Study FCAL II Magnetic Shielding

Solenoid Magnetic Field

10000.*Bz:z {z>620&&z<695.&&r<4}

Solenoid Magnetic Field

20 cm downstream the FCAL lead block

Solenoid Magnetic Field

Z (cm)	Z (cm)	Bz (r = 0 cm) G	Bx (r = 40 cm) G
625	FCAL upstream face	87	20
645		68	15
670	FCAL downstream face	54	10
690		43	7

FCAL Acceptance

- FCAL outer rings are not used in analyses (cannot be calibrated using photons from the target)
- Move FCAL downstream the beam

Calorimeter 3x3 Prototype

Setup I

PMT housing length 10.5 cm

PMT length (no leads): 8.73 cmLG length:3.5 cmTotal:12.23 cm

Flange (+gap): 0.8 cm12.23 - 0.8 = 11.43 cm

can make PMT housing 6 - 7 mm longer

20.6 mm

Housing D = 19.8 mm

Mu-metal foil: 300 μm

Average crystal width: 20.55 mm sigma \pm 25 μm ESR thickness: 65 μm

20.55 + 0.13 = 20.68 mm + Tedlar + brass strips cannot make housing wider

PMT diameter > 19.0 mm

Longitudinal field

Setup I

Setup II

Transverse Field

Setup 3

Replace 350 μm mu-metal shielding with

- two layers: two wraps of 100 μ m mu-metal (200 μ m) + 100 μ m mu-metal
- layers are separated using Kapton

PMT Response to LED

LED Setup

LED Tests

