Barrel Calorimeter Commissioning

From Hall D Ops Wiki
Revision as of 17:53, 30 June 2014 by Elton (Talk | contribs) (Gain Normalization with Michel Electrons)

Jump to: navigation, search

Back to the Hall D commissioning page.

Introduction

This document describes the commissioning process for the GlueX barrel calorimeter (BCAL).

Response to LED Monitoring System

The BCAL is equipped with an LED gain monitoring system, which will be used to check the functioning of each MPPC light sensor, as well as checking stability under various operating conditions. One LED is glued into every light guide, which guides the light to one MPPC. The light from each LED is visible by the MPPC connected to the light guide, but also by the opposite MPPC on the other side of the BCAL module. Therefore there is some redundancy in the measured response to each LED light pulse. The response to the LED light signals is used to check the functioning of each MPPC by turning on one LED string and one HV channel at a time. Systematic studies are in progress to check the MPPC response under various conditions. However, the relative gains of each channel cannot be determined using this system, as the geometrical collection of light varies considerably between channels.

Gain Normalization with Muons

The gain of the BCAL FADC channels should be roughly matched initially because the voltage of each MPPC light sensor is set to a fixed voltage above its breakdown voltage. Further refinement of the gain settings will be done using cosmic-ray muons (or other penetrating particles). A trigger has been set up to identify particles traversing the magnet and BCAL at a constant position along the beam (z-direction). This trigger runs at a rate of about 0.5 Hz. Between the middle of July and the middle of October, it should be possible to run these trigger on nights an weekends. A reasonable estimate is probably 50 hours per week of data collection, which yields about 50k events per week, assuming 50% trigger efficiency. We estimate we need approximately 200k events to collect sufficient statistics for one iteration of gain matching with through-going muons and thus a few iterations of gain settings can be accomplished before the fall run. The following activities are expected to be done using cosmic events.

  1. Measure efficiency of channels along the track. This study can be carried out with about 50k events with good tracks in the BCAL.
  2. Measure the response to thru muons. Compare to Monte Carlo to eliminate geometrical effects. Determine gain factors and/or adjust

voltage settings to equalize the response to energy depositions in the BCAL.

Gain Normalization with Michel Electrons

There is a second

Commissioning with Photon Beam

Initial beam into Hall D is expected in November 2014. The data collected during this running will be utilized to continue commissioning the BCAL.

Magnetic Field Studies

  1. Verify response of detector is insensitive to the magnetic field
  2. Measure rates of hits and particles in the BCAL with and without magnetic field.

Calibration and Detector Performance during Normal Running

  1. Select an event sample of neutrals in the BCAL
  2. Find a clean sample of pi0 events that can be used for gain matching
  3. Select a sample of pi0 events with one photon in the FCAL and one in the BCAL
  4. If FCAL has already been gain matched, assume their calibration is correct and adjust gains of BCAL elements
  5. After initial calibrations have been completed, search for a sample of eta events and repeat.

Back to the Hall D commissioning page.