PrimEx-D Run Plan (August - December 2022)

Duration of the run: Aug 27 - Dec 19, 113 days

General conditions:

- 10^{-4} R.L. Al radiator for production runs, $2 \cdot 10^{-5}$ R.L. Al radiator for CCAL calibration and TAC runs
- 5 mm collimator, $750 \mu \mathrm{~m}$ Be PS converter
- Targets: Be and LHe4
- Solenoid magnet switched ON for most production runs except Compton calibration runs on Be target (see below), all sub-detectors are switched on
- Beam current and conditions for drift chambers

Solenoid Magnet ON, production on He target

CDC / FDC	ON	200 nA

Solenoid Magnet OFF, Compton Calibration on Be target

CDC $/$ FDC	OFF	200 nA
CDC $/$ FDC	ON	$50 \mathrm{nA}, 100 \mathrm{nA}$

Trigger type: CCAL \& FCAL, FCAL, FCAL \& ST (TBD)
PS, random, front panel LEDs

Sequence of the planned work: see the Table on the next page:

Beam Restoration and Detector Calibration

	Time (shifts)	Beam current (nA)	Radiator $(\mathrm{X} 0)$	CCAL position	TAC position	Solenoid field	CDC/FDC
No target				retracted	retracted	on	on
-Tune beam to tagger Hall -Ion chamber calibration Radiation Monitor check -Harp scan for the electron beam	0.6	0.3	0.2	$10-100$	10^{-4}		
- Radiation Monitor check - PS harp scan - Active collimator check	0.2	$10-100$	10^{-4}				
0.5	1	$10-100$	10^{-4}	inserted	retracted		
Initial detector check out - TAGH, PS voltage scan - TAGM voltage scan, CCAL, TAC	8	~ 2	$2 \cdot 10^{-5}$	Snake scan in the beam	inserted		
Equalize CCAL gains (calibrate CCAL)	2	~ 2	$2 \cdot 10^{-5}$	in the beam	inserted		
TAC run	2	200	10^{-4}	inserted	retracted	on	on
Production on Be empty target	1.5	50	10^{-4}	inserted		ramping	
down	on						
Switch off solenoid magnet (target change)	2						

Total

Production on Be target

	Time (shifts)	Beam current (nA)	Radiator $\left(\mathrm{X}_{0}\right)$	CCAL position	TAC position	Solenoid field	CDC/FDC
Install Be target mount, install ST, align	3					off	on
Switch on solenoid magnet	1.5	50	10^{-4}	inserted	retracted		
Trigger and DAQ study for physics	2	$10-100$	10^{-4}			on	on
Detector checkout and calibration - raw mode for ADCs Take data for FCAL gain equalization and calibration	3	$10-100$	10^{-4}				
FCAL HV tuning	1						
Data production							
Compton run at small beam current (Be target)	2	50	10^{-4}				
Compton run at the nominal beam current	8	200	10^{-4}				
	2	100					
Switch off solenoid magnet	1.5	50	10^{-4}				
							off
FDC straight track run	0.5	50	10^{-4}				off
Compton run at small beam intensity (Be target)	2	50	10^{-4}			on	
Compton run at the nominal beam current	4	200	10^{-4}				

Total
~ 7.5 days

Production on LHe target

	Time (shifts)	Beam current (nA)	Radiator $\left(\mathrm{X}_{0}\right)$	CCAL position	TAC position	Solenoid field	CDC/FDC
Install LH4 target mount, install ST, align	3					off	off
Fill the target Switch on solenoid magnet	1.5						
Production run at the nominal luminosity	5	200	10^{-4}	inserted	retracted	on	on
Production run at small Luminosity	2	50	10^{-4}				
High luminosity run (optional)	2	100					
Alternate production runs with the empty target runs $70 \% / 30 \%$	the rest of the run	200	10^{-4}				

Time is estimated assuming that the accelerator beam efficiency is better than 50%.
One shift corresponds to 6 hours
Detector preparation:

