $21 \pm 7$                         | 29          | ROSS                 | 72          | HBC       | $K^- p \rightarrow \Xi^- \pi^+ K^{*0}$ (892) |



*Ξ*(1530):

- Center = 1536(2) MeV
- Width = 13(17) MeV
- $\Xi(1620)$ :
  - Center = 1597(7) MeV
  - Width = 28(39) MeV

- *Ξ*(1530):
  - Center = 1538(2) MeV
  - Width = 7(14) MeV
- $\Xi(1620)$ :
  - Center = 1592(9) MeV
  - Width = 14(34) MeV

## $\Xi^*$ Generator Refinement

- Starting with code from Brandon build for  $\Xi(1530)$  and modifying for general  $\Xi^*$
- Taking the initial reaction as  $\gamma p \to K Y^*$
- Mandelstam variables have relationship:
  - $s+t+u = m_{\gamma}^2 + m_p^2 + m_K^2 + m_{Y*}^2$
- We can lock down the kinematics of the initial reaction by specifying *s*, *t* and  $m_{Y^*}$
- Started with Mandelstam *s* and *t*

# $\Xi^*$ Comparison of Reconstructed MC to Actual Data

- 1<sup>st</sup>: of MC to set *t*-slope (parameter *b* in  $Ae^{-b|t|}$ ) to 1.138/GeV<sup>2</sup> assuming  $\gamma p \rightarrow K_{\text{fast}} Y^*$
- $2^{nd}$ : Shaping mass[*Y*\*] and mass[ $\Xi^*$ ]
- $3^{rd}$ : Shaping  $K_{slow}$  distribution assuming  $Y^* \to K_{slow} \Xi^*$

# $\Xi^*$ Comparison of Reconstructed MC to Actual Data (slide 1)

Counts

P(K<sub>fast</sub>)/GeV

8

100



5

6

30

20

10



 $-t_{\rm fast}$ 

- MC

Data

# $\Xi^*$ Comparison of Reconstructed MC to Actual Data (slide 2)









## Next Steps

Create MC for isolated  $\Xi(1530)$ ,  $\Xi(1620)$ ,  $\Xi(1690)$  and background using parameters from fit to data

