Summary of the Hall D Fall 2019/Spring 2020 run

A. Deur Jefferson Lab

Disclaimer: information in small fonts are not meant to be read. They are here for future reference.

Summary of the Hall D Fall 2019/Spring 2020 run

A. Deur Jefferson Lab

Fall 2019/Spring 2020 run plan: https://halldweb.jlab.org/wiki/index.php/Run_Coordination_Meetings:Fall2019_Run

Fall 2019 run coordinator summaries: https://halldweb.jlab.org/hdops/wiki/index.php/Summary_Fall_2019_Run Spring 2020 run coordinator summaries: https://halldweb.jlab.org/hdops/wiki/index.php/Summary_Spring_2020_Run

Run period summaries: https://halldweb.jlab.org/hdops/wiki/index.php/Hall_D_Runs

Initial schedule:

1. Nov. 18th - 24th: Electron beam restoration.

2. Nov. 25th - Dec. 19th: Finalized DIRC Commissioning;

Take GlueX production data;

High rate DAQ/cDAQ/trigger commissioning;

Tagger accidental test, CPP test, other tests.

Initial schedule:

1. Nov. 18th - 24th: Electron beam restoration.

2. Nov. 25th - Dec. 19th: Finalized DIRC Commissioning;

Take GlueX production data;

High rate DAQ/cDAQ/trigger commissioning;

Tagger accidental test, CPP test, other tests.

Leadership: C. Meyer/J. Stevens, E. Chudakov/E. Smith **Run Coordinators:**

Nov 18th-Nov 24th: 7 days: Alexandre Deur (accelerator restoration) https://halldweb.jlab.org/wiki/index.php/Run_Coordinator_report:_Fall_2019_w1-2

Nov 24th-Dec 4th, 11 days: Alexandre Deur

Dec 4th-Dec 11th, 7 days: Naomi Jarvis https://halldweb.jlab.org/wiki/index.php/Run_Coordinator_report:_Fall_2019_w3

Dec 11th-Dec. 18th, 10 days: Wenliang Li https://halldweb.jlab.org/wiki/index.php/Run_Coordinator_report:_Fall_2019_w4

Dec 18th-Dec. 20th, 3 days: Alexandre Deur https://halldweb.jlab.org/wiki/index.php/Run_Coordinator_report:_Fall_2019_w5

Initial schedule:

1. Nov. 18th - 24th: Electron beam restoration.

2. Nov. 25th - Dec. 19th: Finalized DIRC Commissioning;

Take GlueX production data;

High rate DAQ/cDAQ/trigger commissioning;

Tagger accidental test, CPP test, other tests.

Leadership: C. Meyer/J. Stevens, E. Chudakov/E. Smith

Run Coordinators:

Nov 18th-Nov 24th: 7 days: Alexandre Deur (accelerator restoration) https://halldweb.jlab.org/wiki/index.php/Run_Coordinator_report:_Fall_2019_w1-2 Nov 24th-Dec 4th, 11 days: Alexandre Deur

Dec 4th-Dec 11th, 7 days: Naomi Jarvis https://halldweb.jlab.org/wiki/index.php/Run_Coordinator_report:_Fall_2019_w3

Dec 11th-Dec. 18th, 10 days: Wenliang Li https://halldweb.jlab.org/wiki/index.php/Run_Coordinator_report:_Fall_2019_w4

Dec 18th-Dec. 20th, 3 days: Alexandre Deur https://halldweb.jlab.org/wiki/index.php/Run_Coordinator_report:_Fall_2019_w5

Physics Division Liaisons: Benedikt Zihlmann/Lubomir Penchev.

Analysis Coordinator: Alexander Austregesilo.

Run coordination, subsystem status, data quality monitoring, offline analysis are discussed at daily RC meetings (8:45am, counting house).

Actual schedule:

Dec. 3rd (due mainly to leak in North linac)

1. Nov. 18th - 24th: Electron beam restoration.

Dec. 4th

2. Nov. 25th - Dec. 19th: Finalized DIRC Commissioning;

Take GlueX production data;

High rate DAQ/cDAQ/trigger commissioning;

Tagger accidental test, CPP test, other tests.

Actual schedule:

Dec. 3rd (due mainly to leak in North linac)

1. Nov. 18th - 24th: Electron beam restoration.

Dec. 4th

2. Nov. 25th - Dec. 19th: Finalized DIRC Commissioning;

Take GlueX production data;

High rate DAQ/cDAQ/trigger commissioning;

Tagger accidental test, CPP test, other tests.

Fall 2019 run configuration

- •Energy: 11.6 GeV
 - •4-hall ops, 1-pass for Hall A, 5-pass for Hall B, 3-5 pass for Hall C. D: 5.5-pass. High currents for A & C.
- •Hall D configuration:
 - •Both DIRC box sets installed.
 - •Solenoid at 1350A.
 - •Rep. rate 250 MHz.
 - •Slit shared with C (as in Fall 18 and Spring 19. It was with B in Fall 17 and A in Spring 18)
 - •Beam current 1 nA-2.1 μA.
 - •Production Radiator: Start on Amorphous. Then 47 μm J70-105 diamond (already used during F2018 run).
 - •5mm collimator hole;
 - •LH₂ target.
 - •GEM/TRD detectors in front on DIRC for extra-tracking
 - •TPol on during DIRC runs for systematic studies, with 75 µm TPol convertor.

Fall 2019 run configuration

11.4 GeV

- •Energy: 11.6 GeV
 - •4-hall ops, 1-pass for Hall A, 5-pass for Hall B, 3-5 pass for Hall C. D: 5.5-pass. High currents for A & C.
- •Hall D configuration:
 - •Both DIRC box sets installed.
 - •Solenoid at 1350A.
 - •Rep. rate 250 MHz.
 - •Slit shared with C (as in Fall 18 and Spring 19. It was with B in Fall 17 and A in Spring 18)
 - •Beam current 1 nA-2.1 μA.
 - •Production Radiator: Start on Amorphous. Then 47 μm J70-105 diamond (already used during F2018 run).
 - •5mm collimator hole;
 - •LH₂ target.
 - •GEM/TRD detectors in front on DIRC for extra-tracking
 - •TPol on during DIRC runs for systematic studies, with 75 µm TPol convertor.

2 weeks of physics beam GlueX prod. goal already removed

Sol. Magnet at 1350A, LH, tgt, 5 mm collim., tag. quad on

:DIRC commissioning

Final runplan, accounting for late start.

2 weeks of physics beam
GlueX prod. goal already removed

Mon. 16 Dec.

Wed. 18 Dec.

time (days)

Fall 2019 runplan

- Straight track runs for each of the 3 positions of GEM/TRD
- DIRC commissioning (with TRD/GEM)
- Align diamond (JD-70-105)
- GlueX production
- TAC run
- Empty target run
- DAQ tests:
 - Test new CODA at up to 450 nA
 - cDAQ at up to 450 nA
 - Data consistency check (non-invasive)
- Trigger tests:
 - FCal-BCal-ST trigger test
 - Preparation for high current DAQ test
- HV scans for TOF's new counters
- Tagging accidentals beam tests
- ComCal test: anode current studies with special trigger
- Pair. Spec. test area (non-invasive tests):
 - Right arm (facing downstream): FCal Pb-W cristal quality and detector checks
 - Left arm:
 - EIC/Hall C aerogel tests.
 - Test of Hall C 3×3 block glass-scintillator prototype
- CPP trigger tests

Fall 2019 runplan

- Straight track runs for each of the 3 positions of GEM/TRD
 DIRC commissioning (with TRD/GEM)
 ✓ (6B triggers for DIRC commissioning configurations; 18M triggers (6M for each location) for Gem/TRD-DIRC test)
- Align diamond (JD-70-105) ~ ✓ (only two directions aligned)
- GlueX production $\sim \chi_{\text{(took 3h of data at 350nA, i.e. in GlueX-II condition)}} \Rightarrow Good shape for GlueX-II$ production in spring 2020
- TAC run ✓
- Empty target run
- DAQ tests:
 - Test new CODA at up to 450 nA ✓
 - cDAQ at up to 450 nA ✓
 - Data consistency check (non-invasive)
- Trigger tests:
 - FCal-BCal-ST trigger test

 ✓
 - Preparation for high current DAQ test
- HV scans for TOF's new counters ✓
- Tagging accidentals beam tests X
- ComCal test: anode current studies with special trigger
- Pair. Spec. test area (non-invasive tests):
 - Right arm (facing downstream): FCal Pb-W cristal quality and detector checks ✓
 - Left arm:
 - EIC/Hall C aerogel tests. ✓
 - Test of Hall C 3×3 block glass-scintillator prototype
- CPP trigger tests ~ X (did useful "pre-CPP" test)

Statistics for Fall 2019 run

Scheduled run time: 600h (24 days): Nov 25th-Dec 20th

Acceptable beam used: 192h

⇒ Running efficiency for Fall 2019 period: 32%

Due to late start

Initial schedule:

- 1. Jan. 3rd 9th: Electron beam restoration.
- 2. Jan. 10th -May 6th: GlueX-II production data;

Tagger accidental test, ComCal anode test.

Initial schedule:

- 1. Jan. 3rd 9th: Electron beam restoration.
- 2. Jan. 10th -May 6th: GlueX-II production data;

 Tagger accidental test, ComCal anode test.

Leadership: C. Meyer/J. Stevens, E. Chudakov/E. Smith

Run Coordinators:

- Jan 3rd-Jan 9th: 7 days: Alexandre Deur (accelerator restoration)
- Jan 9th-Jan 15th, 7 days: Alexandre Deur
- Jan 15th-Jan 22nd, 7 days: Jonathan Zarling https://halldweb.jlab.org/wiki/index.php/Run_Coordinator_report:_Spring_2020_w3
- Jan 22nd-Jan 29th, 7 days: Alexander Austregesilo
- Jan 29th-Feb 5th, 7 days: Alexander Ostrovidov https://halldweb.jlab.org/wiki/index.php/Run_Coordinator_report:_Spring_2020_w5
- Feb 5th-Feb 12th, 7 days: Daniel Lersch
- Feb 12th-Feb 19th, 7 days: Richard Jones
- Feb 19th-Feb 26th, 7 days: Colin Gleason
- Feb 26th-March 4th, 7 days: Wenliang Li
- March 4th-March 11th, 7 days: TBD
- March 11th-March 18th, 7 days: Richard Jones
- March 18th-March 25th, 7 days: Mark Dalton
- March 25th-Apr 1st, 7 days: Werner Boeglin
- Apr 1st-Apr 8th, 7 days: TBD
- Apr 8th-Apr 15th, 7 days: Naomi Jarvis
- Apr 15th-Apr 22nd, 7 days: Kenneth Livingston
- Apr 22nd-Apr 29th, 7 days: TBD (2)
- Apr 29th-May 6th, 7 days: TBD

Initial schedule:

- 1. Jan. 3rd 9th: Electron beam restoration.
- 2. Jan. 10th -May 6th: GlueX-II production data;

Tagger accidental test, ComCal anode test.

Leadership: C. Meyer/J. Stevens, E. Chudakov/E. Smith

Run Coordinators:

- Jan 3rd-Jan 9th: 7 days: Alexandre Deur (accelerator restoration)
- Jan 9th-Jan 15th, 7 days: Alexandre Deur
- Jan 15th-Jan 22nd, 7 days: Jonathan Zarling https://halldweb.jlab.org/wiki/index.php/Run_Coordinator_report:_Spring_2020_w3
- Jan 22nd-Jan 29th, 7 days: Alexander Austregesilo
- Jan 29th-Feb 5th, 7 days: Alexander Ostrovidov https://halldweb.jlab.org/wiki/index.php/Run_Coordinator_report:_Spring_2020_w5
- Feb 5th-Feb 12th, 7 days: Daniel Lersch
- Feb 12th-Feb 19th, 7 days: Richard Jones
- Feb 19th-Feb 26th, 7 days: Colin Gleason
- Feb 26th-March 4th, 7 days: Wenliang Li
- March 4th-March 11th, 7 days: TBD
- March 11th-March 18th, 7 days: Richard Jones
- March 18th-March 25th, 7 days: Mark Dalton
- March 25th-Apr 1st, 7 days: Werner Boeglin
- Apr 1st-Apr 8th, 7 days: TBD
- Apr 8th-Apr 15th, 7 days: Naomi Jarvis
- Apr 15th-Apr 22nd, 7 days: Kenneth Livingston
- Apr 22nd-Apr 29th, 7 days: TBD
- Apr 29th-May 6th, 7 days: TBD

Physics Division Liaisons: Benedikt Zihlmann/Lubomir Penchev.

Analysis Coordinator: Alexander Austregesilo.

Run coordination, subsystem status, data quality monitoring, offline analysis are discussed at daily RC meetings (8:45am, counting house).

Actual schedule: Jan. 7th (due to short break between Fall and spring runs: RF stayed on, babysitted by dedicated MCC ops)

- 1. Jan. 3rd 9th: Electron beam restoration.
- 2. Jan. 10th May 6th: GlueX-II production data;

Tagger accidental test, ComCal anode test.

Spring 2020 run configuration

- •Energy: 11.4 GeV
 - •4-hall ops, 1-pass for Hall A, 1-5 pass for Hall B, 1-5 pass for Hall C. D: 5.5-pass. High currents for A & C.
- •Hall D configuration:
 - Both DIRC boxes
 - •Solenoid at 1350A.
 - •Rep. rate 250 MHz.
 - •Slit shared with C (as in Fall 18&19 and Spring 19. It was with B in Fall 17 and A in Spring 18)
 - •Beam current 1 nA-2.1 μA.
 - •Production Radiator: 47 μm J70-105 diamond; then 47 μm J70-106.
 - •5mm collimator hole;
 - •LH₂ target.
 - •TPol with 75 µm TPol convertor.

Spring 2020 runplan

Production

CTIO Production Spring 2020 runplan Production Production Production Production Production roduction Production ProductionProduction raduction Production Pr

Spring 2020 runplan
Spring 2020 GlueX II run. Assume 50% eff. Spring 2020 GlueX II run. Assume 50% eff. Spring 2020 GlueX II run. Assume 50% eff. Staggered tasks are accelerator responsibility Gluex prod data. 3h // 3h ⊥ 3h 45° 3h 135° 1h on Al. radiator Gluex prod data. 3h // 3h ⊥ 3h 45° 3h 135° 1h on Al. radiator Gluex prod data. 3h // 3h ⊥ 3h 45° 3h 135° 1h on Al. radiator Gluex prod data. 3h // 3h ⊥ 3h 45° 3h 135° 1h on Al. radiator Gluex prod data. 3h // 3h ⊥ 3h 45° 3h 135° 1h on Al. radiator Gluex prod data. 3h // 3h ⊥ 3h 45° 3h 135° 1h on Al. radiator Gluex prod data. 3h // 3h ⊥ 3h 45° 3h 135° 1h on Al. radiator Gluex prod data. 3h // 3h ⊥ 3h 45° 3h 135° 1h on Al. radiator Gluex prod data. 3h // 3h ⊥ 3h 45°3h 135° 1h on Al. radiator Gluex prod data. 3h // 3h ⊥ 3h 45° 3h 135° 1h on Al. radiator Gluex prod data. 3h // 3h ⊥ 3h 45° 3h 135° Ih on Al. radiator Gluex prod data. 3h // 3h ⊥ 3h 45° 3h 135° 1h on Al. radiator Gluex prod data. 3h // 3h ⊥ 3h 45° 3h 135° 1h on Al. radiator Gluex prod data. 3h // 3h ⊥ 3h 45° 3h 135° 1h on Al. radiator Gluex prod data. 3h // 3h ⊥ 3h 45° 3h 135° 1h on Al. radiator Gluex prod data. 3h // 3h ⊥ 3h 45° 3h 135° 1h on Al. radiato: arp Scan (both 12h Beam Study Sol. Magnet at 1350A, LH, tgt, 5 mm collim., tag. quad on Sol. Magnet at 1350A, LH, tgt, 5 mm collim., tag. quad on Sol. Magnet at 1350A, LH, tgt, 5 mm collim., tag. quad on Wed. 15 Jan. Fri. 17 Jan. Wed. 22 Jan. Wed. 8 Jan. Fri. 10 Jan. Mon. 13 Jan. Mon. 20 Jan. Fri. 24 Jan. Mon. 27 Jan. Spring 2020 GlueX II run. Assume 50% eff. Spring 2020 GlueX II run. Assume 50% eff. Spring 2020 GlueX II run. Assume 50% eff. Gluex prod data. 3h // 3h ⊥ 3h 45° 3h 135° 1h on Al. radiator Gluex prod data. 3h // 3h ⊥ 3h 45° 3h 135° 1h on Al. radiator Gluex prod data. 3h // 3h ⊥ 3h 45° 3h 135° 1h on Al. radiator Gluex prod data. 3h // 3h ⊥ 3h 45° 3h 135° 1h on Al. radiator Gluex prod data, 3h // 3h ⊥ 3h 45° 3h 135° Ih on Al. radiator Gluex prod data. 3h // 3h ⊥ 3h 45° 3h 135° 1h on Al. radiator Gluex prod data. 3h // 3h ⊥ 3h 45° 3h 135° 1h on Al. radiator Gluex prod data. 3h // 3h ⊥ 3h 45° 3h 135° 1h on Al. radiator Gluex prod data. 3h // 3h ⊥ 3h 45° 3h 135° 1h on Al. radiator Sluex prod data. 3h // 3h ⊥ 3h 45° 3h 135° 1h on Al. radiator Gluex prod data. 3h // 3h ⊥ 3h 45° 3h 135° 1h on Al. radiator Gluex prod data. 3h // 3h ⊥ 3h 45° 3h 135° 1h on Al. radiator Gluex prod data. 3h // 3h ⊥ 3h 45° 3h 135° 1h on Al. radiato: Gluex prod data. 3h // 3h ⊥ 3h 45° 3h 135° 1h on Al. radiato Gluex prod data. 3h // 3h ⊥ 3h 45° 3h 135° 1h on Al. radiato: Gluex prod data. 3h // 3h ⊥ 3h 45° 3h 135° 1h on Al. radiato Gluex prod data. 3h // 3h ⊥ 3h 45° 3h 135° 1h on Al. radiato Gluex prod data. 3h // 3h ⊥ 3h 45° 3h 135° 1h on Al. radiato Gluex prod data. 3h // 3h ⊥ 3h 45° 3h 135° 1h on Al. radiat Gluex prod data. 3h // 3h ⊥ 3h 45° 3h 135° 1h on Al. rad 12h Beam Study CPP installation Sol. Magnet at 1350A, LH, tgt, 5 mm collim., tag. quad on Sol. Magnet at 1350A, LH, tgt, 5 mm collim., tag. quad on Sol. Magnet at 1350A, LH, tgt, 5 mm collim., tag. quad on Wed. 29 Jan. Fri. 31 Jan. Mon. 3 Feb. Wed. 5 Feb. Fri. 7 Feb. Mon. 10 Feb. Wed. 12 Feb. Fri. 14 Feb. Mon. 17 Feb. Spring 2020 GlueX II run. Assume 50% eff Spring 2020 GlueX II run. Assume 50% eff. Spring 2020 GlueX II run. Assume 50% eff. Gluex prod data. 3h // 3h ⊥ 3h 45° 3h 135° 1h on Al. radiator Gluex prod data. 3h // 3h ⊥ 3h 45° 3h 135° Ih on Al. radiator Gluex prod data. 3h // 3h ⊥ 3h 45° 3h 135° 1h on Al. radiator Gluex prod data. 3h // 3h ⊥ 3h 45° 3h 135° Ih on Al. radiator Gluex prod data. 3h // 3h ⊥ 3h 45° 3h 135° 1h on Al. radiator Gluex prod data. 3h // 3h ⊥ 3h 45° 3h 135° 1h on Al. radiator Gluex prod data. 3h // 3h ⊥ 3h 45° 3h 135° 1h on Al. radiator Gluex prod data. 3h // 3h ⊥ 3h 45° 3h 135° 1h on Al. radiator Gluex prod data. 3h // 3h ⊥ 3h 45° 3h 135° 1h on Al. radiator Gluex prod data. 3h // 3h ⊥ 3h 45° 3h 135° 1h on Al. radiator Gluex prod data, $3h \cdot 135^{\circ}$ 1h on Al. radiator Gluex prod data. 3h // 3h ⊥ 3h 45° 3h 135° 1h on Al. radiato: Gluex prod data. 3h // 3h ⊥ 3h 45° 3h 135° 1h on Al. radiato: Gluex prod data. 3h // 3h ⊥ 3h 45° 3h 135° 1h on Al. radiato Gluex prod data. 3h // 3h ⊥ 3h 45° 3h 135° 1h on Al. radiato Gluex prod data. 3h // 3h ⊥ 3h 45° 3h 135° 1h on Al. radiato Juex prod data. sh // 3h ⊥ 3h 45° 3h 135° 1h on Al. radiato Gluex prod data. 3h // 3h ⊥ 3h 45° 3h 135° 1h on Al. radiato Gluex prod data. 3h // 3h ⊥ 3h 45° 3h 135° 1h on Al. radiato Gluex prod data. 3h // 3h ⊥ 3h 45° 3h 135° 1h on Al. radiato Gluex prod data. 3h // 3h ⊥ 3h 45° 3h 135° 1h 8h RF reco Sol. Magnet at 1350A, LH, tgt, 5 mm collim., tag. quad on Sol. Magnet at 1350A, LH, tgt, 5 mm collim., tag. quad on Sol. Magnet at 1350A, LH, tgt, 5 mm collim., tag. quad or Wed. 19 Feb. Fri. 21 Feb. Wed. 26 Feb. Fri. 28 Feb. Wed. 4 March Mon. 24 Feb. Mon. 2 March Fri. 6 March Mon. 9 March time (days) time (day: time (days

Spring 2020 runplan
Spring 2020 GlueX II run. Assume 50% eff. Spring 2020 GlueX II run. Assume 50% eff. Spring 2020 GlueX II run. Assume 50% eff. Staggered tasks are accelerator responsibility Gluex prod data. 3h // 3h ⊥ 3h 45° 3h 135° 1h on Al. radiator Gluex prod data. 3h // 3h ⊥ 3h 45° 3h 135° 1h on Al. radiator Gluex prod data. 3h // 3h ⊥ 3h 45° 3h 135° 1h on Al. radiator Gluex prod data. 3h // 3h ⊥ 3h 45° 3h 135° 1h on Al. radiator Gluex prod data. 3h // 3h ⊥ 3h 45° 3h 135° Ih on Al. radiator Gluex prod data. 3h // 3h ⊥ 3h 45° 3h 135° 1h on Al. radiator Gluex prod data. 3h // 3h ⊥ 3h 45°3h 135° 1h on Al. radiator Gluex prod data. 3h // 3h ⊥ 3h 45° 3h 135° 1h on Al. radiator Gluex prod data. 3h // 3h ⊥ 3h 45° 3h 135° 1h on Al. radiato: Gluex prod data. 3h // 3h ⊥ 3h 45° 3h 135° 1h on Al. radiato: Gluex prod data. 3h // 3h ⊥ 3h 45° 3h 135° 1h on Al. radiato: Gluex prod data. 3h // 3h ⊥ 3h 45° 3h 135° 1h on Al. radiato Gluex prod data. 3h // 3h ⊥ 3h 45° 3h 135° 1h on Al. radiato Gluex prod data. 3h // 3h ⊥ 3h 45° 3h 135° 1h on Al. radiato Gluex prod data. 3h // 3h ⊥ 3h 45° 3h 135° 1h on Al. radiato arp Scan (both 12h Beam Study Sol. Magnet at 1350A, LH, tgt, 5 mm collim., tag. quad on Sol. Magnet at 1350A, LH, tgt, 5 mm collim., tag. quad on Sol. Magnet at 1350A, LH, tgt, 5 mm collim., tag. quad on Wed. 15 Jan. Fri. 17 Jan. Wed. 22 Jan. Wed. 8 Jan. Fri. 10 Jan. Mon. 13 Jan. Mon. 20 Jan. Fri. 24 Jan. Mon. 27 Jan. Spring 2020 GlueX II run. Spring 2020 GlueX II run. A Spring 2020 GlueX II run. Assume 50% eff. ume 50% eff. me 50% eff. Gluex prod data. 3h // 3h ⊥ 3h 45° 3h 135° 1h on Al. radiator uex prod data. //3h ⊥ 3h 45°3h 135°1h on Al. radiator Gluex prod data, 3h // 3h ⊥ 3h 45° 3h 135° Ih on Al. radiator Gluex prod data. 3h // 3h ⊥ 3h 45° 3h 135° 1h on Al. radiator Gluex prod data. 3h // 3h ⊥ 3h 45° 3h 135° 1h on Al. radiator Gluex prod data. 3h // 3h ⊥ 3h 45° 3h 135° 1h on Al. radiator Gluex prod data. 3h // 3h ⊥ 3h 45° 3h 135° 1h on Al. radiator Gluex prod data. 3h // 3h ⊥ 3h 45° 3h 135° Ih on Al. radiator Sluex prod data. 3h // 3h ⊥ 3h 45° 3h 135° 1h on Al. radiator Gluex prod data. 3h // 3h ⊥ 3h 45° 3h 135° 1h on Al. radiator Gluex prod data. 3h // 3h ⊥ 3h 45° 3h 135° 1h on Al. radiato: Gluex prod data. 3h // 3h ⊥ 3h 45° 3h 135° 1h on Al. radiato Gluex prod data. 3h // 3h ⊥ 3h 45° 3h 135° 1h on Al. radiato: Gluex prod data. 3h // 3h ⊥ 3h 45° 3h 135° 1h on Al. radiatoi Gluex prod data. 3h // 3h ⊥ 3h 45° 3h 135° 1h on Al. radiato Gluex prod data. 3h // 3h ⊥ 3h 45° 3h 135° 1h on Al. radiato Gluex prod data. 3h // 3h ⊥ 3h 45°3h 135°1h on Al. radiat Gluex prod data. 3h // 3h ⊥ 3h 45° 3h 135° 1h on Al. radiat Gluex prod data. 3h // 3h ⊥ 3h 45° 3h 135° 1h on Al. rad Gluex prod data. 3h // 3h ⊥ 3h 45° 3h 135° 1h on Al. ra 12h Beam Study CPP installation (Sol. Magnet at 1350A, LH, tgt, 5 mm collim., tag. quad on Sol. Magnet at 1350A, LH, tgt, 5 mm collim., tag. quad on Sol. Magnet at 1350A, LH, tgt, 5 mm collim., tag. quad on Wed. 29 Jan. Fri. 31 Jan. Mon. 3 Feb. Wed. 5 Feb. Fri. 7 Feb. Mon. 10 Feb. Wed. 12 Feb. Fri. 14 Feb. Mon. 17 Feb. Spring 2020 GlueX II run. Assume 50% eff Spring 2020 GlueX II run. Assume 50% eff. Spring 2020 GlueX II run. Assume 50% eff. Gluex prod data. 3h // 3h ⊥ 3h 45° 3h 135° 1h on Al. radiator Gluex prod data. 3h // 3h ⊥ 3h 45° 3h 135° Ih on Al. radiator Gluex prod data. 3h // 3h ⊥ 3h 45° 3h 135° 1h on Al. radiator Gluex prod data. 3h // 3h ⊥ 3h 45° 3h 135° Ih on Al. radiator Gluex prod data. 3h // 3h ⊥ 3h 45° 3h 135° 1h on Al. radiato Gluex prod data. 3h 135° 1h on Al. radiato: Gluex prod data. 3h // 3h ⊥ 3h 45° 3h 135° 1h on Al. radiator Gluex prod data. 3h // 3h ⊥ 3h 45° 3h 135° 1h on Al. radiator Gluex prod data, $3h \cdot 135^{\circ}$ 1h on Al. radiator Gluex prod data. 3h // 3h ⊥ 3h 45° 3h 135° 1h on Al. radiato: Gluex prod data. 3h // 3h ⊥ 3h 45° 3h 135° 1h on Al. radiato Gluex prod data. 3h // 3h ⊥ 3h 45° 3h 135° 1h on Al. radiato Gluex prod data. 3h // 3h ⊥ 3h 45° 3h 135° 1h on Al. radiato Gluex prod data. 3h // 3h ⊥ 3h 45° 3h 135° 1h on Al. radiato Gluex prod data. 3h // 3h ⊥ 3h 45° 3h 135° 1h on Al. radiato Juex prod data. sh // 3h ⊥ 3h 45° 3h 135° 1h on Al. radiato Gluex prod data. 3h // 3h ⊥ 3h 45° 3h 135° 1h on Al. radiato Gluex prod data. 3h // 3h ⊥ 3h 45° 3h 135° 1h on Al. radiato Gluex prod data. 3h // 3h ⊥ 3h 45° 3h 135° 1h on Al. radiat Gluex prod data. 3h // 3h ⊥ 3h 45°3h 135° 1h on Al. radiat 8h RF reco Sol. Magnet at 1350A, LH₂ tgt, 5 mm collim., tag. quad on Sol. Magnet at 1350A, LH, tgt, 5 mm collim., tag. quad on Sol. Magnet at 1350A, LH, tgt, 5 mm collim., tag. quad on Wed. 19 Feb. Fri. 21 Feb. Wed. 26 Feb. Fri. 28 Feb. Wed. 4 March Mon. 24 Feb. Mon. 2 March Fri. 6 March Mon. 9 March time (days) time (day: time (days

Statistics for Spring 2020 run (as of Feb. 12th 2020, 7am)

Scheduled run time: 2676h (116 days): Jan 10th-May 6th

Acceptable beam used so far: 375h

Time elapsed so far: 751h

- ⇒ Running efficiency for Spring 2020 period so far: 50%
- \Rightarrow We are 28% along in the run period.

We have gathered so far 69B triggers, split in:

- 22% at 0° diamond orientation;
- 22% at 45° diamond orientation;
- 21% at 90° diamond orientation;
- 22% at 135° diamond orientation;
- 13% on Al. radiator.

List of problems during Fall2019/Spring 2020 runs (not importance ordered)

- Solenoid trip 3 times (ground fault; compressor issue; power supply overheating. Also problems twice in ramping back-up due to power supply motherboard failures.)
- ~10 nA bleedthrough
 - Spray particles during radiator ops ⇒ dammaged electronics?
 - No TAC run unless one of the other halls is down
 - Cumbersome new procedure (dumplette insertion) for radiator ops
 - Bleedtrough beam characteristics different from main beam?
- Pair Spec power supply overheating (fixed before Spring run).
- Energy lowered by ~200 MeV due to unsustainable RF-tripsShort term beam energy drift of up to 10 MeV
- Latest firmware teething (including inducing data corruption).
- Frequent drops of PSS system.

Comparison with other GlueX runs

Spring: 3019 +PrimEx Actual Run time: 312h Running efficiency: 36% (55%)

Production triggers: 0.

Preparation

Spring 2018

Actual Run time: 1111.8h

Running efficiency: 55%

Production triggers: 1.5×10¹¹

Spring 2017

Actual Run time: 354.1h

Running efficiency: 56%

Production triggers: 4.7×10¹⁰

Spring 2016

Actual Run time: 458h

Running efficiency: 41%

Production triggers: 6.9×109

Spring 2015 Run time: 122h

Running efficiency: 20%

rod. triggers: 0 (5.5 GeV run)

Fall 2018 Actual Run tone: 192h

Running enficiency: 32% Producton triggers: 0.

Actual Run time: 788h

Running efficiency: 52%

Production triggers: 8×10¹⁰

Actual Run time: 10.5h

Running efficiency: 3%

Production triggers: 0

Fall 2016

Actual Run time: 84h

Running efficiency: 5.4%

Production triggers: 0

Fall 2015

Actual Run time: 30.2h

Running efficiency: 20%

Production triggers: 0

<u>Fail 2014</u>

Actual Run time: 324h

Running efficiency: 34%

Production triggers: 0

Getting ready...

Spring 2020 so far (Feb. 12th)

Actual Run time: 751h (28% of tot. run time)

Running efficiency: 50% Production triggers: 7×10¹⁰

Spring: \$919 +PrimEx

Actual Run tivoe: 312h

Running efficiency: 36% (55%)

Production triggers: 0.

Spring 2018

Actual Run time: 1111.8h

Running efficiency: 55%

Production triggers: 1.5×10¹¹

Spring 2017

Actual Run time: 354.1h

Running efficiency: 56%

Production triggers: 4.7×10¹⁰

Spring 2016

Actual Run time: 458h

Run time: 122h

Running efficiency: 20%

rod. triggers: 0 (5.5 GeV run)

Running efficiency: 41%

Production triggers: 6.9×109

Spring 2015

Fall 20 18 Actual Run tone: 192h

Running exiciency: 32% Production triggers: 0.

Actual Run time: 788h

Running efficiency: 52%

Production triggers: 8×10¹⁰

Actual Run time: 10.5h

Running efficiency: 3%

Production triggers: 0

Fall 2016

Actual Run time: 84h

Running efficiency: 5.4%

Production triggers: 0

Fall 2015

Actual Run time: 30.2h

Running efficiency: 20%

Production triggers: 0

<u>Fail 2014</u>

Actual Run time: 324h

Running efficiency: 34%

Production triggers: 0

Getting ready...

Thank you