\relax \emailauthor{somov@jlab.org}{A.Somov\corref {cor1}} \citation{gluex_det} \citation{jef} \citation{nps} \citation{pwo_crystals} \citation{primex} \Newlabel{erphy}{a} \Newlabel{cua}{b} \Newlabel{jlab}{c} \Newlabel{mephi}{d} \Newlabel{regina}{e} \Newlabel{uncw}{f} \Newlabel{ncat}{g} \Newlabel{duke}{h} \@LN@col{1} \Newlabel{notice}{1} \Newlabel{cor1}{1} \@writefile{toc}{\contentsline {section}{\numberline {1}Introduction}{1}} \@LN@col{2} \citation{gluex_det} \citation{hycal_kubantsev} \@LN@col{1} \@writefile{lof}{\contentsline {figure}{\numberline {1}{\ignorespaces Schematic layout of the GlueX detector (not to scale). Numbers represent the following detector components: solenoid magnet (1), barrel calorimeter (2), central drift chambers (3), forward drift chambers (4), time-of-flight wall (5).}}{2}} \newlabel{fig:gluex_det}{{1}{2}} \@writefile{toc}{\contentsline {section}{\numberline {2}PrimEx $\eta $ experiment with the GlueX detector}{2}} \@LN@col{2} \@writefile{lof}{\contentsline {figure}{\numberline {2}{\ignorespaces Schematic layout of the Compton calorimeter.}}{2}} \newlabel{fig:ccal_design}{{2}{2}} \@writefile{toc}{\contentsline {section}{\numberline {3}Compton calorimeter of the PrimEx $\eta $ experiment}{2}} \@writefile{toc}{\contentsline {subsection}{\numberline {3.1}Calorimeter design}{2}} \@writefile{toc}{\contentsline {subsection}{\numberline {3.2}Module design}{2}} \citation{popov} \citation{fadc250} \@LN@col{1} \@writefile{lof}{\contentsline {figure}{\numberline {3}{\ignorespaces Calorimeter module.}}{3}} \newlabel{fig:ccal_module}{{3}{3}} \@writefile{toc}{\contentsline {subsection}{\numberline {3.3}Electronics}{3}} \@LN@col{2} \@writefile{lof}{\contentsline {figure}{\numberline {4}{\ignorespaces A typical flash ADC signal pulse obtained from a $\rm PbWO_{\rm 4}$ module.}}{3}} \newlabel{fig:pmt_pulse}{{4}{3}} \@writefile{toc}{\contentsline {subsection}{\numberline {3.4}Light Monitoring System}{3}} \citation{root} \@LN@col{1} \@writefile{lof}{\contentsline {figure}{\numberline {5}{\ignorespaces Flash ADC signal amplitudes induced by the LED and $\alpha $-source in the reference PMT.}}{4}} \newlabel{fig:led_amp}{{5}{4}} \@writefile{toc}{\contentsline {subsection}{\numberline {3.5}Calibration}{4}} \@LN@col{2} \@writefile{lof}{\contentsline {figure}{\numberline {6}{\ignorespaces Ratio of signal ADC amplitudes from the LED pulser to $\alpha $-source measured by the reference PMT during different run periods of the 48-day long PrimEx $\eta $ experiment. The ratio is normalized to data in the beginning of the run.}}{4}} \newlabel{fig:led_stability}{{6}{4}} \citation{hycal_kubantsev} \citation{ps} \citation{l1_trigger} \citation{pmt_high_rate} \@LN@col{1} \@writefile{lof}{\contentsline {figure}{\numberline {7}{\ignorespaces ADC signal pulse amplitude in the CCAL module as a function of the beam energy.}}{5}} \newlabel{fig:ccal_calib}{{7}{5}} \@writefile{lof}{\contentsline {figure}{\numberline {8}{\ignorespaces Relative energy resolution of 140 CCAL modules for 6 GeV beam photons.}}{5}} \newlabel{fig:ccal_mod_uniform}{{8}{5}} \@LN@col{2} \@writefile{lof}{\contentsline {figure}{\numberline {9}{\ignorespaces Energy distribution deposited by 10 GeV beam photons. The spectrum is fit to a Crystal Ball function.}}{5}} \newlabel{fig:ccal_en_fit}{{9}{5}} \@writefile{lof}{\contentsline {figure}{\numberline {10}{\ignorespaces Energy resolution as a function of the photon energy.}}{5}} \newlabel{fig:ccal_en_res}{{10}{5}} \@writefile{toc}{\contentsline {subsection}{\numberline {3.6}Performance during the PrimEx run}{5}} \citation{fcal_clust} \citation{gams} \citation{hycal_kubantsev} \citation{fcal_base} \@LN@col{1} \@writefile{lof}{\contentsline {figure}{\numberline {11}{\ignorespaces Trigger rate as a function of the total energy deposited in the FCAL and CCAL. Arrow indicates the energy threshold used in PrimEx $\eta $ production runs. }}{6}} \newlabel{fig:trig_rate}{{11}{6}} \@writefile{lof}{\contentsline {figure}{\numberline {12}{\ignorespaces Rates in the CCAL modules during PrimEx $\eta $ production run. The energy threshold corresponds to 30 MeV. The beam goes through the center of the hole in the middle of the plot.}}{6}} \newlabel{fig:ccal_rate}{{12}{6}} \@LN@col{2} \@writefile{toc}{\contentsline {section}{\numberline {4}Upgrade of the GlueX forward calorimeter}{6}} \@LN@col{1} \@writefile{lof}{\contentsline {figure}{\numberline {13}{\ignorespaces Time difference between beam photons and reconstructed CCAL showers for Compton candidates. Peaks are separated by the beam bunch period of 4 ns.}}{7}} \newlabel{fig:ccal_time}{{13}{7}} \@writefile{lof}{\contentsline {figure}{\numberline {14}{\ignorespaces Elasticity distribution of reconstructed Compton candidates.}}{7}} \newlabel{fig:compton}{{14}{7}} \@LN@col{2} \@writefile{lof}{\contentsline {figure}{\numberline {15}{\ignorespaces FCAL frame with calorimeter modules installed: $PbWO_{\rm 4}$ crystals (brown area), lead glass blocks (green). Photon beam goes in the hole in the middle of the calorimeter.}}{7}} \newlabel{fig:fcal_frame}{{15}{7}} \@writefile{toc}{\contentsline {subsubsection}{\numberline {4.0.1}PMT magnetic shield}{7}} \@LN@col{1} \@writefile{lof}{\contentsline {figure}{\numberline {16}{\ignorespaces Magnetic field distribution inside the PMT shield housing as a function of the distance from the housing face. Plot (a) corresponds to the longitudinal field and plot (b) corresponds to the transverse field. Markers denote different field values produced by the Helmholtz coils. }}{8}} \newlabel{fig:field_distribution}{{16}{8}} \@LN@col{2} \@writefile{lof}{\contentsline {figure}{\numberline {17}{\ignorespaces Signal amplitudes of shielded PMT induced by an LED as a function of the magnetic field (a). Amplitudes, normalized to measurements without magnetic field (b). PMT response was measured for different intensities of light pulse and HV settings as shown by different polymarkers.}}{8}} \newlabel{fig:field_led}{{17}{8}} \@writefile{toc}{\contentsline {subsubsection}{\numberline {4.0.2}Light guide studies}{8}} \citation{ps} \@LN@col{1} \@writefile{lof}{\contentsline {figure}{\numberline {18}{\ignorespaces ADC amplitudes of the calorimeter module as a function of the pair spectrometer tile for two configurations: PMT directly coupled to the $\rm PbWO_{\rm 4}$ crystal (circles), PMT coupled to the module using an optical light guide (boxes).}}{9}} \newlabel{fig:lg_ps}{{18}{9}} \@writefile{toc}{\contentsline {subsubsection}{\numberline {4.0.3}Detector rate}{9}} \newlabel{sec:fcal_rates}{{4.0.3}{9}} \@LN@col{2} \@writefile{lof}{\contentsline {figure}{\numberline {19}{\ignorespaces Typical PMT anode current of CCAL modules positioned at different distances from the beamline. Circles correspond to the nominal GlueX luminosity, boxes correspond to $60\%$ of the nominal luminosity.}}{9}} \newlabel{fig:anode_current}{{19}{9}} \@writefile{toc}{\contentsline {section}{\numberline {5}Neutral Particle Spectrometer}{9}} \citation{pwo_crystals} \citation{dvcs} \bibstyle{elsarticle-num} \bibcite{gluex_det}{{1}{}{{}}{{}}} \bibcite{jef}{{2}{}{{}}{{}}} \bibcite{nps}{{3}{}{{}}{{}}} \bibcite{pwo_crystals}{{4}{}{{}}{{}}} \bibcite{primex}{{5}{}{{}}{{}}} \bibcite{hycal_kubantsev}{{6}{}{{}}{{}}} \bibcite{popov}{{7}{}{{}}{{}}} \bibcite{fadc250}{{8}{}{{}}{{}}} \bibcite{ps}{{9}{}{{}}{{}}} \bibcite{pmt_high_rate}{{10}{}{{}}{{}}} \bibcite{root}{{11}{}{{}}{{}}} \bibcite{l1_trigger}{{12}{}{{}}{{}}} \bibcite{fcal_base}{{13}{}{{}}{{}}} \bibcite{fcal_clust}{{14}{}{{}}{{}}} \bibcite{gams}{{15}{}{{}}{{}}} \bibcite{dvcs}{{16}{}{{}}{{}}} \providecommand\NAT@force@numbers{}\NAT@force@numbers \@LN@col{1} \@LN@col{2} \@writefile{toc}{\contentsline {section}{\numberline {6}Summary}{10}} \newlabel{sec_summary}{{6}{10}} \@writefile{toc}{\contentsline {section}{\numberline {7}Acknowledgments}{10}}