File: | libraries/TRACKING/DReferenceTrajectory.cc |
Location: | line 2020, column 30 |
Description: | Dereference of null pointer (loaded from variable 's') |
1 | // $Id$ | |||
2 | // | |||
3 | // File: DReferenceTrajectory.cc | |||
4 | // Created: Wed Jul 19 13:42:58 EDT 2006 | |||
5 | // Creator: davidl (on Darwin swire-b241.jlab.org 8.7.0 powerpc) | |||
6 | // | |||
7 | ||||
8 | #include <signal.h> | |||
9 | #include <memory> | |||
10 | #include <cmath> | |||
11 | ||||
12 | #include <DVector3.h> | |||
13 | using namespace std; | |||
14 | #include <math.h> | |||
15 | #include <algorithm> | |||
16 | ||||
17 | #include "DReferenceTrajectory.h" | |||
18 | #include "DTrackCandidate.h" | |||
19 | #include "DMagneticFieldStepper.h" | |||
20 | #include "HDGEOMETRY/DRootGeom.h" | |||
21 | #define ONE_THIRD0.33333333333333333 0.33333333333333333 | |||
22 | #define TWO_THIRD0.66666666666666667 0.66666666666666667 | |||
23 | #define EPS1e-8 1e-8 | |||
24 | #define NaNstd::numeric_limits<double>::quiet_NaN() std::numeric_limits<double>::quiet_NaN() | |||
25 | ||||
26 | struct StepStruct {DReferenceTrajectory::swim_step_t steps[256];}; | |||
27 | ||||
28 | //--------------------------------- | |||
29 | // DReferenceTrajectory (Constructor) | |||
30 | //--------------------------------- | |||
31 | DReferenceTrajectory::DReferenceTrajectory(const DMagneticFieldMap *bfield | |||
32 | , double q | |||
33 | , swim_step_t *swim_steps | |||
34 | , int max_swim_steps | |||
35 | , double step_size) | |||
36 | { | |||
37 | // Copy some values into data members | |||
38 | this->q = q; | |||
39 | this->step_size = step_size; | |||
40 | this->bfield = bfield; | |||
41 | this->Nswim_steps = 0; | |||
42 | this->dist_to_rt_depth = 0; | |||
43 | this->mass = 0.13957; // assume pion mass until otherwise specified | |||
44 | this->mass_sq=this->mass*this->mass; | |||
45 | this->hit_cdc_endplate = false; | |||
46 | this->RootGeom=NULL__null; | |||
47 | this->geom = NULL__null; | |||
48 | this->ploss_direction = kForward; | |||
49 | this->check_material_boundaries = true; | |||
50 | this->zmin_track_boundary = -100.0; // boundary at which to stop swimming | |||
51 | this->zmax_track_boundary = 670.0; // boundary at which to stop swimming | |||
52 | this->Rmax_interior = 65.0; // Maximum radius (in cm) corresponding to inside of BCAL | |||
53 | this->Rmax_exterior = 88.0; // Maximum radius (in cm) corresponding to outside of BCAL | |||
54 | ||||
55 | this->last_phi = 0.0; | |||
56 | this->last_swim_step = NULL__null; | |||
57 | this->last_dist_along_wire = 0.0; | |||
58 | this->last_dz_dphi = 0.0; | |||
59 | ||||
60 | this->debug_level = 0; | |||
61 | ||||
62 | // Initialize some values from configuration parameters | |||
63 | BOUNDARY_STEP_FRACTION = 0.80; | |||
64 | MIN_STEP_SIZE = 0.1; // cm | |||
65 | MAX_STEP_SIZE = 3.0; // cm | |||
66 | int MAX_SWIM_STEPS = 2500; | |||
67 | ||||
68 | gPARMS->SetDefaultParameter("TRK:BOUNDARY_STEP_FRACTION" , BOUNDARY_STEP_FRACTION, "Fraction of estimated distance to boundary to use as step size"); | |||
69 | gPARMS->SetDefaultParameter("TRK:MIN_STEP_SIZE" , MIN_STEP_SIZE, "Minimum step size in cm to take when swimming a track with adaptive step sizes"); | |||
70 | gPARMS->SetDefaultParameter("TRK:MAX_STEP_SIZE" , MAX_STEP_SIZE, "Maximum step size in cm to take when swimming a track with adaptive step sizes"); | |||
71 | gPARMS->SetDefaultParameter("TRK:MAX_SWIM_STEPS" , MAX_SWIM_STEPS, "Number of swim steps for DReferenceTrajectory to allocate memory for (when not using external buffer)"); | |||
72 | ||||
73 | // It turns out that the greatest bottleneck in speed here comes from | |||
74 | // allocating/deallocating the large block of memory required to hold | |||
75 | // all of the trajectory info. The preferred way of calling this is | |||
76 | // with a pointer allocated once at program startup. This code block | |||
77 | // though allows it to be allocated here if necessary. | |||
78 | if(!swim_steps){ | |||
79 | own_swim_steps = true; | |||
80 | this->max_swim_steps = MAX_SWIM_STEPS; | |||
81 | this->swim_steps = new swim_step_t[this->max_swim_steps]; | |||
82 | }else{ | |||
83 | own_swim_steps = false; | |||
84 | this->max_swim_steps = max_swim_steps; | |||
85 | this->swim_steps = swim_steps; | |||
86 | } | |||
87 | } | |||
88 | ||||
89 | //--------------------------------- | |||
90 | // DReferenceTrajectory (Copy Constructor) | |||
91 | //--------------------------------- | |||
92 | DReferenceTrajectory::DReferenceTrajectory(const DReferenceTrajectory& rt) | |||
93 | { | |||
94 | /// The copy constructor will always allocate its own memory for the | |||
95 | /// swim steps and set its internal flag to indicate that is owns them | |||
96 | /// regardless of the owner of the source trajectory's. | |||
97 | ||||
98 | this->Nswim_steps = rt.Nswim_steps; | |||
99 | this->q = rt.q; | |||
100 | this->max_swim_steps = rt.max_swim_steps; | |||
101 | this->own_swim_steps = true; | |||
102 | this->step_size = rt.step_size; | |||
103 | this->bfield = rt.bfield; | |||
104 | this->last_phi = rt.last_phi; | |||
105 | this->last_dist_along_wire = rt.last_dist_along_wire; | |||
106 | this->last_dz_dphi = rt.last_dz_dphi; | |||
107 | this->RootGeom = rt.RootGeom; | |||
108 | this->geom = rt.geom; | |||
109 | this->dist_to_rt_depth = 0; | |||
110 | this->mass = rt.GetMass(); | |||
111 | this->mass_sq=this->mass*this->mass; | |||
112 | this->ploss_direction = rt.ploss_direction; | |||
113 | this->check_material_boundaries = rt.GetCheckMaterialBoundaries(); | |||
114 | this->BOUNDARY_STEP_FRACTION = rt.GetBoundaryStepFraction(); | |||
115 | this->MIN_STEP_SIZE = rt.GetMinStepSize(); | |||
116 | this->MAX_STEP_SIZE = rt.GetMaxStepSize(); | |||
117 | this->debug_level=rt.debug_level; | |||
118 | this->zmin_track_boundary = -100.0; // boundary at which to stop swimming | |||
119 | this->zmax_track_boundary = 670.0; // boundary at which to stop swimming | |||
120 | this->Rmax_interior = 65.0; // Maximum radius (in cm) corresponding to inside of BCAL | |||
121 | this->Rmax_exterior = 88.0; // Maximum radius (in cm) corresponding to outside of BCAL | |||
122 | ||||
123 | ||||
124 | this->swim_steps = new swim_step_t[this->max_swim_steps]; | |||
125 | this->last_swim_step = NULL__null; | |||
126 | for(int i=0; i<Nswim_steps; i++) | |||
127 | { | |||
128 | swim_steps[i] = rt.swim_steps[i]; | |||
129 | if(&(rt.swim_steps[i]) == rt.last_swim_step) | |||
130 | this->last_swim_step = &(swim_steps[i]); | |||
131 | } | |||
132 | ||||
133 | } | |||
134 | ||||
135 | //--------------------------------- | |||
136 | // operator= (Assignment operator) | |||
137 | //--------------------------------- | |||
138 | DReferenceTrajectory& DReferenceTrajectory::operator=(const DReferenceTrajectory& rt) | |||
139 | { | |||
140 | /// The assignment operator will always make sure the memory allocated | |||
141 | /// for the swim_steps is owned by the object being copied into. | |||
142 | /// If it already owns memory of sufficient size, then it will be | |||
143 | /// reused. If it owns memory that is too small, it will be freed and | |||
144 | /// a new block allocated. If it does not own its swim_steps coming | |||
145 | /// in, then it will allocate memory so that it does own it on the | |||
146 | /// way out. | |||
147 | ||||
148 | if(&rt == this)return *this; // protect against self copies | |||
149 | ||||
150 | // Free memory if block is too small | |||
151 | if(own_swim_steps==true && max_swim_steps<rt.Nswim_steps){ | |||
152 | delete[] swim_steps; | |||
153 | swim_steps=NULL__null; | |||
154 | } | |||
155 | ||||
156 | // Forget memory block if we don't currently own it | |||
157 | if(!own_swim_steps){ | |||
158 | swim_steps=NULL__null; | |||
159 | } | |||
160 | ||||
161 | this->Nswim_steps = rt.Nswim_steps; | |||
162 | this->q = rt.q; | |||
163 | this->max_swim_steps = rt.max_swim_steps; | |||
164 | this->own_swim_steps = true; | |||
165 | this->step_size = rt.step_size; | |||
166 | this->bfield = rt.bfield; | |||
167 | this->last_phi = rt.last_phi; | |||
168 | this->last_dist_along_wire = rt.last_dist_along_wire; | |||
169 | this->last_dz_dphi = rt.last_dz_dphi; | |||
170 | this->RootGeom = rt.RootGeom; | |||
171 | this->geom = rt.geom; | |||
172 | this->dist_to_rt_depth = rt.dist_to_rt_depth; | |||
173 | this->mass = rt.GetMass(); | |||
174 | this->mass_sq=this->mass*this->mass; | |||
175 | this->ploss_direction = rt.ploss_direction; | |||
176 | this->check_material_boundaries = rt.GetCheckMaterialBoundaries(); | |||
177 | this->BOUNDARY_STEP_FRACTION = rt.GetBoundaryStepFraction(); | |||
178 | this->MIN_STEP_SIZE = rt.GetMinStepSize(); | |||
179 | this->MAX_STEP_SIZE = rt.GetMaxStepSize(); | |||
180 | ||||
181 | // Allocate memory if needed | |||
182 | if(swim_steps==NULL__null)this->swim_steps = new swim_step_t[this->max_swim_steps]; | |||
183 | ||||
184 | // Copy swim steps | |||
185 | this->last_swim_step = NULL__null; | |||
186 | for(int i=0; i<Nswim_steps; i++) | |||
187 | { | |||
188 | swim_steps[i] = rt.swim_steps[i]; | |||
189 | if(&(rt.swim_steps[i]) == rt.last_swim_step) | |||
190 | this->last_swim_step = &(swim_steps[i]); | |||
191 | } | |||
192 | ||||
193 | ||||
194 | return *this; | |||
195 | } | |||
196 | ||||
197 | //--------------------------------- | |||
198 | // ~DReferenceTrajectory (Destructor) | |||
199 | //--------------------------------- | |||
200 | DReferenceTrajectory::~DReferenceTrajectory() | |||
201 | { | |||
202 | if(own_swim_steps){ | |||
203 | delete[] swim_steps; | |||
204 | } | |||
205 | } | |||
206 | ||||
207 | //--------------------------------- | |||
208 | // CopyWithShift | |||
209 | //--------------------------------- | |||
210 | void DReferenceTrajectory::CopyWithShift(const DReferenceTrajectory *rt, DVector3 shift) | |||
211 | { | |||
212 | // First, do a straight copy | |||
213 | *this = *rt; | |||
214 | ||||
215 | // Second, shift all positions | |||
216 | for(int i=0; i<Nswim_steps; i++)swim_steps[i].origin += shift; | |||
217 | } | |||
218 | ||||
219 | ||||
220 | //--------------------------------- | |||
221 | // Reset | |||
222 | //--------------------------------- | |||
223 | void DReferenceTrajectory::Reset(void){ | |||
224 | //reset DReferenceTrajectory for re-use | |||
225 | this->Nswim_steps = 0; | |||
226 | this->ploss_direction = kForward; | |||
227 | this->mass = 0.13957; // assume pion mass until otherwise specified | |||
228 | this->mass_sq=this->mass*this->mass; | |||
229 | this->hit_cdc_endplate = false; | |||
230 | this->last_phi = 0.0; | |||
231 | this->last_swim_step = NULL__null; | |||
232 | this->last_dist_along_wire = 0.0; | |||
233 | this->last_dz_dphi = 0.0; | |||
234 | this->dist_to_rt_depth = 0; | |||
235 | this->check_material_boundaries = true; | |||
236 | } | |||
237 | ||||
238 | //--------------------------------- | |||
239 | // FastSwim -- light-weight swim to a wire that does not treat multiple | |||
240 | // scattering but does handle energy loss. | |||
241 | // No checks for distance to boundaries are done. | |||
242 | //--------------------------------- | |||
243 | void DReferenceTrajectory::FastSwim(const DVector3 &pos, const DVector3 &mom, | |||
244 | DVector3 &last_pos,DVector3 &last_mom, | |||
245 | double q,double smax, | |||
246 | const DCoordinateSystem *wire){ | |||
247 | DVector3 mypos(pos); | |||
248 | DVector3 mymom(mom); | |||
249 | ||||
250 | // Initialize the stepper | |||
251 | DMagneticFieldStepper stepper(bfield, q, &pos, &mom); | |||
252 | double s=0,doca=1000.,old_doca=1000.,dP_dx=0.; | |||
253 | double mass=GetMass(); | |||
254 | while (s<smax){ | |||
255 | // Save old value of doca | |||
256 | old_doca=doca; | |||
257 | ||||
258 | // Adjust step size to take smaller steps in regions of high momentum loss | |||
259 | if(mass>0. && step_size<0.0 && geom){ | |||
260 | double KrhoZ_overA=0.0; | |||
261 | double rhoZ_overA=0.0; | |||
262 | double LogI=0.0; | |||
263 | double X0=0.0; | |||
264 | if (geom->FindMatALT1(mypos,mymom,KrhoZ_overA,rhoZ_overA,LogI,X0) | |||
265 | ==NOERROR){ | |||
266 | // Calculate momentum loss due to ionization | |||
267 | dP_dx = dPdx(mymom.Mag(), KrhoZ_overA, rhoZ_overA,LogI); | |||
268 | double my_step_size = 0.0001/fabs(dP_dx); | |||
269 | ||||
270 | if(my_step_size>MAX_STEP_SIZE)my_step_size=MAX_STEP_SIZE; // maximum step size in cm | |||
271 | if(my_step_size<MIN_STEP_SIZE)my_step_size=MIN_STEP_SIZE; // minimum step size in cm | |||
272 | ||||
273 | stepper.SetStepSize(my_step_size); | |||
274 | } | |||
275 | } | |||
276 | // Swim to next | |||
277 | double ds=stepper.Step(NULL__null); | |||
278 | s+=ds; | |||
279 | ||||
280 | stepper.GetPosMom(mypos,mymom); | |||
281 | if (mass>0 && dP_dx<0.){ | |||
282 | double ptot=mymom.Mag(); | |||
283 | if (ploss_direction==kForward) ptot+=dP_dx*ds; | |||
284 | else ptot-=dP_dx*ds; | |||
285 | mymom.SetMag(ptot); | |||
286 | stepper.SetStartingParams(q, &mypos, &mymom); | |||
287 | } | |||
288 | ||||
289 | // Break if we have passed the wire | |||
290 | DVector3 wirepos=wire->origin; | |||
291 | if (fabs(wire->udir.z())>0.){ // for CDC wires | |||
292 | wirepos+=((mypos.z()-wire->origin.z())/wire->udir.z())*wire->udir; | |||
293 | } | |||
294 | doca=(wirepos-mypos).Mag(); | |||
295 | if (doca>old_doca) break; | |||
296 | ||||
297 | // Store the position and momentum for this step | |||
298 | last_pos=mypos; | |||
299 | last_mom=mymom; | |||
300 | } | |||
301 | } | |||
302 | ||||
303 | // Faster version of the swimmer that uses an alternate stepper and does not | |||
304 | // check for material boundaries. | |||
305 | void DReferenceTrajectory::FastSwim(const DVector3 &pos, const DVector3 &mom, double q,double smax, double zmin,double zmax){ | |||
306 | ||||
307 | /// (Re)Swim the trajectory starting from pos with momentum mom. | |||
308 | /// This will use the charge and step size (if given) passed to | |||
309 | /// the constructor when the object was created. It will also | |||
310 | /// (re)use the swim_step buffer, replacing it's contents. | |||
311 | ||||
312 | // If the charged passed to us is greater that 10, it means use the charge | |||
313 | // already stored in the class. Otherwise, use what was passed to us. | |||
314 | if(fabs(q)>10) | |||
315 | q = this->q; | |||
316 | else | |||
317 | this->q = q; | |||
318 | ||||
319 | DMagneticFieldStepper stepper(bfield, q, &pos, &mom); | |||
320 | if(step_size>0.0)stepper.SetStepSize(step_size); | |||
321 | ||||
322 | // Step until we hit a boundary (don't track more than 20 meters) | |||
323 | swim_step_t *swim_step = this->swim_steps; | |||
324 | double t=0.; | |||
325 | Nswim_steps = 0; | |||
326 | double itheta02 = 0.0; | |||
327 | double itheta02s = 0.0; | |||
328 | double itheta02s2 = 0.0; | |||
329 | double X0sum=0.0; | |||
330 | swim_step_t *last_step=NULL__null; | |||
331 | double old_radius=10000.; | |||
332 | ||||
333 | // Variables used to tag the step at which the track passes into one one of | |||
334 | // the outer detectors | |||
335 | index_at_bcal=-1; | |||
336 | index_at_tof=-1; | |||
337 | index_at_fcal=-1; | |||
338 | bool hit_bcal=false,hit_fcal=false,hit_tof=false; | |||
339 | ||||
340 | for(double s=0; fabs(s)<smax; Nswim_steps++, swim_step++){ | |||
341 | ||||
342 | if(Nswim_steps>=this->max_swim_steps){ | |||
343 | if (debug_level>0){ | |||
344 | jerr<<__FILE__"libraries/TRACKING/DReferenceTrajectory.cc"<<":"<<__LINE__344<<" Too many steps in trajectory. Truncating..."<<endl; | |||
345 | } | |||
346 | break; | |||
347 | } | |||
348 | ||||
349 | stepper.GetDirs(swim_step->sdir, swim_step->tdir, swim_step->udir); | |||
350 | stepper.GetPosMom(swim_step->origin, swim_step->mom); | |||
351 | swim_step->Ro = stepper.GetRo(); | |||
352 | swim_step->s = s; | |||
353 | swim_step->t = t; | |||
354 | ||||
355 | // Magnetic field at current position | |||
356 | bfield->GetField(swim_step->origin,swim_step->B); | |||
357 | ||||
358 | //magnitude of momentum and beta | |||
359 | double p_sq=swim_step->mom.Mag2(); | |||
360 | double one_over_beta_sq=1.+mass_sq/p_sq; | |||
361 | ||||
362 | // Add material if geom or RootGeom is not NULL | |||
363 | // If both are non-NULL, then use RootGeom | |||
364 | double dP = 0.0; | |||
365 | double dP_dx=0.0; | |||
366 | if(RootGeom || geom){ | |||
367 | double KrhoZ_overA=0.0; | |||
368 | double rhoZ_overA=0.0; | |||
369 | double LogI=0.0; | |||
370 | double X0=0.0; | |||
371 | jerror_t err; | |||
372 | if(RootGeom){ | |||
373 | double rhoZ_overA,rhoZ_overA_logI; | |||
374 | err = RootGeom->FindMatLL(swim_step->origin, | |||
375 | rhoZ_overA, | |||
376 | rhoZ_overA_logI, | |||
377 | X0); | |||
378 | KrhoZ_overA=0.1535e-3*rhoZ_overA; | |||
379 | LogI=rhoZ_overA_logI/rhoZ_overA; | |||
380 | }else{ | |||
381 | err = geom->FindMatALT1(swim_step->origin, swim_step->mom, KrhoZ_overA, rhoZ_overA,LogI, X0); | |||
382 | } | |||
383 | if(err == NOERROR){ | |||
384 | if(X0>0.0){ | |||
385 | double p=sqrt(p_sq); | |||
386 | double delta_s = s; | |||
387 | if(last_step)delta_s -= last_step->s; | |||
388 | double radlen = delta_s/X0; | |||
389 | ||||
390 | if(radlen>1.0E-5){ // PDG 2008 pg 271, second to last paragraph | |||
391 | ||||
392 | // double theta0 = 0.0136*sqrt(one_over_beta_sq)/p*sqrt(radlen)*(1.0+0.038*log(radlen)); // From PDG 2008 eq 27.12 | |||
393 | //double theta02 = theta0*theta0; | |||
394 | double factor=1.0+0.038*log(radlen); | |||
395 | double theta02=1.8496e-4*factor*factor*radlen*one_over_beta_sq/p_sq; | |||
396 | ||||
397 | itheta02 += theta02; | |||
398 | itheta02s += s*theta02; | |||
399 | itheta02s2 += s*s*theta02; | |||
400 | X0sum+=X0; | |||
401 | } | |||
402 | ||||
403 | // Calculate momentum loss due to ionization | |||
404 | dP_dx = dPdx(p, KrhoZ_overA, rhoZ_overA,LogI); | |||
405 | } | |||
406 | } | |||
407 | last_step = swim_step; | |||
408 | } | |||
409 | swim_step->itheta02 = itheta02; | |||
410 | swim_step->itheta02s = itheta02s; | |||
411 | swim_step->itheta02s2 = itheta02s2; | |||
412 | swim_step->invX0=Nswim_steps/X0sum; | |||
413 | ||||
414 | if(step_size<0.0){ // step_size<0 indicates auto-calculated step size | |||
415 | // Adjust step size to take smaller steps in regions of high momentum loss | |||
416 | double my_step_size = 0.0001/fabs(dP_dx); | |||
417 | if(my_step_size>MAX_STEP_SIZE)my_step_size=MAX_STEP_SIZE; // maximum step size in cm | |||
418 | if(my_step_size<MIN_STEP_SIZE)my_step_size=MIN_STEP_SIZE; // minimum step size in cm | |||
419 | ||||
420 | stepper.SetStepSize(my_step_size); | |||
421 | } | |||
422 | ||||
423 | // Swim to next | |||
424 | double ds=stepper.FastStep(swim_step->B); | |||
425 | ||||
426 | // Calculate momentum loss due to the step we're about to take | |||
427 | dP = ds*dP_dx; | |||
428 | ||||
429 | // Adjust momentum due to ionization losses | |||
430 | if(dP!=0.0){ | |||
431 | DVector3 pos, mom; | |||
432 | stepper.GetPosMom(pos, mom); | |||
433 | double ptot = mom.Mag() - dP; // correct for energy loss | |||
434 | if (ptot<0) {Nswim_steps++; break;} | |||
435 | mom.SetMag(ptot); | |||
436 | stepper.SetStartingParams(q, &pos, &mom); | |||
437 | } | |||
438 | ||||
439 | // update flight time | |||
440 | t+=ds*sqrt(one_over_beta_sq)/SPEED_OF_LIGHT29.9792; | |||
441 | s += ds; | |||
442 | ||||
443 | // Mark places along trajectory where we pass into one of the | |||
444 | // main detectors | |||
445 | double R=swim_step->origin.Perp(); | |||
446 | double z=swim_step->origin.Z(); | |||
447 | if (hit_bcal==false && R>65. && z<407 &&z>0){ | |||
448 | index_at_bcal=Nswim_steps-1; | |||
449 | hit_bcal=true; | |||
450 | } | |||
451 | if (hit_tof==false && z>606.){ | |||
452 | index_at_tof=Nswim_steps-1; | |||
453 | hit_tof=true; | |||
454 | } | |||
455 | if (hit_fcal==false && z>625.){ | |||
456 | index_at_fcal=Nswim_steps-1; | |||
457 | hit_fcal=true; | |||
458 | } | |||
459 | ||||
460 | // Exit the loop if we are already inside the volume of the BCAL | |||
461 | // and the radius is decreasing | |||
462 | if (R<old_radius && R>65.0 && z<407.0 && z>-100.0){ | |||
463 | Nswim_steps++; break; | |||
464 | } | |||
465 | ||||
466 | // Exit loop if we leave the tracking volume | |||
467 | if (z>zmax){Nswim_steps++; break;} | |||
468 | if(R>88.0 && z<407.0){Nswim_steps++; break;} // ran into BCAL | |||
469 | if (fabs(swim_step->origin.X())>129. | |||
470 | || fabs(swim_step->origin.Y())>129.) | |||
471 | {Nswim_steps++; break;} // left extent of TOF | |||
472 | if(z>670.0){Nswim_steps++; break;} // ran into FCAL | |||
473 | if(z<zmin){Nswim_steps++; break;} // exit upstream | |||
474 | ||||
475 | old_radius=swim_step->origin.Perp(); | |||
476 | } | |||
477 | ||||
478 | // OK. At this point the positions of the trajectory in the lab | |||
479 | // frame have been recorded along with the momentum of the | |||
480 | // particle and the directions of reference trajectory | |||
481 | // coordinate system at each point. | |||
482 | } | |||
483 | ||||
484 | ||||
485 | ||||
486 | ||||
487 | ||||
488 | ||||
489 | //--------------------------------- | |||
490 | // Swim | |||
491 | //--------------------------------- | |||
492 | void DReferenceTrajectory::Swim(const DVector3 &pos, const DVector3 &mom, double q, const DMatrixDSym *cov,double smax, const DCoordinateSystem *wire) | |||
493 | { | |||
494 | /// (Re)Swim the trajectory starting from pos with momentum mom. | |||
495 | /// This will use the charge and step size (if given) passed to | |||
496 | /// the constructor when the object was created. It will also | |||
497 | /// (re)use the sim_step buffer, replacing it's contents. | |||
498 | ||||
499 | // If the charged passed to us is greater that 10, it means use the charge | |||
500 | // already stored in the class. Otherwise, use what was passed to us. | |||
501 | if(fabs(q)>10) | |||
502 | q = this->q; | |||
503 | else | |||
504 | this->q = q; | |||
505 | ||||
506 | DMagneticFieldStepper stepper(bfield, q, &pos, &mom); | |||
507 | if(step_size>0.0)stepper.SetStepSize(step_size); | |||
508 | ||||
509 | // Step until we hit a boundary (don't track more than 20 meters) | |||
510 | swim_step_t *swim_step = this->swim_steps; | |||
511 | double t=0.; | |||
512 | Nswim_steps = 0; | |||
513 | double itheta02 = 0.0; | |||
514 | double itheta02s = 0.0; | |||
515 | double itheta02s2 = 0.0; | |||
516 | double X0sum=0.0; | |||
517 | swim_step_t *last_step=NULL__null; | |||
518 | double old_radius=10000.; | |||
519 | ||||
520 | DMatrixDSym mycov(7); | |||
521 | if (cov!=NULL__null){ | |||
522 | mycov=*cov; | |||
523 | } | |||
524 | ||||
525 | // Reset flag indicating whether we hit the CDC endplate | |||
526 | // and get the parameters of the endplate so we can check | |||
527 | // if we hit it while swimming. | |||
528 | //hit_cdc_endplate = false; | |||
529 | /* | |||
530 | #if 0 // The GetCDCEndplate call goes all the way back to the XML and slows down | |||
531 | // overall tracking by a factor of 20. Therefore, we skip finding it | |||
532 | // and just hard-code the values instead. 1/28/2011 DL | |||
533 | double cdc_endplate_z=150+17; // roughly, from memory | |||
534 | double cdc_endplate_dz=5.0; // roughly, from memory | |||
535 | double cdc_endplate_rmin=10.0; // roughly, from memory | |||
536 | double cdc_endplate_rmax=55.0; // roughly, from memory | |||
537 | if(geom)geom->GetCDCEndplate(cdc_endplate_z, cdc_endplate_dz, cdc_endplate_rmin, cdc_endplate_rmax); | |||
538 | double cdc_endplate_zmin = cdc_endplate_z - cdc_endplate_dz/2.0; | |||
539 | double cdc_endplate_zmax = cdc_endplate_zmin + cdc_endplate_dz; | |||
540 | #else | |||
541 | double cdc_endplate_rmin=10.0; // roughly, from memory | |||
542 | double cdc_endplate_rmax=55.0; // roughly, from memory | |||
543 | double cdc_endplate_zmin = 167.6; | |||
544 | double cdc_endplate_zmax = 168.2; | |||
545 | #endif | |||
546 | */ | |||
547 | ||||
548 | #if 0 | |||
549 | // Get Bfield from stepper to initialize Bz_old | |||
550 | DVector3 B; | |||
551 | stepper.GetBField(B); | |||
552 | double Bz_old = B.z(); | |||
553 | #endif | |||
554 | ||||
555 | // Variables used to tag the step at which the track passes into one | |||
556 | // one of the outer detectors | |||
557 | index_at_bcal=-1; | |||
558 | index_at_tof=-1; | |||
559 | index_at_fcal=-1; | |||
560 | bool hit_bcal=false,hit_fcal=false,hit_tof=false; | |||
561 | ||||
562 | for(double s=0; fabs(s)<smax; Nswim_steps++, swim_step++){ | |||
563 | ||||
564 | if(Nswim_steps>=this->max_swim_steps){ | |||
565 | if (debug_level>0){ | |||
566 | jerr<<__FILE__"libraries/TRACKING/DReferenceTrajectory.cc"<<":"<<__LINE__566<<" Too many steps in trajectory. Truncating..."<<endl; | |||
567 | } | |||
568 | break; | |||
569 | } | |||
570 | ||||
571 | stepper.GetDirs(swim_step->sdir, swim_step->tdir, swim_step->udir); | |||
572 | stepper.GetPosMom(swim_step->origin, swim_step->mom); | |||
573 | swim_step->Ro = stepper.GetRo(); | |||
574 | swim_step->s = s; | |||
575 | swim_step->t = t; | |||
576 | ||||
577 | //magnitude of momentum and beta | |||
578 | double p_sq=swim_step->mom.Mag2(); | |||
579 | double one_over_beta_sq=1.+mass_sq/p_sq; | |||
580 | ||||
581 | // Add material if geom or RootGeom is not NULL | |||
582 | // If both are non-NULL, then use RootGeom | |||
583 | double dP = 0.0; | |||
584 | double dP_dx=0.0; | |||
585 | double s_to_boundary=1.0E6; // initialize to "infinity" in case we don't set this below | |||
586 | if(RootGeom || geom){ | |||
587 | double KrhoZ_overA=0.0; | |||
588 | double rhoZ_overA=0.0; | |||
589 | double LogI=0.0; | |||
590 | double X0=0.0; | |||
591 | jerror_t err; | |||
592 | if(RootGeom){ | |||
593 | double rhoZ_overA,rhoZ_overA_logI; | |||
594 | err = RootGeom->FindMatLL(swim_step->origin, | |||
595 | rhoZ_overA, | |||
596 | rhoZ_overA_logI, | |||
597 | X0); | |||
598 | KrhoZ_overA=0.1535e-3*rhoZ_overA; | |||
599 | LogI=rhoZ_overA_logI/rhoZ_overA; | |||
600 | }else{ | |||
601 | if(check_material_boundaries){ | |||
602 | err = geom->FindMatALT1(swim_step->origin, swim_step->mom, KrhoZ_overA, rhoZ_overA,LogI, X0, &s_to_boundary); | |||
603 | }else{ | |||
604 | err = geom->FindMatALT1(swim_step->origin, swim_step->mom, KrhoZ_overA, rhoZ_overA,LogI, X0); | |||
605 | } | |||
606 | ||||
607 | // Check if we hit the CDC endplate | |||
608 | //double z = swim_step->origin.Z(); | |||
609 | //if(z>=cdc_endplate_zmin && z<=cdc_endplate_zmax){ | |||
610 | // double r = swim_step->origin.Perp(); | |||
611 | // if(r>=cdc_endplate_rmin && r<=cdc_endplate_rmax){ | |||
612 | // hit_cdc_endplate = true; | |||
613 | //} | |||
614 | //} | |||
615 | } | |||
616 | ||||
617 | if(err == NOERROR){ | |||
618 | if(X0>0.0){ | |||
619 | double p=sqrt(p_sq); | |||
620 | double delta_s = s; | |||
621 | if(last_step)delta_s -= last_step->s; | |||
622 | double radlen = delta_s/X0; | |||
623 | ||||
624 | if(radlen>1.0E-5){ // PDG 2008 pg 271, second to last paragraph | |||
625 | ||||
626 | // double theta0 = 0.0136*sqrt(one_over_beta_sq)/p*sqrt(radlen)*(1.0+0.038*log(radlen)); // From PDG 2008 eq 27.12 | |||
627 | //double theta02 = theta0*theta0; | |||
628 | double factor=1.0+0.038*log(radlen); | |||
629 | double theta02=1.8496e-4*factor*factor*radlen*one_over_beta_sq/p_sq; | |||
630 | ||||
631 | itheta02 += theta02; | |||
632 | itheta02s += s*theta02; | |||
633 | itheta02s2 += s*s*theta02; | |||
634 | X0sum+=X0; | |||
635 | ||||
636 | if (cov){ | |||
637 | ||||
638 | } | |||
639 | } | |||
640 | ||||
641 | // Calculate momentum loss due to ionization | |||
642 | dP_dx = dPdx(p, KrhoZ_overA, rhoZ_overA,LogI); | |||
643 | } | |||
644 | } | |||
645 | last_step = swim_step; | |||
646 | } | |||
647 | swim_step->itheta02 = itheta02; | |||
648 | swim_step->itheta02s = itheta02s; | |||
649 | swim_step->itheta02s2 = itheta02s2; | |||
650 | swim_step->invX0=Nswim_steps/X0sum; | |||
651 | ||||
652 | // Adjust step size to take smaller steps in regions of high momentum loss or field gradient | |||
653 | if(step_size<0.0){ // step_size<0 indicates auto-calculated step size | |||
654 | // Take step so as to change momentum by 100keV | |||
655 | //double my_step_size=p/fabs(dP_dx)*0.01; | |||
656 | double my_step_size = 0.0001/fabs(dP_dx); | |||
657 | ||||
658 | // Now check the field gradient | |||
659 | #if 0 | |||
660 | stepper.GetBField(B); | |||
661 | double Bz = B.z(); | |||
662 | if (fabs(Bz-Bz_old)>EPS1e-8){ | |||
663 | double my_step_size_B=0.01*my_step_size | |||
664 | *fabs(Bz/(Bz_old-Bz)); | |||
665 | if (my_step_size_B<my_step_size) | |||
666 | my_step_size=my_step_size_B; | |||
667 | } | |||
668 | Bz_old=Bz; // Save old z-component of B-field | |||
669 | #endif | |||
670 | // Use the estimated distance to the boundary to make sure we don't overstep | |||
671 | // into a high density region and miss some material. Use half the estimated | |||
672 | // distance since it's only an estimate. Note that even though this would lead | |||
673 | // to infinitely small steps, there is a minimum step size imposed below to | |||
674 | // ensure the step size is reasonable. | |||
675 | /* | |||
676 | double step_size_to_boundary = BOUNDARY_STEP_FRACTION*s_to_boundary; | |||
677 | if(step_size_to_boundary < my_step_size)my_step_size = step_size_to_boundary; | |||
678 | */ | |||
679 | ||||
680 | if(my_step_size>MAX_STEP_SIZE)my_step_size=MAX_STEP_SIZE; // maximum step size in cm | |||
681 | if(my_step_size<MIN_STEP_SIZE)my_step_size=MIN_STEP_SIZE; // minimum step size in cm | |||
682 | ||||
683 | stepper.SetStepSize(my_step_size); | |||
684 | } | |||
685 | ||||
686 | // Swim to next | |||
687 | double ds=stepper.Step(NULL__null,&swim_step->B); | |||
688 | if (cov){ | |||
689 | PropagateCovariance(ds,q,mass_sq,mom,pos,swim_step->B,mycov); | |||
690 | swim_step->cov_t_t=mycov(6,6); | |||
691 | swim_step->cov_px_t=mycov(6,0); | |||
692 | swim_step->cov_py_t=mycov(6,1); | |||
693 | swim_step->cov_pz_t=mycov(6,2); | |||
694 | } | |||
695 | ||||
696 | // Calculate momentum loss due to the step we're about to take | |||
697 | dP = ds*dP_dx; | |||
698 | ||||
699 | // Adjust momentum due to ionization losses | |||
700 | if(dP!=0.0){ | |||
701 | DVector3 pos, mom; | |||
702 | stepper.GetPosMom(pos, mom); | |||
703 | double ptot = mom.Mag() - dP; // correct for energy loss | |||
704 | bool ranged_out = false; | |||
705 | /* | |||
706 | if (ptot<0.05){ | |||
707 | swim_step->origin.Print(); | |||
708 | cout<<"N: " << Nswim_steps <<" x " << pos.x() <<" y " <<pos.y() <<" z " << pos.z() <<" r " << pos.Perp()<< " s " << s << " p " << ptot << endl; | |||
709 | } | |||
710 | */ | |||
711 | if(ptot<0.0)ranged_out=true; | |||
712 | if(dP<0.0 && ploss_direction==kForward)ranged_out=true; | |||
713 | if(dP>0.0 && ploss_direction==kBackward)ranged_out=true; | |||
714 | if(mom.Mag()==0.0)ranged_out=true; | |||
715 | if(ranged_out){ | |||
716 | Nswim_steps++; // This will at least allow for very low momentum particles to have 1 swim step | |||
717 | break; | |||
718 | } | |||
719 | mom.SetMag(ptot); | |||
720 | stepper.SetStartingParams(q, &pos, &mom); | |||
721 | } | |||
722 | ||||
723 | // update flight time | |||
724 | t+=ds*sqrt(one_over_beta_sq)/SPEED_OF_LIGHT29.9792; | |||
725 | s += ds; | |||
726 | ||||
727 | // Mark places along trajectory where we pass into one of the | |||
728 | // main detectors | |||
729 | double R=swim_step->origin.Perp(); | |||
730 | double z=swim_step->origin.Z(); | |||
731 | if (hit_bcal==false && R>65. && z<407 &&z>0){ | |||
732 | index_at_bcal=Nswim_steps-1; | |||
733 | hit_bcal=true; | |||
734 | } | |||
735 | if (hit_tof==false && z>618.){ | |||
736 | index_at_tof=Nswim_steps-1; | |||
737 | hit_tof=true; | |||
738 | } | |||
739 | if (hit_fcal==false && z>625.){ | |||
740 | index_at_fcal=Nswim_steps-1; | |||
741 | hit_fcal=true; | |||
742 | } | |||
743 | ||||
744 | // Exit the loop if we are already inside the volume of the BCAL | |||
745 | // and the radius is decreasing | |||
746 | if (R<old_radius && R>Rmax_interior && z<407.0 && z>-100.0){ | |||
747 | Nswim_steps++; break; | |||
748 | } | |||
749 | ||||
750 | ||||
751 | // Exit loop if we leave the tracking volume | |||
752 | if(R>Rmax_exterior && z<407.0){Nswim_steps++; break;} // ran into BCAL | |||
753 | if (fabs(swim_step->origin.X())>129. | |||
754 | || fabs(swim_step->origin.Y())>129.) | |||
755 | {Nswim_steps++; break;} // left extent of TOF | |||
756 | if(z>zmax_track_boundary){Nswim_steps++; break;} // ran into FCAL | |||
757 | if(z<zmin_track_boundary){Nswim_steps++; break;} // exit upstream | |||
758 | if(wire && Nswim_steps>0){ // optionally check if we passed a wire we're supposed to be swimming to | |||
759 | swim_step_t *closest_step = FindClosestSwimStep(wire); | |||
760 | if(++closest_step!=swim_step){Nswim_steps++; break;} | |||
761 | } | |||
762 | ||||
763 | old_radius=swim_step->origin.Perp(); | |||
764 | } | |||
765 | ||||
766 | // OK. At this point the positions of the trajectory in the lab | |||
767 | // frame have been recorded along with the momentum of the | |||
768 | // particle and the directions of reference trajectory | |||
769 | // coordinate system at each point. | |||
770 | } | |||
771 | ||||
772 | // Routine to find position on the trajectory where the track crosses a radial | |||
773 | // position R. Also returns the path length to this position. | |||
774 | jerror_t DReferenceTrajectory::GetIntersectionWithRadius(double R, | |||
775 | DVector3 &mypos, | |||
776 | double *s, | |||
777 | double *t, | |||
778 | DVector3 *p_at_intersection) const{ | |||
779 | mypos.SetXYZ(NaNstd::numeric_limits<double>::quiet_NaN(),NaNstd::numeric_limits<double>::quiet_NaN(),NaNstd::numeric_limits<double>::quiet_NaN()); | |||
780 | if(p_at_intersection) | |||
781 | p_at_intersection->SetXYZ(NaNstd::numeric_limits<double>::quiet_NaN(),NaNstd::numeric_limits<double>::quiet_NaN(),NaNstd::numeric_limits<double>::quiet_NaN()); | |||
782 | ||||
783 | if(Nswim_steps<1){ | |||
784 | _DBG_std::cerr<<"libraries/TRACKING/DReferenceTrajectory.cc" <<":"<<784<<" "<<"No swim steps! You must \"Swim\" the track before calling GetIntersectionWithRadius(...)"<<endl; | |||
785 | } | |||
786 | // Return early if the radius at the end of the reference trajectory is still less than R | |||
787 | double outer_radius=swim_steps[Nswim_steps-1].origin.Perp(); | |||
788 | if (outer_radius<R){ | |||
789 | if (s) *s=0.; | |||
790 | if (t) *t=0.; | |||
791 | return VALUE_OUT_OF_RANGE; | |||
792 | } | |||
793 | // Return early if the radius at the beginning of the trajectory is outside | |||
794 | // the radius to which we are trying to match | |||
795 | double inner_radius=swim_steps[0].origin.Perp(); | |||
796 | if (inner_radius>R){ | |||
797 | if (s) *s=0.; | |||
798 | if (t) *t=0.; | |||
799 | return VALUE_OUT_OF_RANGE; | |||
800 | } | |||
801 | ||||
802 | ||||
803 | // Loop over swim steps and find the one that crosses the radius | |||
804 | swim_step_t *swim_step = swim_steps; | |||
805 | swim_step_t *step=NULL__null; | |||
806 | swim_step_t *last_step=NULL__null; | |||
807 | ||||
808 | // double inner_radius=swim_step->origin.Perp(); | |||
809 | for(int i=0; i<Nswim_steps; i++, swim_step++){ | |||
810 | if (swim_step->origin.Perp()>R){ | |||
811 | step=swim_step; | |||
812 | break; | |||
813 | } | |||
814 | if (swim_step->origin.Z()>407.0) return VALUE_OUT_OF_RANGE; | |||
815 | last_step=swim_step; | |||
816 | } | |||
817 | if (step==NULL__null||last_step==NULL__null) return VALUE_OUT_OF_RANGE; | |||
818 | if (p_at_intersection!=NULL__null){ | |||
819 | *p_at_intersection=last_step->mom; | |||
820 | } | |||
821 | ||||
822 | // At this point, the location where the track intersects the cyclinder | |||
823 | // is somewhere between last_step and step. For simplicity, we're going | |||
824 | // to just find the intersection of the cylinder with the line that joins | |||
825 | // the 2 positions. We do this by working in the X/Y plane only and | |||
826 | // finding the value of "alpha" which is the fractional distance the | |||
827 | // intersection point is between last_pos and mypos. We'll then apply | |||
828 | // the alpha found in the 2D X/Y space to the 3D x/y/Z space to find | |||
829 | // the actual intersection point. | |||
830 | DVector2 x1(last_step->origin.X(), last_step->origin.Y()); | |||
831 | DVector2 x2(step->origin.X(), step->origin.Y()); | |||
832 | DVector2 dx = x2-x1; | |||
833 | double A = dx.Mod2(); | |||
834 | double B = 2.0*(x1.X()*dx.X() + x1.Y()*dx.Y()); | |||
835 | double C = x1.Mod2() - R*R; | |||
836 | ||||
837 | double sqrt_D=sqrt(B*B-4.0*A*C); | |||
838 | double one_over_denom=0.5/A; | |||
839 | double alpha1 = (-B + sqrt_D)*one_over_denom; | |||
840 | double alpha2 = (-B - sqrt_D)*one_over_denom; | |||
841 | double alpha = alpha1; | |||
842 | if(alpha1<0.0 || alpha1>1.0)alpha=alpha2; | |||
843 | if(!isfinite(alpha))return VALUE_OUT_OF_RANGE; | |||
844 | ||||
845 | DVector3 delta = step->origin - last_step->origin; | |||
846 | mypos = last_step->origin + alpha*delta; | |||
847 | ||||
848 | // The value of s actually represents the pathlength | |||
849 | // to the outside point. Adjust it back to the | |||
850 | // intersection point (approximately). | |||
851 | if (s) *s = step->s-(1.0-alpha)*delta.Mag(); | |||
852 | ||||
853 | // flight time | |||
854 | if (t){ | |||
855 | double p_sq=step->mom.Mag2(); | |||
856 | double one_over_beta=sqrt(1.+mass_sq/p_sq); | |||
857 | *t = step->t-(1.0-alpha)*delta.Mag()*one_over_beta/SPEED_OF_LIGHT29.9792; | |||
858 | } | |||
859 | ||||
860 | return NOERROR; | |||
861 | } | |||
862 | ||||
863 | //--------------------------------- | |||
864 | // GetIntersectionWithPlane | |||
865 | //--------------------------------- | |||
866 | jerror_t DReferenceTrajectory::GetIntersectionWithPlane(const DVector3 &origin, const DVector3 &norm, DVector3 &pos, double *s,double *t,double *var_t,DetectorSystem_t detector) const{ | |||
867 | DVector3 dummy; | |||
868 | return GetIntersectionWithPlane(origin,norm,pos,dummy,s,t,var_t,detector); | |||
869 | } | |||
870 | jerror_t DReferenceTrajectory::GetIntersectionWithPlane(const DVector3 &origin, const DVector3 &norm, DVector3 &pos, DVector3 &p_at_intersection, double *s, | |||
871 | double *t,double *var_t,DetectorSystem_t detector) const | |||
872 | { | |||
873 | /// Get the intersection point of this trajectory with a plane. | |||
874 | /// The plane is specified by <i>origin</i> and <i>norm</i>. The | |||
875 | /// <i>origin</i> vector should give the coordinates of any point | |||
876 | /// on the plane and <i>norm</i> should give a vector normal to | |||
877 | /// the plane. The <i>norm</i> vector will be copied and normalized | |||
878 | /// so it can be of any magnitude upon entry. | |||
879 | /// | |||
880 | /// The coordinates of the intersection point will copied into | |||
881 | /// the supplied <i>pos</i> vector. If a non-NULL pointer for <i>s</i> | |||
882 | /// is passed in, the pathlength of the trajectory from its begining | |||
883 | /// to the intersection point is copied into location pointed to. | |||
884 | ||||
885 | // Set reasonable defaults | |||
886 | pos.SetXYZ(0,0,0); | |||
887 | if(s)*s=0.0; | |||
888 | if(t)*t=0.0; | |||
889 | p_at_intersection.SetXYZ(0,0,0); | |||
890 | ||||
891 | // Return early if the z-position of the plane with which we are | |||
892 | // intersecting is beyong the reference trajectory. | |||
893 | if (origin.z()>swim_steps[Nswim_steps-1].origin.z()){ | |||
894 | return VALUE_OUT_OF_RANGE; | |||
895 | } | |||
896 | // Find the closest swim step to the position where the track crosses | |||
897 | // the plane | |||
898 | int first_i=0; | |||
899 | switch(detector){ | |||
900 | case SYS_FCAL: | |||
901 | if (index_at_fcal<0) return VALUE_OUT_OF_RANGE; | |||
902 | first_i=index_at_fcal; | |||
903 | break; | |||
904 | case SYS_TOF: | |||
905 | if (index_at_tof<0) return VALUE_OUT_OF_RANGE; | |||
906 | first_i=index_at_tof; | |||
907 | break; | |||
908 | default: | |||
909 | break; | |||
910 | } | |||
911 | swim_step_t *step=FindPlaneCrossing(origin,norm,first_i); | |||
912 | if(!step){ | |||
913 | _DBG_std::cerr<<"libraries/TRACKING/DReferenceTrajectory.cc" <<":"<<913<<" "<<"Could not find closest swim step!"<<endl; | |||
914 | return RESOURCE_UNAVAILABLE; | |||
915 | } | |||
916 | ||||
917 | // Here we follow a scheme described in more detail in the | |||
918 | // DistToRT(DVector3 hit) method below. The basic idea is to | |||
919 | // express a point on the helix in terms of a single variable | |||
920 | // and then solve for that variable by setting the distance | |||
921 | // to zero. | |||
922 | // | |||
923 | // x = Ro*(cos(phi) - 1) | |||
924 | // y = Ro*sin(phi) | |||
925 | // z = phi*(dz/dphi) | |||
926 | // | |||
927 | // As is done below, we work in the RT coordinate system. Well, | |||
928 | // sort of. The distance to the plane is given by: | |||
929 | // | |||
930 | // d = ( x - c ).n | |||
931 | // | |||
932 | // where x is a point on the helix, c is the "origin" point | |||
933 | // which lies somewhere in the plane and n is the "norm" | |||
934 | // vector. Since we want a point in the plane, we set d=0 | |||
935 | // and solve for phi (with the components of x expressed in | |||
936 | // terms of phi as given in the DistToRT method below). | |||
937 | // | |||
938 | // Thus, the equation we need to solve is: | |||
939 | // | |||
940 | // x.n - c.n = 0 | |||
941 | // | |||
942 | // notice that "c" only gets dotted into "n" so that | |||
943 | // dot product can occur in any coordinate system. Therefore, | |||
944 | // we do that in the lab coordinate system to avoid the | |||
945 | // overhead of transforming "c" to the RT system. The "n" | |||
946 | // vector, however, still must be transformed. | |||
947 | // | |||
948 | // Expanding the trig functions to 2nd order in phi, performing | |||
949 | // the x.n dot product, and gathering equal powers of phi | |||
950 | // leads us to he following: | |||
951 | // | |||
952 | // (-Ro*nx/2)*phi^2 + (Ro*ny+dz_dphi*nz)*phi - c.n = 0 | |||
953 | // | |||
954 | // which is quadratic in phi. We solve for both roots, but use | |||
955 | // the one with the smller absolute value (if both are finite). | |||
956 | ||||
957 | double &Ro = step->Ro; | |||
958 | ||||
959 | // OK, having said all of that, it turns out that the above | |||
960 | // mechanism will tend to fail in regions of low or no | |||
961 | // field because the value of Ro is very large. Thus, we need to | |||
962 | // use a straight line projection in such cases. We also | |||
963 | // want to use a straight line projection if the helical intersection | |||
964 | // fails for some other reason. | |||
965 | // | |||
966 | // The algorthim is then to only try the helical calculation | |||
967 | // for small (<10m) values of Ro and then do the straight line | |||
968 | // if R is larger than that OR the helical calculation fails. | |||
969 | ||||
970 | // Try helical calculation | |||
971 | if(Ro<1000.0){ | |||
972 | double nx = norm.Dot(step->sdir); | |||
973 | double ny = norm.Dot(step->tdir); | |||
974 | double nz = norm.Dot(step->udir); | |||
975 | ||||
976 | double delta_z = step->mom.Dot(step->udir); | |||
977 | double delta_phi = step->mom.Dot(step->tdir)/Ro; | |||
978 | double dz_dphi = delta_z/delta_phi; | |||
979 | ||||
980 | double A = -Ro*nx/2.0; | |||
981 | double B = Ro*ny + dz_dphi*nz; | |||
982 | double C = norm.Dot(step->origin-origin); | |||
983 | double sqroot=sqrt(B*B-4.0*A*C); | |||
984 | double twoA=2.0*A; | |||
985 | ||||
986 | double phi_1 = (-B + sqroot)/(twoA); | |||
987 | double phi_2 = (-B - sqroot)/(twoA); | |||
988 | ||||
989 | double phi = fabs(phi_1)<fabs(phi_2) ? phi_1:phi_2; | |||
990 | if(!isfinite(phi_1))phi = phi_2; | |||
991 | if(!isfinite(phi_2))phi = phi_1; | |||
992 | if(isfinite(phi)){ | |||
993 | ||||
994 | double my_s = -Ro/2.0 * phi*phi; | |||
995 | double my_t = Ro * phi; | |||
996 | double my_u = dz_dphi * phi; | |||
997 | ||||
998 | pos = step->origin + my_s*step->sdir + my_t*step->tdir + my_u*step->udir; | |||
999 | p_at_intersection = step->mom; | |||
1000 | if(s){ | |||
1001 | double delta_s = sqrt(my_t*my_t + my_u*my_u); | |||
1002 | *s = step->s + (phi>0 ? +delta_s:-delta_s); | |||
1003 | } | |||
1004 | // flight time | |||
1005 | if (t){ | |||
1006 | double delta_s = sqrt(my_t*my_t + my_u*my_u); | |||
1007 | double ds=(phi>0 ? +delta_s:-delta_s); | |||
1008 | double p_sq=step->mom.Mag2(); | |||
1009 | double one_over_beta=sqrt(1.+mass_sq/p_sq); | |||
1010 | *t = step->t+ds*one_over_beta/SPEED_OF_LIGHT29.9792; | |||
1011 | } | |||
1012 | if (var_t){ | |||
1013 | *var_t=step->cov_t_t; | |||
1014 | } | |||
1015 | ||||
1016 | // Success. Go ahead and return | |||
1017 | return NOERROR; | |||
1018 | } | |||
1019 | } | |||
1020 | ||||
1021 | // If we got here then we need to try a straight line calculation | |||
1022 | double p_sq=step->mom.Mag2(); | |||
1023 | double dz_over_pz=(origin.z()-step->origin.z())/step->mom.z(); | |||
1024 | double ds=sqrt(p_sq)*dz_over_pz; | |||
1025 | pos.SetXYZ(step->origin.x()+dz_over_pz*step->mom.x(), | |||
1026 | step->origin.y()+dz_over_pz*step->mom.y(), | |||
1027 | origin.z()); | |||
1028 | p_at_intersection = step->mom; | |||
1029 | ||||
1030 | if(s){ | |||
1031 | *s = step->s + ds; | |||
1032 | } | |||
1033 | // flight time | |||
1034 | if (t){ | |||
1035 | double one_over_beta=sqrt(1.+mass_sq/p_sq); | |||
1036 | *t = step->t+ds*one_over_beta/SPEED_OF_LIGHT29.9792; | |||
1037 | } | |||
1038 | // Flight time variance | |||
1039 | if (var_t){ | |||
1040 | *var_t=step->cov_t_t; | |||
1041 | } | |||
1042 | ||||
1043 | return NOERROR; | |||
1044 | } | |||
1045 | ||||
1046 | //--------------------------------- | |||
1047 | // InsertSteps | |||
1048 | //--------------------------------- | |||
1049 | int DReferenceTrajectory::InsertSteps(const swim_step_t *start_step, double delta_s, double step_size) | |||
1050 | { | |||
1051 | /// Insert additional steps into the reference trajectory starting | |||
1052 | /// at start_step and swimming for at least delta_s by step_size | |||
1053 | /// sized steps. Both delta_s and step_size are in centimeters. | |||
1054 | /// If the value of delta_s is negative then the particle's momentum | |||
1055 | /// and charge are reversed before swimming. This could be a problem | |||
1056 | /// if energy loss is implemented. | |||
1057 | ||||
1058 | if(!start_step)return -1; | |||
1059 | ||||
1060 | // We do this by creating another, temporary DReferenceTrajectory object | |||
1061 | // on the stack and swimming it. | |||
1062 | DVector3 pos = start_step->origin; | |||
1063 | DVector3 mom = start_step->mom; | |||
1064 | double my_q = q; | |||
1065 | int direction = +1; | |||
1066 | if(delta_s<0.0){ | |||
1067 | mom *= -1.0; | |||
1068 | my_q = -q; | |||
1069 | direction = -1; | |||
1070 | } | |||
1071 | ||||
1072 | // Here I allocate the steps using an auto_ptr so I don't have to mess with | |||
1073 | // deleting them at all of the possible exits. The problem with auto_ptr | |||
1074 | // is it can't handle arrays so it has to be wrapped in a struct. | |||
1075 | auto_ptr<StepStruct> steps_aptr(new StepStruct); | |||
1076 | DReferenceTrajectory::swim_step_t *steps = steps_aptr->steps; | |||
1077 | DReferenceTrajectory rt(bfield , my_q , steps , 256); | |||
1078 | rt.SetStepSize(step_size); | |||
1079 | rt.Swim(pos, mom, my_q,NULL__null,fabs(delta_s)); | |||
1080 | if(rt.Nswim_steps==0)return 1; | |||
1081 | ||||
1082 | // Check that there is enough space to add these points | |||
1083 | if((Nswim_steps+rt.Nswim_steps)>max_swim_steps){ | |||
1084 | //_DBG_<<"Not enough swim steps available to add new ones! Max="<<max_swim_steps<<" had="<<Nswim_steps<<" new="<<rt.Nswim_steps<<endl; | |||
1085 | return 2; | |||
1086 | } | |||
1087 | ||||
1088 | // At this point, we may have swum forward or backwards so the points | |||
1089 | // will need to be added either before start_step or after it. We also | |||
1090 | // may want to replace an old step that overlaps our high density steps | |||
1091 | // since they are presumably more accurate. Find the indexes of the | |||
1092 | // existing steps that the new steps will be inserted between. | |||
1093 | double sdiff = rt.swim_steps[rt.Nswim_steps-1].s; | |||
1094 | double s1 = start_step->s; | |||
1095 | double s2 = start_step->s + (double)direction*sdiff; | |||
1096 | double smin = s1<s2 ? s1:s2; | |||
1097 | double smax = s1<s2 ? s2:s1; | |||
1098 | int istep_start = 0; | |||
1099 | int istep_end = 0; | |||
1100 | for(int i=0; i<Nswim_steps; i++){ | |||
1101 | if(swim_steps[i].s < smin)istep_start = i; | |||
1102 | if(swim_steps[i].s <= smax)istep_end = i+1; | |||
1103 | } | |||
1104 | ||||
1105 | // istep_start and istep_end now point to the steps we want to keep. | |||
1106 | // All steps between them (exclusive) will be overwritten. Note that | |||
1107 | // the original start_step should be in the "overwrite" range since | |||
1108 | // it is included already in the new trajectory. | |||
1109 | int steps_to_overwrite = istep_end - istep_start - 1; | |||
1110 | int steps_to_shift = rt.Nswim_steps - steps_to_overwrite; | |||
1111 | ||||
1112 | // Shift the steps down (or is it up?) starting with istep_end. | |||
1113 | for(int i=Nswim_steps-1; i>=istep_end; i--)swim_steps[i+steps_to_shift] = swim_steps[i]; | |||
1114 | ||||
1115 | // Copy the new steps into this object | |||
1116 | double s_0 = start_step->s; | |||
1117 | double itheta02_0 = start_step->itheta02; | |||
1118 | double itheta02s_0 = start_step->itheta02s; | |||
1119 | double itheta02s2_0 = start_step->itheta02s2; | |||
1120 | for(int i=0; i<rt.Nswim_steps; i++){ | |||
1121 | int index = direction>0 ? (istep_start+1+i):(istep_start+1+rt.Nswim_steps-1-i); | |||
1122 | swim_steps[index] = rt.swim_steps[i]; | |||
1123 | swim_steps[index].s = s_0 + (double)direction*swim_steps[index].s; | |||
1124 | swim_steps[index].itheta02 = itheta02_0 + (double)direction*swim_steps[index].itheta02; | |||
1125 | swim_steps[index].itheta02s = itheta02s_0 + (double)direction*swim_steps[index].itheta02s; | |||
1126 | swim_steps[index].itheta02s2 = itheta02s2_0 + (double)direction*swim_steps[index].itheta02s2; | |||
1127 | if(direction<0.0){ | |||
1128 | swim_steps[index].sdir *= -1.0; | |||
1129 | swim_steps[index].tdir *= -1.0; | |||
1130 | } | |||
1131 | } | |||
1132 | Nswim_steps += rt.Nswim_steps-steps_to_overwrite; | |||
1133 | ||||
1134 | // Note that the above procedure may leave us with "kinks" in the itheta0 | |||
1135 | // variables. It may be that we need to recalculate those for all of the | |||
1136 | // new points and the ones after them by making one more pass. I'm hoping | |||
1137 | // it is a realitively small correction though so we can skip it here. | |||
1138 | return 0; | |||
1139 | } | |||
1140 | ||||
1141 | //--------------------------------- | |||
1142 | // DistToRTwithTime | |||
1143 | //--------------------------------- | |||
1144 | double DReferenceTrajectory::DistToRTwithTime(DVector3 hit, double *s,double *t, | |||
1145 | double *var_t, | |||
1146 | DetectorSystem_t detector) const{ | |||
1147 | double dist=DistToRT(hit,s,detector); | |||
1148 | if (s!=NULL__null && t!=NULL__null) | |||
1149 | { | |||
1150 | if(last_swim_step==NULL__null) | |||
1151 | { | |||
1152 | *s = 1.0E6; | |||
1153 | *t = 1.0E6; | |||
1154 | if (var_t!=NULL__null){ | |||
1155 | *var_t=1.0E6; | |||
1156 | } | |||
1157 | } | |||
1158 | else | |||
1159 | { | |||
1160 | double p_sq=last_swim_step->mom.Mag2(); | |||
1161 | double one_over_beta=sqrt(1.+mass_sq/p_sq); | |||
1162 | *t=last_swim_step->t+(*s-last_swim_step->s)*one_over_beta/SPEED_OF_LIGHT29.9792; | |||
1163 | if (var_t!=NULL__null){ | |||
1164 | *var_t=last_swim_step->cov_t_t; | |||
1165 | } | |||
1166 | } | |||
1167 | } | |||
1168 | return dist; | |||
1169 | } | |||
1170 | ||||
1171 | //--------------------------------- | |||
1172 | // DistToRT | |||
1173 | //--------------------------------- | |||
1174 | double DReferenceTrajectory::DistToRT(DVector3 hit, double *s, | |||
1175 | DetectorSystem_t detector) const | |||
1176 | { | |||
1177 | last_swim_step=NULL__null; | |||
1178 | if(Nswim_steps<1)_DBG__std::cerr<<"libraries/TRACKING/DReferenceTrajectory.cc" <<":"<<1178<<std::endl; | |||
1179 | ||||
1180 | int start_index=0; | |||
1181 | switch(detector){ | |||
1182 | case SYS_BCAL: | |||
1183 | if (index_at_bcal<0) return numeric_limits<double>::quiet_NaN(); | |||
1184 | start_index=index_at_bcal; | |||
1185 | break; | |||
1186 | case SYS_FCAL: | |||
1187 | if (index_at_fcal<0) return numeric_limits<double>::quiet_NaN(); | |||
1188 | start_index=index_at_fcal; | |||
1189 | break; | |||
1190 | case SYS_TOF: | |||
1191 | if (index_at_tof<0) return numeric_limits<double>::quiet_NaN(); | |||
1192 | start_index=index_at_tof; | |||
1193 | break; | |||
1194 | default: | |||
1195 | break; | |||
1196 | } | |||
1197 | ||||
1198 | // First, find closest step to point | |||
1199 | swim_step_t *swim_step = &swim_steps[start_index]; | |||
1200 | swim_step_t *step=NULL__null; | |||
1201 | ||||
1202 | //double min_delta2 = 1.0E6; | |||
1203 | double old_delta2=10.e6,delta2=1.0e6; | |||
1204 | ||||
1205 | // Check if we should start at the end of the reference trajectory | |||
1206 | // or the beginning... | |||
1207 | int last_index=Nswim_steps-1; | |||
1208 | double forward_delta2=(swim_step->origin - hit).Mag2(); | |||
1209 | double backward_delta2=(swim_steps[last_index].origin-hit).Mag2(); | |||
1210 | ||||
1211 | if (forward_delta2<backward_delta2){ // start at the beginning | |||
1212 | for(int i=start_index; i<Nswim_steps; i++, swim_step++){ | |||
1213 | ||||
1214 | DVector3 pos_diff = swim_step->origin - hit; | |||
1215 | delta2 = pos_diff.Mag2(); | |||
1216 | ||||
1217 | if (delta2>old_delta2){ | |||
1218 | break; | |||
1219 | } | |||
1220 | ||||
1221 | //if(delta2 < min_delta2){ | |||
1222 | //min_delta2 = delta2; | |||
1223 | ||||
1224 | step = swim_step; | |||
1225 | old_delta2=delta2; | |||
1226 | //} | |||
1227 | } | |||
1228 | } | |||
1229 | else{// start at the end | |||
1230 | for(int i=last_index; i>=start_index; i--){ | |||
1231 | swim_step=&swim_steps[i]; | |||
1232 | DVector3 pos_diff = swim_step->origin - hit; | |||
1233 | delta2 = pos_diff.Mag2(); | |||
1234 | if (delta2>old_delta2) break; | |||
1235 | ||||
1236 | //if(delta2 < min_delta2){ | |||
1237 | //min_delta2 = delta2; | |||
1238 | ||||
1239 | step = swim_step; | |||
1240 | old_delta2=delta2; | |||
1241 | //} | |||
1242 | } | |||
1243 | ||||
1244 | } | |||
1245 | ||||
1246 | if(step==NULL__null){ | |||
1247 | // It seems to occasionally occur that we have 1 swim step | |||
1248 | // and it's values are invalid. Supress warning messages | |||
1249 | // for these as they are "known" (even if not fully understood!) | |||
1250 | if(s != NULL__null) | |||
1251 | *s = 1.0E6; | |||
1252 | if(Nswim_steps>1){ | |||
1253 | _DBG_std::cerr<<"libraries/TRACKING/DReferenceTrajectory.cc" <<":"<<1253<<" "<<"\"hit\" passed to DistToRT(DVector3) out of range!"<<endl; | |||
1254 | _DBG_std::cerr<<"libraries/TRACKING/DReferenceTrajectory.cc" <<":"<<1254<<" "<<"hit x,y,z = "<<hit.x()<<", "<<hit.y()<<", "<<hit.z()<<" Nswim_steps="<<Nswim_steps<<" min_delta2="<<delta2<<endl; | |||
1255 | } | |||
1256 | return 1.0E6; | |||
1257 | } | |||
1258 | ||||
1259 | // store last step | |||
1260 | last_swim_step=step; | |||
1261 | ||||
1262 | ||||
1263 | // Next, define a point on the helical segment defined by the | |||
1264 | // swim step it the RT coordinate system. The directions of | |||
1265 | // the RT coordinate system are defined by step->xdir, step->ydir, | |||
1266 | // and step->zdir. The coordinates of a point on the helix | |||
1267 | // in this coordinate system are: | |||
1268 | // | |||
1269 | // x = Ro*(cos(phi) - 1) | |||
1270 | // y = Ro*sin(phi) | |||
1271 | // z = phi*(dz/dphi) | |||
1272 | // | |||
1273 | // where phi is the phi angle of the point in this coordinate system. | |||
1274 | // phi=0 corresponds to the swim step point itself | |||
1275 | // | |||
1276 | // Transform the given coordinates to the RT coordinate system | |||
1277 | // and call these x0,y0,z0. Then, the distance of point to a | |||
1278 | // point on the helical segment is given by: | |||
1279 | // | |||
1280 | // d^2 = (x0-x)^2 + (y0-y)^2 + (z0-z)^2 | |||
1281 | // | |||
1282 | // where x,y,z are all functions of phi as given above. | |||
1283 | // | |||
1284 | // writing out d^2 in terms of phi, but using the small angle | |||
1285 | // approximation for the trig functions, an equation for the | |||
1286 | // distance in only phi is obtained. Taking the derivative | |||
1287 | // and setting it equal to zero leaves a 3rd order polynomial | |||
1288 | // in phi whose root corresponds to the minimum distance. | |||
1289 | // Skipping some math, this equation has the form: | |||
1290 | // | |||
1291 | // d(d^2)/dphi = 0 = Ro^2*phi^3 + 2*alpha*phi + beta | |||
1292 | // | |||
1293 | // where: | |||
1294 | // alpha = x0*Ro + Ro^2 + (dz/dphi)^2 | |||
1295 | // | |||
1296 | // beta = -2*y0*Ro - 2*z0*(dz/dphi) | |||
1297 | // | |||
1298 | // The above 3rd order poly is convenient in that it does not | |||
1299 | // contain a phi^2 term. This means we can skip the step | |||
1300 | // done in the general case where a change of variables is | |||
1301 | // made such that the 2nd order term disappears. | |||
1302 | // | |||
1303 | // In general, an equation of the form | |||
1304 | // | |||
1305 | // w^3 + 3.0*b*w + 2*c = 0 | |||
1306 | // | |||
1307 | // has one real root: | |||
1308 | // | |||
1309 | // w0 = q - p | |||
1310 | // | |||
1311 | // where: | |||
1312 | // q^3 = d - c | |||
1313 | // p^3 = d + c | |||
1314 | // d^2 = b^3 + c^2 (don't confuse with d^2 above!) | |||
1315 | // | |||
1316 | // So for us ... | |||
1317 | // | |||
1318 | // 3b = 2*alpha/(Ro^2) | |||
1319 | // 2c = beta/(Ro^2) | |||
1320 | ||||
1321 | hit -= step->origin; | |||
1322 | double x0 = hit.Dot(step->sdir); | |||
1323 | double y0 = hit.Dot(step->tdir); | |||
1324 | double z0 = hit.Dot(step->udir); | |||
1325 | double &Ro = step->Ro; | |||
1326 | double Ro2 = Ro*Ro; | |||
1327 | double delta_z = step->mom.Dot(step->udir); | |||
1328 | double delta_phi = step->mom.Dot(step->tdir)/Ro; | |||
1329 | double dz_dphi = delta_z/delta_phi; | |||
1330 | ||||
1331 | // double alpha = x0*Ro + Ro2 + pow(dz_dphi,2.0); | |||
1332 | double alpha=x0*Ro + Ro2 +dz_dphi*dz_dphi; | |||
1333 | // double beta = -2.0*y0*Ro - 2.0*z0*dz_dphi; | |||
1334 | double beta = -2.0*(y0*Ro + z0*dz_dphi); | |||
1335 | // double b = (2.0*alpha/Ro2)/3.0; | |||
1336 | double b= TWO_THIRD0.66666666666666667*alpha/Ro2; | |||
1337 | // double c = (beta/Ro2)/2.0; | |||
1338 | double c = 0.5*(beta/Ro2); | |||
1339 | // double d = sqrt(pow(b,3.0) + pow(c,2.0)); | |||
1340 | double d2=b*b*b+c*c; | |||
1341 | double phi=0.,dist2=1e8; | |||
1342 | if (d2>=0){ | |||
1343 | double d=sqrt(d2); | |||
1344 | //double q = pow(d-c, ONE_THIRD); | |||
1345 | //double p = pow(d+c, ONE_THIRD); | |||
1346 | double p=cbrt(d+c); | |||
1347 | double q=cbrt(d-c); | |||
1348 | phi = q - p; | |||
1349 | if (fabs(phi)<0.2){ // check small angle approximation | |||
1350 | double phisq=phi*phi; | |||
1351 | ||||
1352 | dist2 = 0.25*Ro2*phisq*phisq + alpha*phisq + beta*phi | |||
1353 | + x0*x0 + y0*y0 + z0*z0; | |||
1354 | } | |||
1355 | else{ | |||
1356 | return numeric_limits<double>::quiet_NaN(); | |||
1357 | } | |||
1358 | } | |||
1359 | else{ | |||
1360 | // Use DeMoivre's theorem to find the cube root of a complex | |||
1361 | // number. In this case there are three real solutions. | |||
1362 | double d=sqrt(-d2); | |||
1363 | c*=-1.; | |||
1364 | double temp=sqrt(cbrt(c*c+d*d)); | |||
1365 | double theta1=ONE_THIRD0.33333333333333333*atan2(d,c); | |||
1366 | double sum_over_2=temp*cos(theta1); | |||
1367 | double diff_over_2=-temp*sin(theta1); | |||
1368 | ||||
1369 | double phi0=2.*sum_over_2; | |||
1370 | double phi0sq=phi0*phi0; | |||
1371 | double phi1=-sum_over_2+sqrt(3)*diff_over_2; | |||
1372 | double phi1sq=phi1*phi1; | |||
1373 | double phi2=-sum_over_2-sqrt(3)*diff_over_2; | |||
1374 | double phi2sq=phi2*phi2; | |||
1375 | double d2_2 = 0.25*Ro2*phi2sq*phi2sq + alpha*phi2sq + beta*phi2 + x0*x0 + y0*y0 + z0*z0; | |||
1376 | double d2_1 = 0.25*Ro2*phi1sq*phi1sq + alpha*phi1sq + beta*phi1 + x0*x0 + y0*y0 + z0*z0; | |||
1377 | double d2_0 = 0.25*Ro2*phi0sq*phi0sq + alpha*phi0sq + beta*phi0 + x0*x0 + y0*y0 + z0*z0; | |||
1378 | ||||
1379 | if (d2_0<d2_1 && d2_0<d2_2){ | |||
1380 | phi=phi0; | |||
1381 | dist2=d2_0; | |||
1382 | } | |||
1383 | else if (d2_1<d2_0 && d2_1<d2_2){ | |||
1384 | phi=phi1; | |||
1385 | dist2=d2_1; | |||
1386 | } | |||
1387 | else{ | |||
1388 | phi=phi2; | |||
1389 | dist2=d2_2; | |||
1390 | } | |||
1391 | if (fabs(phi)<0.2){ // Check small angle approximation | |||
1392 | return numeric_limits<double>::quiet_NaN(); | |||
1393 | } | |||
1394 | ||||
1395 | if (std::isnan(Ro)) | |||
1396 | { | |||
1397 | } | |||
1398 | } | |||
1399 | ||||
1400 | // Calculate distance along track ("s") | |||
1401 | if(s!=NULL__null){ | |||
1402 | double dz = dz_dphi*phi; | |||
1403 | double Rodphi = Ro*phi; | |||
1404 | double ds = sqrt(dz*dz + Rodphi*Rodphi); | |||
1405 | *s = step->s + (phi>0.0 ? ds:-ds); | |||
1406 | } | |||
1407 | ||||
1408 | this->last_phi = phi; | |||
1409 | this->last_swim_step = step; | |||
1410 | this->last_dz_dphi = dz_dphi; | |||
1411 | ||||
1412 | return sqrt(dist2); | |||
1413 | } | |||
1414 | ||||
1415 | //--------------------------------- | |||
1416 | // FindClosestSwimStep | |||
1417 | //--------------------------------- | |||
1418 | DReferenceTrajectory::swim_step_t* DReferenceTrajectory::FindClosestSwimStep(const DCoordinateSystem *wire, int *istep_ptr) const | |||
1419 | { | |||
1420 | /// Find the closest swim step to the given wire. The value of | |||
1421 | /// "L" should be the active wire length. The coordinate system | |||
1422 | /// defined by "wire" should have its origin at the center of | |||
1423 | /// the wire with the wire running in the direction of udir. | |||
1424 | ||||
1425 | if(istep_ptr)*istep_ptr=-1; | |||
1426 | ||||
1427 | if(Nswim_steps<1){ | |||
1428 | _DBG_std::cerr<<"libraries/TRACKING/DReferenceTrajectory.cc" <<":"<<1428<<" "<<"No swim steps! You must \"Swim\" the track before calling FindClosestSwimStep(...)"<<endl; | |||
1429 | } | |||
1430 | ||||
1431 | // Make sure we have a wire first! | |||
1432 | if(!wire)return NULL__null; | |||
1433 | ||||
1434 | // Loop over swim steps and find the one closest to the wire | |||
1435 | swim_step_t *swim_step = swim_steps; | |||
1436 | swim_step_t *step=NULL__null; | |||
1437 | //double min_delta2 = 1.0E6; | |||
1438 | double old_delta2=1.0e6; | |||
1439 | double L_over_2 = wire->L/2.0; // half-length of wire in cm | |||
1440 | int istep=-1; | |||
1441 | ||||
1442 | double dx, dy, dz; | |||
1443 | ||||
1444 | // w is a vector to the origin of the wire | |||
1445 | // u is a unit vector along the wire | |||
1446 | ||||
1447 | double wx, wy, wz; | |||
1448 | double ux, uy, uz; | |||
1449 | ||||
1450 | wx = wire->origin.X(); | |||
1451 | wy = wire->origin.Y(); | |||
1452 | wz = wire->origin.Z(); | |||
1453 | ||||
1454 | ux = wire->udir.X(); | |||
1455 | uy = wire->udir.Y(); | |||
1456 | uz = wire->udir.Z(); | |||
1457 | ||||
1458 | int i; | |||
1459 | for(i=0; i<Nswim_steps; i++, swim_step++){ | |||
1460 | // Find the point's position along the wire. If the point | |||
1461 | // is past the end of the wire, calculate the distance | |||
1462 | // from the end of the wire. | |||
1463 | // DVector3 pos_diff = swim_step->origin - wire->origin; | |||
1464 | ||||
1465 | dx = swim_step->origin.X() - wx; | |||
1466 | dy = swim_step->origin.Y() - wy; | |||
1467 | dz = swim_step->origin.Z() - wz; | |||
1468 | ||||
1469 | // double u = wire->udir.Dot(pos_diff); | |||
1470 | double u = ux * dx + uy * dy + uz * dz; | |||
1471 | ||||
1472 | // Find distance perpendicular to wire | |||
1473 | // double delta2 = pos_diff.Mag2() - u*u; | |||
1474 | double delta2 = dx*dx + dy*dy + dz*dz - u*u; | |||
1475 | ||||
1476 | // If point is past end of wire, calculate distance | |||
1477 | // from wire's end by adding on distance along wire direction. | |||
1478 | if( fabs(u)>L_over_2){ | |||
1479 | // delta2 += pow(fabs(u)-L_over_2, 2.0); | |||
1480 | double u_minus_L_over_2=fabs(u)-L_over_2; | |||
1481 | delta2 += ( u_minus_L_over_2*u_minus_L_over_2 ); | |||
1482 | // printf("step %d\n",i); | |||
1483 | } | |||
1484 | ||||
1485 | if(debug_level>3)_DBG_std::cerr<<"libraries/TRACKING/DReferenceTrajectory.cc" <<":"<<1485<<" "<<"delta2="<<delta2<<" old_delta2="<<old_delta2<<endl; | |||
1486 | if (delta2>old_delta2) break; | |||
1487 | ||||
1488 | //if(delta2 < min_delta2){ | |||
1489 | // min_delta2 = delta2; | |||
1490 | step = swim_step; | |||
1491 | istep=i; | |||
1492 | ||||
1493 | //} | |||
1494 | //printf("%d delta %f min %f\n",i,delta2,min_delta2); | |||
1495 | old_delta2=delta2; | |||
1496 | } | |||
1497 | ||||
1498 | if(istep_ptr)*istep_ptr=istep; | |||
1499 | ||||
1500 | if(debug_level>3)_DBG_std::cerr<<"libraries/TRACKING/DReferenceTrajectory.cc" <<":"<<1500<<" "<<"found closest step at i="<<i<<" istep_ptr="<<istep_ptr<<endl; | |||
1501 | ||||
1502 | return step; | |||
1503 | } | |||
1504 | ||||
1505 | //--------------------------------- | |||
1506 | // FindClosestSwimStep | |||
1507 | //--------------------------------- | |||
1508 | DReferenceTrajectory::swim_step_t* DReferenceTrajectory::FindClosestSwimStep(const DVector3 &origin, DVector3 norm, int *istep_ptr) const | |||
1509 | { | |||
1510 | /// Find the closest swim step to the plane specified by origin | |||
1511 | /// and norm. origin should indicate any point in the plane and | |||
1512 | /// norm a vector normal to the plane. | |||
1513 | if(istep_ptr)*istep_ptr=-1; | |||
1514 | ||||
1515 | if(Nswim_steps<1){ | |||
1516 | _DBG_std::cerr<<"libraries/TRACKING/DReferenceTrajectory.cc" <<":"<<1516<<" "<<"No swim steps! You must \"Swim\" the track before calling FindClosestSwimStep(...)"<<endl; | |||
1517 | } | |||
1518 | ||||
1519 | // Make sure normal vector is unit lenght | |||
1520 | norm.SetMag(1.0); | |||
1521 | ||||
1522 | // Loop over swim steps and find the one closest to the plane | |||
1523 | swim_step_t *swim_step = swim_steps; | |||
1524 | swim_step_t *step=NULL__null; | |||
1525 | //double min_dist = 1.0E6; | |||
1526 | double old_dist=1.0e6; | |||
1527 | int istep=-1; | |||
1528 | ||||
1529 | for(int i=0; i<Nswim_steps; i++, swim_step++){ | |||
1530 | ||||
1531 | // Distance to plane is dot product of normal vector with any | |||
1532 | // vector pointing from the current step to a point in the plane | |||
1533 | double dist = fabs(norm.Dot(swim_step->origin-origin)); | |||
1534 | ||||
1535 | if (dist>old_dist) break; | |||
1536 | ||||
1537 | // Check if we're the closest step | |||
1538 | //if(dist < min_dist){ | |||
1539 | //min_dist = dist; | |||
1540 | ||||
1541 | step = swim_step; | |||
1542 | istep=i; | |||
1543 | //} | |||
1544 | old_dist=dist; | |||
1545 | ||||
1546 | // We should probably have a break condition here so we don't | |||
1547 | // waste time looking all the way to the end of the track after | |||
1548 | // we've passed the plane. | |||
1549 | } | |||
1550 | ||||
1551 | if(istep_ptr)*istep_ptr=istep; | |||
1552 | ||||
1553 | return step; | |||
1554 | } | |||
1555 | ||||
1556 | ||||
1557 | //--------------------------------- | |||
1558 | // FindPlaneCrossing | |||
1559 | //--------------------------------- | |||
1560 | DReferenceTrajectory::swim_step_t* DReferenceTrajectory::FindPlaneCrossing(const DVector3 &origin, DVector3 norm,int first_i,int *istep_ptr) const | |||
1561 | { | |||
1562 | /// Find the closest swim step to the position where the track crosses | |||
1563 | /// the plane specified by origin | |||
1564 | /// and norm. origin should indicate any point in the plane and | |||
1565 | /// norm a vector normal to the plane. | |||
1566 | if(istep_ptr)*istep_ptr=-1; | |||
1567 | ||||
1568 | if(Nswim_steps<1){ | |||
1569 | _DBG_std::cerr<<"libraries/TRACKING/DReferenceTrajectory.cc" <<":"<<1569<<" "<<"No swim steps! You must \"Swim\" the track before calling FindPlaneCrossing(...)"<<endl; | |||
1570 | raise(SIGSEGV11);// force seg. fault | |||
1571 | } | |||
1572 | ||||
1573 | // Make sure normal vector is unit lenght | |||
1574 | norm.SetMag(1.0); | |||
1575 | ||||
1576 | // Loop over swim steps and find the one closest to the plane | |||
1577 | swim_step_t *swim_step = &swim_steps[first_i]; | |||
1578 | swim_step_t *step=NULL__null; | |||
1579 | //double min_dist = 1.0E6; | |||
1580 | int istep=-1; | |||
1581 | double old_dist=1.0e6; | |||
1582 | ||||
1583 | // Check if we should start from the beginning of the reference | |||
1584 | // trajectory or the end | |||
1585 | int last_index=Nswim_steps-1; | |||
1586 | double forward_dist= norm.Dot(swim_step->origin-origin); | |||
1587 | double backward_dist= norm.Dot(swim_steps[last_index].origin-origin); | |||
1588 | if (fabs(forward_dist)<fabs(backward_dist)){ // start at beginning | |||
1589 | for(int i=first_i; i<Nswim_steps; i++, swim_step++){ | |||
1590 | ||||
1591 | // Distance to plane is dot product of normal vector with any | |||
1592 | // vector pointing from the current step to a point in the plane | |||
1593 | //double dist = fabs(norm.Dot(swim_step->origin-origin)); | |||
1594 | double dist = norm.Dot(swim_step->origin-origin); | |||
1595 | ||||
1596 | // We've crossed the plane when the sign of dist changes | |||
1597 | if (dist*old_dist<0 && i>0) { | |||
1598 | if (fabs(dist)<fabs(old_dist)){ | |||
1599 | step=swim_step; | |||
1600 | istep=i; | |||
1601 | } | |||
1602 | break; | |||
1603 | } | |||
1604 | step = swim_step; | |||
1605 | istep=i; | |||
1606 | old_dist=dist; | |||
1607 | } | |||
1608 | } | |||
1609 | else{ // start at end | |||
1610 | for(int i=last_index; i>=0; i--){ | |||
1611 | swim_step=&swim_steps[i]; | |||
1612 | double dist = norm.Dot(swim_step->origin-origin); | |||
1613 | // We've crossed the plane when the sign of dist changes | |||
1614 | if (dist*old_dist<0 && i<last_index) { | |||
1615 | if (fabs(dist)<fabs(old_dist)){ | |||
1616 | step=swim_step; | |||
1617 | istep=i; | |||
1618 | } | |||
1619 | break; | |||
1620 | } | |||
1621 | step = swim_step; | |||
1622 | istep=i; | |||
1623 | old_dist=dist; | |||
1624 | } | |||
1625 | ||||
1626 | } | |||
1627 | ||||
1628 | if(istep_ptr)*istep_ptr=istep; | |||
1629 | ||||
1630 | return step; | |||
1631 | } | |||
1632 | ||||
1633 | ||||
1634 | ||||
1635 | ||||
1636 | //--------------------------------- | |||
1637 | // DistToRT | |||
1638 | //--------------------------------- | |||
1639 | double DReferenceTrajectory::DistToRT(const DCoordinateSystem *wire, double *s) const | |||
1640 | { | |||
1641 | /// Find the closest distance to the given wire in cm. The value of | |||
1642 | /// "L" should be the active wire length (in cm). The coordinate system | |||
1643 | /// defined by "wire" should have its origin at the center of | |||
1644 | /// the wire with the wire running in the direction of udir. | |||
1645 | swim_step_t *step=FindClosestSwimStep(wire); | |||
1646 | ||||
1647 | return (step && step->s>0) ? DistToRT(wire, step, s):std::numeric_limits<double>::quiet_NaN(); | |||
1648 | } | |||
1649 | ||||
1650 | //--------------------------------- | |||
1651 | // DistToRTBruteForce | |||
1652 | //--------------------------------- | |||
1653 | double DReferenceTrajectory::DistToRTBruteForce(const DCoordinateSystem *wire, double *s) const | |||
1654 | { | |||
1655 | /// Find the closest distance to the given wire in cm. The value of | |||
1656 | /// "L" should be the active wire length (in cm). The coordinate system | |||
1657 | /// defined by "wire" should have its origin at the center of | |||
1658 | /// the wire with the wire running in the direction of udir. | |||
1659 | swim_step_t *step=FindClosestSwimStep(wire); | |||
1660 | ||||
1661 | return step ? DistToRTBruteForce(wire, step, s):std::numeric_limits<double>::quiet_NaN(); | |||
1662 | } | |||
1663 | ||||
1664 | //------------------ | |||
1665 | // DistToRT | |||
1666 | //------------------ | |||
1667 | double DReferenceTrajectory::DistToRT(const DCoordinateSystem *wire, const swim_step_t *step, double *s) const | |||
1668 | { | |||
1669 | /// Calculate the distance of the given wire(in the lab | |||
1670 | /// reference frame) to the Reference Trajectory which the | |||
1671 | /// given swim step belongs to. This uses the momentum directions | |||
1672 | /// and positions of the swim step | |||
1673 | /// to define a curve and calculate the distance of the hit | |||
1674 | /// from it. The swim step should be the closest one to the wire. | |||
1675 | /// IMPORTANT: This approximates the helix locally by a parabola. | |||
1676 | /// This means the swim step should be fairly close | |||
1677 | /// to the wire so that this approximation is valid. If the | |||
1678 | /// reference trajectory from which the swim step came is too | |||
1679 | /// sparse, the results will not be nearly as good. | |||
1680 | ||||
1681 | // Interestingly enough, this is one of the harder things to figure | |||
1682 | // out in the tracking code which is why the explanations may be | |||
1683 | // a bit long. | |||
1684 | ||||
1685 | // The general idea is to define the helix in a coordinate system | |||
1686 | // in which the wire runs along the z-axis. The distance to the | |||
1687 | // wire is then defined just in the X/Y plane of this coord. system. | |||
1688 | // The distance is expressed as a function of the phi angle in the | |||
1689 | // natural coordinate system of the helix. This way, phi=0 corresponds | |||
1690 | // to the swim step point itself and the DOCA point should be | |||
1691 | // at a small phi angle. | |||
1692 | // | |||
1693 | // The minimum distance between the helical segment and the wire | |||
1694 | // will be a function of sin(phi), cos(phi) and phi. Approximating | |||
1695 | // sin(phi) by phi and cos(phi) by (1-phi^2) leaves a 4th order | |||
1696 | // polynomial in phi. Taking the derivative leaves a 3rd order | |||
1697 | // polynomial whose root is the phi corresponding to the | |||
1698 | // Distance Of Closest Approach(DOCA) point on the helix. Plugging | |||
1699 | // that value of phi back into the distance formula gives | |||
1700 | // us the minimum distance between the track and the wire. | |||
1701 | ||||
1702 | // First, we need to define the coordinate system in which the | |||
1703 | // wire runs along the z-axis. This is actually done already | |||
1704 | // in the CDC package for each wire once, at program start. | |||
1705 | // The directions of the axes are defined in wire->sdir, | |||
1706 | // wire->tdir, and wire->udir. | |||
1707 | ||||
1708 | // Next, define a point on the helical segment defined by the | |||
1709 | // swim step it the RT coordinate system. The directions of | |||
1710 | // the RT coordinate system are defined by step->xdir, step->ydir, | |||
1711 | // and step->zdir. The coordinates of a point on the helix | |||
1712 | // in this coordinate system are: | |||
1713 | // | |||
1714 | // x = Ro*(cos(phi) - 1) | |||
1715 | // y = Ro*sin(phi) | |||
1716 | // z = phi*(dz/dphi) | |||
1717 | // | |||
1718 | // where phi is the phi angle of the point in this coordinate system. | |||
1719 | ||||
1720 | // Now, a vector describing the helical point in the LAB coordinate | |||
1721 | // system is: | |||
1722 | // | |||
1723 | // h = x*xdir + y*ydir + z*zdir + pos | |||
1724 | // | |||
1725 | // where h,xdir,ydir,zdir and pos are all 3-vectors. | |||
1726 | // xdir,ydir,zdir are unit vectors defining the directions | |||
1727 | // of the RT coord. system axes in the lab coord. system. | |||
1728 | // pos is a vector defining the position of the swim step | |||
1729 | // in the lab coord.system | |||
1730 | ||||
1731 | // Now we just need to find the extent of "h" in the wire's | |||
1732 | // coordinate system (period . means dot product): | |||
1733 | // | |||
1734 | // s = (h-wpos).sdir | |||
1735 | // t = (h-wpos).tdir | |||
1736 | // u = (h-wpos).udir | |||
1737 | // | |||
1738 | // where wpos is the position of the center of the wire in | |||
1739 | // the lab coord. system and is given by wire->wpos. | |||
1740 | ||||
1741 | // At this point, the values of s,t, and u repesent a point | |||
1742 | // on the helix in the coord. system of the wire with the | |||
1743 | // wire in the "u" direction and positioned at the origin. | |||
1744 | // The distance(squared) from the wire to the point on the helix | |||
1745 | // is given by: | |||
1746 | // | |||
1747 | // d^2 = s^2 + t^2 | |||
1748 | // | |||
1749 | // where s and t are both functions of phi. | |||
1750 | ||||
1751 | // So, we'll define the values of "s" and "t" above as: | |||
1752 | // | |||
1753 | // s = A*x + B*y + C*z + D | |||
1754 | // t = E*x + F*y + G*z + H | |||
1755 | // | |||
1756 | // where A,B,C,D,E,F,G, and H are constants defined below | |||
1757 | // and x,y,z are all functions of phi defined above. | |||
1758 | // (period . means dot product) | |||
1759 | // | |||
1760 | // A = sdir.xdir | |||
1761 | // B = sdir.ydir | |||
1762 | // C = sdir.zdir | |||
1763 | // D = sdir.(pos-wpos) | |||
1764 | // | |||
1765 | // E = tdir.xdir | |||
1766 | // F = tdir.ydir | |||
1767 | // G = tdir.zdir | |||
1768 | // H = tdir.(pos-wpos) | |||
1769 | const DVector3 &xdir = step->sdir; | |||
1770 | const DVector3 &ydir = step->tdir; | |||
1771 | const DVector3 &zdir = step->udir; | |||
1772 | const DVector3 &sdir = wire->sdir; | |||
1773 | const DVector3 &tdir = wire->tdir; | |||
1774 | const DVector3 &udir = wire->udir; | |||
1775 | DVector3 pos_diff = step->origin - wire->origin; | |||
1776 | ||||
1777 | double A = sdir.Dot(xdir); | |||
1778 | double B = sdir.Dot(ydir); | |||
1779 | double C = sdir.Dot(zdir); | |||
1780 | double D = sdir.Dot(pos_diff); | |||
1781 | ||||
1782 | double E = tdir.Dot(xdir); | |||
1783 | double F = tdir.Dot(ydir); | |||
1784 | double G = tdir.Dot(zdir); | |||
1785 | double H = tdir.Dot(pos_diff); | |||
1786 | ||||
1787 | // OK, here is the dirty part. Using the approximations given above | |||
1788 | // to write the x and y functions in terms of phi^2 and phi (instead | |||
1789 | // of cos and sin) we put them into the equations for s and t above. | |||
1790 | // Then, inserting those into the equation for d^2 above that, we | |||
1791 | // get a very long equation in terms of the constants A,...H and | |||
1792 | // phi up to 4th order. Combining coefficients for similar powers | |||
1793 | // of phi yields an equation of the form: | |||
1794 | // | |||
1795 | // d^2 = Q*phi^4 + R*phi^3 + S*phi^2 + T*phi + U | |||
1796 | // | |||
1797 | // The dirty part is that it takes the better part of a sheet of | |||
1798 | // paper to work out the relations for Q,...U in terms of | |||
1799 | // A,...H, and Ro, dz/dphi. You can work it out yourself on | |||
1800 | // paper to verify that the equations below are correct. | |||
1801 | double Ro = step->Ro; | |||
1802 | double Ro2 = Ro*Ro; | |||
1803 | double delta_z = step->mom.Dot(step->udir); | |||
1804 | double delta_phi = step->mom.Dot(step->tdir)/Ro; | |||
1805 | double dz_dphi = delta_z/delta_phi; | |||
1806 | double dz_dphi2=dz_dphi*dz_dphi; | |||
1807 | double Ro_dz_dphi=Ro*dz_dphi; | |||
1808 | ||||
1809 | // double Q = pow(A*Ro/2.0, 2.0) + pow(E*Ro/2.0, 2.0); | |||
1810 | double Q=0.25*Ro2*(A*A+E*E); | |||
1811 | // double R = -(2.0*A*B*Ro2 + 2.0*A*C*Ro_dz_dphi + 2.0*E*F*Ro2 + 2.0*E*G*Ro_dz_dphi)/2.0; | |||
1812 | double R = -((A*B+E*F)*Ro2 + (A*C+E*G)*Ro_dz_dphi); | |||
1813 | // double S = pow(B*Ro, 2.0) + pow(C*dz_dphi,2.0) + 2.0*B*C*Ro_dz_dphi - 2.0*A*D*Ro/2.0 | |||
1814 | //+ pow(F*Ro, 2.0) + pow(G*dz_dphi,2.0) + 2.0*F*G*Ro_dz_dphi - 2.0*E*H*Ro/2.0; | |||
1815 | double S= (B*B+F*F)*Ro2+(C*C+G*G)*dz_dphi2+2.0*(B*C+F*G)*Ro_dz_dphi | |||
1816 | -(A*D+E*H)*Ro; | |||
1817 | // double T = 2.0*B*D*Ro + 2.0*C*D*dz_dphi + 2.0*F*H*Ro + 2.0*G*H*dz_dphi; | |||
1818 | double T = 2.0*((B*D+F*H)*Ro + (C*D+G*H)*dz_dphi); | |||
1819 | double U = D*D + H*H; | |||
1820 | ||||
1821 | // Aaarghh! my fingers hurt just from typing all of that! | |||
1822 | // | |||
1823 | // OK, now we differentiate the above equation for d^2 to get: | |||
1824 | // | |||
1825 | // d(d^2)/dphi = 4*Q*phi^3 + 3*R*phi^2 + 2*S*phi + T | |||
1826 | // | |||
1827 | // NOTE: don't confuse "R" with "Ro" in the above equations! | |||
1828 | // | |||
1829 | // Now we have to solve the 3rd order polynomial for the phi value of | |||
1830 | // the point of closest approach on the RT. This is a well documented | |||
1831 | // procedure. Essentially, when you have an equation of the form: | |||
1832 | // | |||
1833 | // x^3 + a2*x^2 + a1*x + a0 = 0; | |||
1834 | // | |||
1835 | // a change of variables is made such that w = x + a2/3 which leads | |||
1836 | // to a third order poly with no w^2 term: | |||
1837 | // | |||
1838 | // w^3 + 3.0*b*w + 2*c = 0 | |||
1839 | // | |||
1840 | // where: | |||
1841 | // b = a1/3 - (a2^2)/9 | |||
1842 | // c = a0/2 - a1*a2/6 + (a2^3)/27 | |||
1843 | // | |||
1844 | // The one real root of this is: | |||
1845 | // | |||
1846 | // w0 = q - p | |||
1847 | // | |||
1848 | // where: | |||
1849 | // q^3 = d - c | |||
1850 | // p^3 = d + c | |||
1851 | // d^2 = b^3 + c^2 (don't confuse with d^2 above!) | |||
1852 | // | |||
1853 | // For us this means that: | |||
1854 | // a2 = 3*R/(4*Q) | |||
1855 | // a1 = 2*S/(4*Q) | |||
1856 | // a0 = T/(4*Q) | |||
1857 | // | |||
1858 | // A potential problem could occur if Q is at or very close to zero. | |||
1859 | // This situation occurs when both A and E are zero. This would mean | |||
1860 | // that both sdir and tdir are perpendicular to xdir which means | |||
1861 | // xdir is in the same direction as udir (got that?). Physically, | |||
1862 | // this corresponds to the situation when both the momentum and | |||
1863 | // the magnetic field are perpendicular to the wire (though not | |||
1864 | // necessarily perpendicular to each other). This situation can't | |||
1865 | // really occur in the CDC detector where the chambers are well | |||
1866 | // contained in a region where the field is essentially along z as | |||
1867 | // are the wires. | |||
1868 | // | |||
1869 | // Just to be safe, we check that Q is greater than | |||
1870 | // some minimum before solving for phi. If it is too small, we fall | |||
1871 | // back to solving the quadratic equation for phi. | |||
1872 | double phi =0.0; | |||
1873 | if(fabs(Q)>1.0E-6){ | |||
| ||||
1874 | /* | |||
1875 | double fourQ = 4.0*Q; | |||
1876 | double a2 = 3.0*R/fourQ; | |||
1877 | double a1 = 2.0*S/fourQ; | |||
1878 | double a0 = T/fourQ; | |||
1879 | */ | |||
1880 | double one_over_fourQ=0.25/Q; | |||
1881 | double a2=3.0*R*one_over_fourQ; | |||
1882 | double a1=2.0*S*one_over_fourQ; | |||
1883 | double a0=T*one_over_fourQ; | |||
1884 | double a2sq=a2*a2; | |||
1885 | /* | |||
1886 | double b = a1/3.0 - a2*a2/9.0; | |||
1887 | double c = a0/2.0 - a1*a2/6.0 + a2*a2*a2/27.0; | |||
1888 | */ | |||
1889 | double b=ONE_THIRD0.33333333333333333*(a1-ONE_THIRD0.33333333333333333*a2sq); | |||
1890 | double c=0.5*(a0-ONE_THIRD0.33333333333333333*a1*a2)+a2*a2sq/27.0; | |||
1891 | double my_d2=b*b*b+c*c; | |||
1892 | if (my_d2>0){ | |||
1893 | //double d = sqrt(pow(b, 3.0) + pow(c, 2.0)); // occasionally, this is zero. See below | |||
1894 | double d=sqrt(my_d2); | |||
1895 | //double q = pow(d - c, ONE_THIRD); | |||
1896 | //double p = pow(d + c, ONE_THIRD); | |||
1897 | double q=cbrt(d-c); | |||
1898 | double p=cbrt(d+c); | |||
1899 | ||||
1900 | double w0 = q - p; | |||
1901 | //phi = w0 - a2/3.0; | |||
1902 | phi = w0 - ONE_THIRD0.33333333333333333*a2; | |||
1903 | } | |||
1904 | else{ | |||
1905 | // Use DeMoivre's theorem to find the cube root of a complex | |||
1906 | // number. In this case there are three real solutions. | |||
1907 | double d=sqrt(-my_d2); | |||
1908 | c*=-1.; | |||
1909 | double temp=sqrt(cbrt(c*c+d*d)); | |||
1910 | double theta1=ONE_THIRD0.33333333333333333*atan2(d,c); | |||
1911 | double sum_over_2=temp*cos(theta1); | |||
1912 | double diff_over_2=-temp*sin(theta1); | |||
1913 | ||||
1914 | double phi0=-a2/3+2.*sum_over_2; | |||
1915 | double phi1=-a2/3-sum_over_2+sqrt(3)*diff_over_2; | |||
1916 | double phi2=-a2/3-sum_over_2-sqrt(3)*diff_over_2; | |||
1917 | ||||
1918 | double d2_0 = U + phi0*(T + phi0*(S + phi0*(R + phi0*Q))); | |||
1919 | double d2_1 = U + phi1*(T + phi1*(S + phi1*(R + phi1*Q))); | |||
1920 | double d2_2 = U + phi2*(T + phi2*(S + phi2*(R + phi2*Q))); | |||
1921 | ||||
1922 | if (d2_0<d2_1 && d2_0<d2_2){ | |||
1923 | phi=phi0; | |||
1924 | } | |||
1925 | else if (d2_1<d2_0 && d2_1<d2_2){ | |||
1926 | phi=phi1; | |||
1927 | } | |||
1928 | else{ | |||
1929 | phi=phi2; | |||
1930 | } | |||
1931 | } | |||
1932 | } | |||
1933 | ||||
1934 | if(fabs(Q)<=1.0E-6 || !isfinite(phi)){ | |||
1935 | double a = 3.0*R; | |||
1936 | double b = 2.0*S; | |||
1937 | double c = 1.0*T; | |||
1938 | phi = (-b + sqrt(b*b - 4.0*a*c))/(2.0*a); | |||
1939 | } | |||
1940 | ||||
1941 | // The accuracy of this method is limited by how close the step is to the | |||
1942 | // actual minimum. If the value of phi is large then the step size is | |||
1943 | // not too close and we should add another couple of steps in the right | |||
1944 | // place in order to get a more accurate value. Note that while this will | |||
1945 | // increase the time it takes this round, presumably the fitter will be | |||
1946 | // calling this often for each wire and having a high density of points | |||
1947 | // near the wires will just make subsequent calls go quicker. This also | |||
1948 | // allows larger initial step sizes with the high density regions getting | |||
1949 | // filled in as needed leading to overall faster tracking. | |||
1950 | #if 0 | |||
1951 | if(isfinite(phi) && fabs(phi)>2.0E-4){ | |||
1952 | if(dist_to_rt_depth>=3){ | |||
1953 | _DBG_std::cerr<<"libraries/TRACKING/DReferenceTrajectory.cc" <<":"<<1953<<" "<<"3 or more recursive calls to DistToRT(). Something is wrong! bailing ..."<<endl; | |||
1954 | //for(int k=0; k<Nswim_steps; k++){ | |||
1955 | // DVector3 &v = swim_steps[k].origin; | |||
1956 | // _DBG_<<" "<<k<<": "<<v.X()<<", "<<v.Y()<<", "<<v.Z()<<endl; | |||
1957 | //} | |||
1958 | //exit(-1); | |||
1959 | return std::numeric_limits<double>::quiet_NaN(); | |||
1960 | } | |||
1961 | double scale_step = 1.0; | |||
1962 | double s_range = 1.0*scale_step; | |||
1963 | double step_size = 0.02*scale_step; | |||
1964 | int err = InsertSteps(step, phi>0.0 ? +s_range:-s_range, step_size); // Add new steps near this step by swimming in the direction of phi | |||
1965 | if(!err){ | |||
1966 | step=FindClosestSwimStep(wire); // Find the new closest step | |||
1967 | if(!step)return std::numeric_limits<double>::quiet_NaN(); | |||
1968 | dist_to_rt_depth++; | |||
1969 | double doca = DistToRT(wire, step, s); // re-call ourself with the new step | |||
1970 | dist_to_rt_depth--; | |||
1971 | return doca; | |||
1972 | }else{ | |||
1973 | if(err<0)return std::numeric_limits<double>::quiet_NaN(); | |||
1974 | ||||
1975 | // If InsertSteps() returns an error > 0 then it indicates that it | |||
1976 | // was unable to add additional steps (perhaps because there | |||
1977 | // aren't enough spaces available). In that case, we just go ahead | |||
1978 | // and use the phi we have and make the best estimate possible. | |||
1979 | } | |||
1980 | } | |||
1981 | #endif | |||
1982 | ||||
1983 | // It is possible at this point that the value of phi corresponds to | |||
1984 | // a point past the end of the wire. We should check for this here and | |||
1985 | // recalculate, if necessary, the DOCA at the end of the wire. First, | |||
1986 | // calculate h (the vector defined way up above) and dot it into the | |||
1987 | // wire's u-direction to get the position of the DOCA point along the | |||
1988 | // wire. | |||
1989 | double x = -0.5*Ro*phi*phi; | |||
1990 | double y = Ro*phi; | |||
1991 | double z = dz_dphi*phi; | |||
1992 | DVector3 h = pos_diff + x*xdir + y*ydir + z*zdir; | |||
1993 | double u = h.Dot(udir); | |||
1994 | if(fabs(u) > wire->L/2.0){ | |||
1995 | // Looks like our DOCA point is past the end of the wire. | |||
1996 | // Find phi corresponding to the end of the wire. | |||
1997 | double L_over_2 = u>0.0 ? wire->L/2.0:-wire->L/2.0; | |||
1998 | double a = -0.5*Ro*udir.Dot(xdir); | |||
1999 | double b = Ro*udir.Dot(ydir) + dz_dphi*udir.Dot(zdir); | |||
2000 | double c = udir.Dot(pos_diff) - L_over_2; | |||
2001 | double twoa=2.0*a; | |||
2002 | double sqroot=sqrt(b*b-4.0*a*c); | |||
2003 | double phi1 = (-b + sqroot)/(twoa); | |||
2004 | double phi2 = (-b - sqroot)/(twoa); | |||
2005 | phi = fabs(phi1)<fabs(phi2) ? phi1:phi2; | |||
2006 | u=L_over_2; | |||
2007 | } | |||
2008 | this->last_dist_along_wire = u; | |||
2009 | ||||
2010 | // Use phi to calculate DOCA | |||
2011 | double d2 = U + phi*(T + phi*(S + phi*(R + phi*Q))); | |||
2012 | double d = sqrt(d2); | |||
2013 | ||||
2014 | // Calculate distance along track ("s") | |||
2015 | double dz = dz_dphi*phi; | |||
2016 | double Rodphi = Ro*phi; | |||
2017 | double ds = sqrt(dz*dz + Rodphi*Rodphi); | |||
2018 | if(s)*s=step->s + (phi>0.0 ? ds:-ds); | |||
2019 | if(debug_level>3){ | |||
2020 | _DBG_std::cerr<<"libraries/TRACKING/DReferenceTrajectory.cc" <<":"<<2020<<" "<<"distance to rt: "<<*s<<" from step at "<<step->s<<" with ds="<<ds<<" d="<<d<<" dz="<<dz<<" Rodphi="<<Rodphi<<endl; | |||
| ||||
2021 | _DBG_std::cerr<<"libraries/TRACKING/DReferenceTrajectory.cc" <<":"<<2021<<" "<<"phi="<<phi<<" U="<<U<<" u="<<u<<endl; | |||
2022 | } | |||
2023 | ||||
2024 | // Remember phi and step so additional info on the point can be obtained | |||
2025 | this->last_phi = phi; | |||
2026 | this->last_swim_step = step; | |||
2027 | this->last_dz_dphi = dz_dphi; | |||
2028 | ||||
2029 | return d; // WARNING: This could return nan! | |||
2030 | } | |||
2031 | ||||
2032 | //------------------ | |||
2033 | // DistToRTBruteForce | |||
2034 | //------------------ | |||
2035 | double DReferenceTrajectory::DistToRTBruteForce(const DCoordinateSystem *wire, const swim_step_t *step, double *s) const | |||
2036 | { | |||
2037 | /// Calculate the distance of the given wire(in the lab | |||
2038 | /// reference frame) to the Reference Trajectory which the | |||
2039 | /// given swim step belongs to. This uses the momentum directions | |||
2040 | /// and positions of the swim step | |||
2041 | /// to define a curve and calculate the distance of the hit | |||
2042 | /// from it. The swim step should be the closest one to the wire. | |||
2043 | /// IMPORTANT: This calculates the distance using a "brute force" | |||
2044 | /// method of taking tiny swim steps to find the minimum distance. | |||
2045 | /// It is vey SLOW and you should be using DistToRT(...) instead. | |||
2046 | /// This is only here to provide an independent check of DistToRT(...). | |||
2047 | ||||
2048 | const DVector3 &xdir = step->sdir; | |||
2049 | const DVector3 &ydir = step->tdir; | |||
2050 | const DVector3 &zdir = step->udir; | |||
2051 | const DVector3 &sdir = wire->sdir; | |||
2052 | const DVector3 &tdir = wire->tdir; | |||
2053 | DVector3 pos_diff = step->origin - wire->origin; | |||
2054 | ||||
2055 | double Ro = step->Ro; | |||
2056 | double delta_z = step->mom.Dot(step->udir); | |||
2057 | double delta_phi = step->mom.Dot(step->tdir)/Ro; | |||
2058 | double dz_dphi = delta_z/delta_phi; | |||
2059 | ||||
2060 | // Brute force | |||
2061 | double min_d2 = 1.0E6; | |||
2062 | double phi=M_PI3.14159265358979323846; | |||
2063 | for(int i=-2000; i<2000; i++){ | |||
2064 | double myphi=(double)i*0.000005; | |||
2065 | DVector3 d = Ro*(cos(myphi)-1.0)*xdir | |||
2066 | + Ro*sin(myphi)*ydir | |||
2067 | + dz_dphi*myphi*zdir | |||
2068 | + pos_diff; | |||
2069 | ||||
2070 | double d2 = pow(d.Dot(sdir),2.0) + pow(d.Dot(tdir),2.0); | |||
2071 | if(d2<min_d2){ | |||
2072 | min_d2 = d2; | |||
2073 | phi = myphi; | |||
2074 | this->last_phi = myphi; | |||
2075 | } | |||
2076 | } | |||
2077 | double d2 = min_d2; | |||
2078 | double d = sqrt(d2); | |||
2079 | this->last_phi = phi; | |||
2080 | this->last_swim_step = step; | |||
2081 | this->last_dz_dphi = dz_dphi; | |||
2082 | ||||
2083 | // Calculate distance along track ("s") | |||
2084 | double dz = dz_dphi*phi; | |||
2085 | double Rodphi = Ro*phi; | |||
2086 | double ds = sqrt(dz*dz + Rodphi*Rodphi); | |||
2087 | if(s)*s=step->s + (phi>0.0 ? ds:-ds); | |||
2088 | ||||
2089 | return d; | |||
2090 | } | |||
2091 | ||||
2092 | //------------------ | |||
2093 | // Straw_dx | |||
2094 | //------------------ | |||
2095 | double DReferenceTrajectory::Straw_dx(const DCoordinateSystem *wire, double radius) const | |||
2096 | { | |||
2097 | /// Find the distance traveled within the specified radius of the | |||
2098 | /// specified wire. This will give the "dx" component of a dE/dx | |||
2099 | /// measurement for cylindrical geometry as we have with straw tubes. | |||
2100 | /// | |||
2101 | /// At this point, the estimate is done using a simple linear | |||
2102 | /// extrapolation from the DOCA point in the direction of the momentum | |||
2103 | /// to the 2 points at which it itersects the given radius. Segments | |||
2104 | /// which extend past the end of the wire will be clipped to the end | |||
2105 | /// of the wire before calculating the total dx. | |||
2106 | ||||
2107 | // First, find the DOCA point for this wire | |||
2108 | double s; | |||
2109 | double doca = DistToRT(wire, &s); | |||
2110 | if(!isfinite(doca)) | |||
2111 | return 0.0; | |||
2112 | ||||
2113 | // If doca is outside of the given radius, then we're done | |||
2114 | if(doca>=radius)return 0.0; | |||
2115 | ||||
2116 | // Get the location and momentum direction of the DOCA point | |||
2117 | DVector3 pos, momdir; | |||
2118 | GetLastDOCAPoint(pos, momdir); | |||
2119 | if(momdir.Mag()!=0.0)momdir.SetMag(1.0); | |||
2120 | ||||
2121 | // Get wire direction | |||
2122 | const DVector3 &udir = wire->udir; | |||
2123 | ||||
2124 | // Calculate vectors used to form quadratic equation for "alpha" | |||
2125 | // the distance along the mometum direction from the DOCA point | |||
2126 | // to the intersection with a cylinder of the given radius. | |||
2127 | DVector3 A = udir.Cross(pos-wire->origin); | |||
2128 | DVector3 B = udir.Cross(momdir); | |||
2129 | ||||
2130 | // If the magnitude of B is zero at this point, it means the momentum | |||
2131 | // direction is parallel to the wire. In this case, this method will | |||
2132 | // not work. Return NaN. | |||
2133 | if(B.Mag()<1.0E-10)return std::numeric_limits<double>::quiet_NaN(); | |||
2134 | ||||
2135 | double a = B.Mag(); | |||
2136 | double b = A.Dot(B); | |||
2137 | double c = A.Mag() - radius; | |||
2138 | double d = sqrt(b*b - 4.0*a*c); | |||
2139 | ||||
2140 | // The 2 roots should correspond to the 2 intersection points. | |||
2141 | double alpha1 = (-b + d)/(2.0*a); | |||
2142 | double alpha2 = (-b - d)/(2.0*a); | |||
2143 | ||||
2144 | DVector3 int1 = pos + alpha1*momdir; | |||
2145 | DVector3 int2 = pos + alpha2*momdir; | |||
2146 | ||||
2147 | // Check if point1 is past the end of the wire | |||
2148 | double q = udir.Dot(int1 - wire->origin); | |||
2149 | if(fabs(q) > wire->L/2.0){ | |||
2150 | double gamma = udir.Dot(wire->origin - pos) + (q>0.0 ? +1.0:-1.0)*wire->L/2.0; | |||
2151 | gamma /= momdir.Dot(udir); | |||
2152 | int1 = pos + gamma*momdir; | |||
2153 | } | |||
2154 | ||||
2155 | // Check if point2 is past the end of the wire | |||
2156 | q = udir.Dot(int2 - wire->origin); | |||
2157 | if(fabs(q) > wire->L/2.0){ | |||
2158 | double gamma = udir.Dot(wire->origin - pos) + (q>0.0 ? +1.0:-1.0)*wire->L/2.0; | |||
2159 | gamma /= momdir.Dot(udir); | |||
2160 | int2 = pos + gamma*momdir; | |||
2161 | } | |||
2162 | ||||
2163 | // Calculate distance | |||
2164 | DVector3 delta = int1 - int2; | |||
2165 | ||||
2166 | return delta.Mag(); | |||
2167 | } | |||
2168 | ||||
2169 | //------------------ | |||
2170 | // GetLastDOCAPoint | |||
2171 | //------------------ | |||
2172 | void DReferenceTrajectory::GetLastDOCAPoint(DVector3 &pos, DVector3 &mom) const | |||
2173 | { | |||
2174 | /// Use values saved by the last call to one of the DistToRT functions | |||
2175 | /// to calculate the 3-D DOCA position in lab coordinates and momentum | |||
2176 | /// in GeV/c. | |||
2177 | ||||
2178 | if(last_swim_step==NULL__null){ | |||
2179 | if(Nswim_steps>0){ | |||
2180 | last_swim_step = &swim_steps[0]; | |||
2181 | last_phi = 0.0; | |||
2182 | }else{ | |||
2183 | pos.SetXYZ(NaNstd::numeric_limits<double>::quiet_NaN(),NaNstd::numeric_limits<double>::quiet_NaN(),NaNstd::numeric_limits<double>::quiet_NaN()); | |||
2184 | mom.SetXYZ(NaNstd::numeric_limits<double>::quiet_NaN(),NaNstd::numeric_limits<double>::quiet_NaN(),NaNstd::numeric_limits<double>::quiet_NaN()); | |||
2185 | return; | |||
2186 | } | |||
2187 | } | |||
2188 | ||||
2189 | // If last_phi is not finite, set it to 0 as a last resort | |||
2190 | if(!isfinite(last_phi))last_phi = 0.0; | |||
2191 | ||||
2192 | const DVector3 &xdir = last_swim_step->sdir; | |||
2193 | const DVector3 &ydir = last_swim_step->tdir; | |||
2194 | const DVector3 &zdir = last_swim_step->udir; | |||
2195 | ||||
2196 | double x = -(last_swim_step->Ro/2.0)*last_phi*last_phi; | |||
2197 | double y = last_swim_step->Ro*last_phi; | |||
2198 | double z = last_dz_dphi*last_phi; | |||
2199 | ||||
2200 | pos = last_swim_step->origin + x*xdir + y*ydir + z*zdir; | |||
2201 | mom = last_swim_step->mom; | |||
2202 | ||||
2203 | mom.Rotate(-last_phi, zdir); | |||
2204 | } | |||
2205 | ||||
2206 | //------------------ | |||
2207 | // GetLastDOCAPoint | |||
2208 | //------------------ | |||
2209 | DVector3 DReferenceTrajectory::GetLastDOCAPoint(void) const | |||
2210 | { | |||
2211 | /// Use values saved by the last call to one of the DistToRT functions | |||
2212 | /// to calculate the 3-D DOCA position in lab coordinates. This is | |||
2213 | /// mainly intended for debugging. | |||
2214 | if(last_swim_step==NULL__null){ | |||
2215 | if(Nswim_steps>0){ | |||
2216 | last_swim_step = &swim_steps[0]; | |||
2217 | last_phi = 0.0; | |||
2218 | }else{ | |||
2219 | return DVector3(NaNstd::numeric_limits<double>::quiet_NaN(),NaNstd::numeric_limits<double>::quiet_NaN(),NaNstd::numeric_limits<double>::quiet_NaN()); | |||
2220 | } | |||
2221 | } | |||
2222 | const DVector3 &xdir = last_swim_step->sdir; | |||
2223 | const DVector3 &ydir = last_swim_step->tdir; | |||
2224 | const DVector3 &zdir = last_swim_step->udir; | |||
2225 | double Ro = last_swim_step->Ro; | |||
2226 | double delta_z = last_swim_step->mom.Dot(zdir); | |||
2227 | double delta_phi = last_swim_step->mom.Dot(ydir)/Ro; | |||
2228 | double dz_dphi = delta_z/delta_phi; | |||
2229 | ||||
2230 | double x = -(Ro/2.0)*last_phi*last_phi; | |||
2231 | double y = Ro*last_phi; | |||
2232 | double z = dz_dphi*last_phi; | |||
2233 | ||||
2234 | return last_swim_step->origin + x*xdir + y*ydir + z*zdir; | |||
2235 | } | |||
2236 | ||||
2237 | //------------------ | |||
2238 | // dPdx | |||
2239 | //------------------ | |||
2240 | double DReferenceTrajectory::dPdx_from_A_Z_rho(double ptot, double A, double Z, double density) const | |||
2241 | { | |||
2242 | double I = (Z*12.0 + 7.0)*1.0E-9; // From Leo 2nd ed. pg 25. | |||
2243 | if (Z>=13) I=(9.76*Z+58.8*pow(Z,-0.19))*1.0e-9; | |||
2244 | double rhoZ_overA=density*Z/A; | |||
2245 | double KrhoZ_overA = 0.1535e-3*rhoZ_overA; | |||
2246 | ||||
2247 | return dPdx(ptot, KrhoZ_overA,rhoZ_overA,log(I)); | |||
2248 | } | |||
2249 | ||||
2250 | //------------------ | |||
2251 | // dPdx | |||
2252 | //------------------ | |||
2253 | double DReferenceTrajectory::dPdx(double ptot, double KrhoZ_overA, | |||
2254 | double rhoZ_overA,double LogI) const | |||
2255 | { | |||
2256 | /// Calculate the momentum loss per unit distance traversed of the material with | |||
2257 | /// the given A, Z, and density. Value returned is in GeV/c per cm | |||
2258 | /// This follows the July 2008 PDG section 27.2 ppg 268-270. | |||
2259 | if(mass==0.0)return 0.0; // no ionization losses for neutrals | |||
2260 | ||||
2261 | double gammabeta = ptot/mass; | |||
2262 | double gammabeta2=gammabeta*gammabeta; | |||
2263 | double gamma = sqrt(gammabeta2+1.); | |||
2264 | double beta = gammabeta/gamma; | |||
2265 | double beta2=beta*beta; | |||
2266 | double me = 0.511E-3; | |||
2267 | double m_ratio=me/mass; | |||
2268 | double two_me_gammabeta2=2.*me*gammabeta2; | |||
2269 | ||||
2270 | double Tmax = two_me_gammabeta2/(1.0+2.0*gamma*m_ratio+m_ratio*m_ratio); | |||
2271 | //double K = 0.307075E-3; // GeV gm^-1 cm^2 | |||
2272 | // Density effect | |||
2273 | double delta=0.; | |||
2274 | double X=log10(gammabeta); | |||
2275 | double X0,X1; | |||
2276 | double Cbar=2.*(LogI-log(28.816e-9*sqrt(rhoZ_overA)))+1.; | |||
2277 | if (rhoZ_overA>0.01){ // not a gas | |||
2278 | if (LogI<-1.6118){ // I<100 | |||
2279 | if (Cbar<=3.681) X0=0.2; | |||
2280 | else X0=0.326*Cbar-1.; | |||
2281 | X1=2.; | |||
2282 | } | |||
2283 | else{ | |||
2284 | if (Cbar<=5.215) X0=0.2; | |||
2285 | else X0=0.326*Cbar-1.5; | |||
2286 | X1=3.; | |||
2287 | } | |||
2288 | } | |||
2289 | else { // gases | |||
2290 | X1=4.; | |||
2291 | if (Cbar<=9.5) X0=1.6; | |||
2292 | else if (Cbar>9.5 && Cbar<=10.) X0=1.7; | |||
2293 | else if (Cbar>10 && Cbar<=10.5) X0=1.8; | |||
2294 | else if (Cbar>10.5 && Cbar<=11.) X0=1.9; | |||
2295 | else if (Cbar>11.0 && Cbar<=12.25) X0=2.; | |||
2296 | else if (Cbar>12.25 && Cbar<=13.804){ | |||
2297 | X0=2.; | |||
2298 | X1=5.; | |||
2299 | } | |||
2300 | else { | |||
2301 | X0=0.326*Cbar-2.5; | |||
2302 | X1=5.; | |||
2303 | } | |||
2304 | } | |||
2305 | if (X>=X0 && X<X1) | |||
2306 | delta=4.606*X-Cbar+(Cbar-4.606*X0)*pow((X1-X)/(X1-X0),3.); | |||
2307 | else if (X>=X1) | |||
2308 | delta= 4.606*X-Cbar; | |||
2309 | ||||
2310 | double dEdx = KrhoZ_overA/beta2*(log(two_me_gammabeta2*Tmax) | |||
2311 | -2.*LogI - 2.0*beta2 -delta); | |||
2312 | ||||
2313 | double dP_dx = dEdx/beta; | |||
2314 | ||||
2315 | //double g = 0.350/sqrt(-log(0.06)); | |||
2316 | //dP_dx *= 1.0 + exp(-pow(ptot/g,2.0)); // empirical for really low momentum particles | |||
2317 | ||||
2318 | ||||
2319 | if(ploss_direction==kBackward)dP_dx = -dP_dx; | |||
2320 | ||||
2321 | return dP_dx; | |||
2322 | } | |||
2323 | ||||
2324 | //------------------ | |||
2325 | // Dump | |||
2326 | //------------------ | |||
2327 | void DReferenceTrajectory::Dump(double zmin, double zmax) | |||
2328 | { | |||
2329 | swim_step_t *step = swim_steps; | |||
2330 | for(int i=0; i<Nswim_steps; i++, step++){ | |||
2331 | vector<pair<string,string> > item; | |||
2332 | double x = step->origin.X(); | |||
2333 | double y = step->origin.Y(); | |||
2334 | double z = step->origin.Z(); | |||
2335 | if(z<zmin || z>zmax)continue; | |||
2336 | ||||
2337 | double px = step->mom.X(); | |||
2338 | double py = step->mom.Y(); | |||
2339 | double pz = step->mom.Z(); | |||
2340 | ||||
2341 | cout<<i<<": "; | |||
2342 | cout<<"(x,y,z)=("<<x<<","<<y<<","<<z<<") "; | |||
2343 | cout<<"(px,py,pz)=("<<px<<","<<py<<","<<pz<<") "; | |||
2344 | cout<<"(Ro,s,t)=("<<step->Ro<<","<<step->s<<","<<step->t<<") "; | |||
2345 | cout<<endl; | |||
2346 | } | |||
2347 | ||||
2348 | } | |||
2349 | ||||
2350 | // Propagate the covariance matrix for {px,py,pz,x,y,z,t} along the step ds | |||
2351 | jerror_t DReferenceTrajectory::PropagateCovariance(double ds,double q, | |||
2352 | double mass_sq, | |||
2353 | const DVector3 &mom, | |||
2354 | const DVector3 &pos, | |||
2355 | const DVector3 &B, | |||
2356 | DMatrixDSym &C) const{ | |||
2357 | DMatrix J(7,7); | |||
2358 | ||||
2359 | double one_over_p_sq=1./mom.Mag2(); | |||
2360 | double one_over_p=sqrt(one_over_p_sq); | |||
2361 | double px=mom.X(); | |||
2362 | double py=mom.Y(); | |||
2363 | double pz=mom.Z(); | |||
2364 | double Bx=B.x(),By=B.y(),Bz=B.z(); | |||
2365 | ||||
2366 | double ds_over_p=ds*one_over_p; | |||
2367 | double factor=0.003*q*ds_over_p; | |||
2368 | double temp=(Bz*py-Bx*pz)*one_over_p_sq; | |||
2369 | J(0,0)=1-factor*px*temp; | |||
2370 | J(0,1)=factor*(Bz-py*temp); | |||
2371 | J(0,2)=-factor*(By+pz*temp); | |||
2372 | ||||
2373 | temp=(Bx*pz-Bz*px)*one_over_p_sq; | |||
2374 | J(1,0)=-factor*(Bz+px*temp); | |||
2375 | J(1,1)=1-factor*py*temp; | |||
2376 | J(1,2)=factor*(Bx-pz*temp); | |||
2377 | ||||
2378 | temp=(By*px-Bx*py)*one_over_p_sq; | |||
2379 | J(2,0)=factor*(By-px*temp); | |||
2380 | J(2,1)=-factor*(Bx+py*temp); | |||
2381 | J(2,2)=1-factor*pz*temp; | |||
2382 | ||||
2383 | J(3,3)=1.; | |||
2384 | double ds_over_p3=one_over_p_sq*ds_over_p; | |||
2385 | J(3,0)=ds_over_p*(1-px*px*one_over_p_sq); | |||
2386 | J(3,1)=-px*py*ds_over_p3; | |||
2387 | J(3,2)=-px*pz*ds_over_p3; | |||
2388 | ||||
2389 | J(4,4)=1.; | |||
2390 | J(4,0)=J(3,1); | |||
2391 | J(4,1)=ds_over_p*(1-py*py*one_over_p_sq); | |||
2392 | J(4,2)=-py*pz*ds_over_p3; | |||
2393 | ||||
2394 | J(5,5)=1.; | |||
2395 | J(5,0)=J(3,2); | |||
2396 | J(5,1)=J(4,2); | |||
2397 | J(5,2)=ds_over_p*(1-pz*pz*one_over_p_sq); | |||
2398 | ||||
2399 | J(6,6)=1.; | |||
2400 | ||||
2401 | double fac2=(-ds/SPEED_OF_LIGHT29.9792)*mass_sq*one_over_p_sq*one_over_p_sq | |||
2402 | /sqrt(1.+mass_sq*one_over_p_sq); | |||
2403 | J(6,0)=fac2*px; | |||
2404 | J(6,1)=fac2*py; | |||
2405 | J(6,2)=fac2*pz; | |||
2406 | ||||
2407 | C=C.Similarity(J); | |||
2408 | ||||
2409 | return NOERROR; | |||
2410 | } | |||
2411 | ||||
2412 | // Find the position along a reference trajectory closest to a line. | |||
2413 | // The error matrix for the line can also be input via a pointer. The error | |||
2414 | // matrix is expected to be 7x7 with the order {Px,Py,Pz,X,Y,Z,T}. | |||
2415 | // Outputs the kinematic data object (including the covariance) at this | |||
2416 | // position, and the doca and the variance on the doca. | |||
2417 | jerror_t DReferenceTrajectory::FindPOCAtoLine(const DVector3 &origin, | |||
2418 | const DVector3 &dir, | |||
2419 | const DMatrixDSym *covline, | |||
2420 | DKinematicData *track_kd, | |||
2421 | DVector3 &commonpos, double &doca, double &var_doca) const{ | |||
2422 | const swim_step_t *swim_step=this->swim_steps; | |||
2423 | DMatrixDSym cov(7); | |||
2424 | if(track_kd!=NULL__null) | |||
2425 | cov=track_kd->errorMatrix(); | |||
2426 | doca=1000.; | |||
2427 | double tflight=0.; | |||
2428 | double mass_sq=this->mass_sq; | |||
2429 | double q=this->q; | |||
2430 | double step_size=1.0,s=-step_size; | |||
2431 | DVector3 oldpos,oldmom; | |||
2432 | DVector3 point=origin; | |||
2433 | ||||
2434 | // Find the magnitude of the direction vector | |||
2435 | double pscale=dir.Mag(); | |||
2436 | // If the magnitude of the direction vector is zero, don't bother to propagate | |||
2437 | // along a line from the input origin... | |||
2438 | bool move_along_line=(pscale>0)?true:false; | |||
2439 | ||||
2440 | // Propagate along the reference trajectory, comparing to the line at each | |||
2441 | // step | |||
2442 | for (int i=0;i<this->Nswim_steps-1; i++, swim_step++){ | |||
2443 | DVector3 pos=swim_step->origin; | |||
2444 | DVector3 diff=pos-point; | |||
2445 | double new_doca=diff.Mag(); | |||
2446 | if (new_doca>doca){ | |||
2447 | if (i==1){ // backtrack to find the true doca | |||
2448 | tflight=0.; | |||
2449 | ||||
2450 | swim_step=this->swim_steps; | |||
2451 | if(track_kd!=NULL__null) | |||
2452 | cov=track_kd->errorMatrix(); | |||
2453 | ||||
2454 | pos=swim_step->origin; | |||
2455 | DVector3 mom=swim_step->mom; | |||
2456 | DMagneticFieldStepper stepper(this->bfield, this->q, &pos, &mom); | |||
2457 | ||||
2458 | int inew=0; | |||
2459 | while (inew<100){ | |||
2460 | DVector3 B; | |||
2461 | double ds=stepper.Step(&pos,&B,-0.5); | |||
2462 | // Compute the revised estimate for the doca | |||
2463 | diff=pos-point; | |||
2464 | new_doca=diff.Mag(); | |||
2465 | ||||
2466 | if(new_doca > doca) break; | |||
2467 | ||||
2468 | // Propagate the covariance matrix of the track along the trajectory | |||
2469 | if(track_kd!=NULL__null){ | |||
2470 | this->PropagateCovariance(ds,q,mass_sq,mom,oldpos,B,cov); | |||
2471 | } | |||
2472 | ||||
2473 | // Store the current positions, doca and adjust flight times | |||
2474 | oldpos=pos; | |||
2475 | doca=new_doca; | |||
2476 | ||||
2477 | double one_over_p_sq=1./mom.Mag2(); | |||
2478 | tflight+=ds*sqrt(1.+mass_sq*one_over_p_sq)/SPEED_OF_LIGHT29.9792; | |||
2479 | ||||
2480 | // New momentum | |||
2481 | stepper.GetMomentum(mom); | |||
2482 | ||||
2483 | oldmom=/*(-1.)*/mom; | |||
2484 | inew++; | |||
2485 | ||||
2486 | // New point on line | |||
2487 | if (move_along_line){ | |||
2488 | point-=(step_size/pscale)*dir; | |||
2489 | s-=step_size; | |||
2490 | } | |||
2491 | } | |||
2492 | } | |||
2493 | if(track_kd!=NULL__null) | |||
2494 | { | |||
2495 | track_kd->setErrorMatrix(cov); | |||
2496 | track_kd->setMomentum(oldmom); | |||
2497 | track_kd->setPosition(oldpos); | |||
2498 | track_kd->setTime(track_kd->time() + tflight); | |||
2499 | } | |||
2500 | ||||
2501 | // Compute the variance on the doca | |||
2502 | diff=oldpos-point; | |||
2503 | double dx=diff.x(); | |||
2504 | double dy=diff.y(); | |||
2505 | double dz=diff.z(); | |||
2506 | ||||
2507 | if(track_kd==NULL__null) | |||
2508 | break; | |||
2509 | //calculate var_doca | |||
2510 | if (covline==NULL__null){ | |||
2511 | var_doca=(dx*dx*(cov(kX,kX))+dy*dy*(cov(kY,kY)) | |||
2512 | +dz*dz*(cov(kZ,kZ))+2.*dx*dy*(cov(kX,kY)) | |||
2513 | +2.*dx*dz*(cov(kX,kZ))+2.*dy*dz*(cov(kY,kZ))) | |||
2514 | /(doca*doca); | |||
2515 | } | |||
2516 | else{ | |||
2517 | DMatrixDSym cov2(*covline); | |||
2518 | if (move_along_line){ | |||
2519 | double two_s=2.*s; | |||
2520 | double s_sq=s*s; | |||
2521 | cov2(kX,kX)+=two_s*cov2(kPx,kX)+s_sq*cov2(kPx,kPx); | |||
2522 | cov2(kY,kY)+=two_s*cov2(kPy,kY)+s_sq*cov2(kPy,kPy); | |||
2523 | cov2(kZ,kZ)+=two_s*cov2(kPz,kZ)+s_sq*cov2(kPz,kPz); | |||
2524 | } | |||
2525 | var_doca=(dx*dx*(cov(kX,kX)+cov2(kX,kX)) | |||
2526 | +dy*dy*(cov(kY,kY)+cov2(kY,kY)) | |||
2527 | +dz*dz*(cov(kZ,kZ)+cov2(kZ,kZ)) | |||
2528 | +2.*dx*dy*(cov(kX,kY)+cov2(kX,kY)) | |||
2529 | +2.*dx*dz*(cov(kX,kZ)+cov2(kX,kZ)) | |||
2530 | +2.*dy*dz*(cov(kY,kZ)+cov2(kY,kZ))) | |||
2531 | /(doca*doca); | |||
2532 | } | |||
2533 | break; | |||
2534 | } | |||
2535 | // New point on line | |||
2536 | if (move_along_line){ | |||
2537 | point+=(step_size/pscale)*dir; | |||
2538 | s+=step_size; | |||
2539 | } | |||
2540 | ||||
2541 | // Propagate the covariance matrix of the track along the trajectory | |||
2542 | this->PropagateCovariance(this->swim_steps[i+1].s-swim_step->s,q,mass_sq,swim_step->mom,swim_step->origin,swim_step->B,cov); | |||
2543 | ||||
2544 | // Store the current position and doca | |||
2545 | oldpos=pos; | |||
2546 | oldmom=swim_step->mom; | |||
2547 | tflight=swim_step->t; | |||
2548 | doca=new_doca; | |||
2549 | } | |||
2550 | ||||
2551 | // "Vertex" is mid-point of line connecting the positions of closest | |||
2552 | // approach of the two tracks | |||
2553 | commonpos = 0.5*(oldpos + point); | |||
2554 | ||||
2555 | return NOERROR; | |||
2556 | } | |||
2557 | ||||
2558 | // Find the position along a reference trajectory closest to a given point. | |||
2559 | // The error matrix for the point can also be input via a pointer. The error | |||
2560 | // matrix is expected to be 7x7, with the order {Px,Py,Pz,X,Y,Z,T}. | |||
2561 | // Outputs the kinematic data object (including the covariance) at this | |||
2562 | // position,and the doca and the variance on the doca. | |||
2563 | jerror_t DReferenceTrajectory::FindPOCAtoPoint(const DVector3 &point, | |||
2564 | const DMatrixDSym *covpoint, | |||
2565 | DKinematicData *track_kd, | |||
2566 | double &doca, double &var_doca) const{ | |||
2567 | if (track_kd==NULL__null) return RESOURCE_UNAVAILABLE; | |||
2568 | ||||
2569 | DVector3 dir, commonpos; | |||
2570 | return FindPOCAtoLine(point,dir,covpoint,track_kd,commonpos,doca,var_doca); | |||
2571 | } | |||
2572 | ||||
2573 | // Find the mid-point of the line connecting the points of closest approach of the | |||
2574 | // trajectories of two tracks. Return the positions, momenta, and error matrices | |||
2575 | // at these points for the two tracks. | |||
2576 | jerror_t DReferenceTrajectory::IntersectTracks(const DReferenceTrajectory *rt2, DKinematicData *track1_kd, DKinematicData *track2_kd, DVector3 &pos, double &doca, double &var_doca) const { | |||
2577 | const swim_step_t *swim_step1=this->swim_steps; | |||
2578 | const swim_step_t *swim_step2=rt2->swim_steps; | |||
2579 | ||||
2580 | DMatrixDSym cov1(7), cov2(7); | |||
2581 | ||||
2582 | if((track1_kd != NULL__null) && (track2_kd != NULL__null)){ | |||
2583 | cov1=track1_kd->errorMatrix(); | |||
2584 | cov2=track2_kd->errorMatrix(); | |||
2585 | } | |||
2586 | ||||
2587 | double q1=this->q; | |||
2588 | double q2=rt2->q; | |||
2589 | double mass_sq1=this->mass_sq; | |||
2590 | double mass_sq2=rt2->mass_sq; | |||
2591 | ||||
2592 | // Initialize the doca and traverse both particles' trajectories | |||
2593 | doca=1000.; | |||
2594 | double tflight1=0.,tflight2=0.; | |||
2595 | for (int i=0;i<this->Nswim_steps-1&&i<rt2->Nswim_steps-1; i++, swim_step1++, swim_step2++){ | |||
2596 | DVector3 pos1=swim_step1->origin; | |||
2597 | DVector3 pos2=swim_step2->origin; | |||
2598 | DVector3 diff=pos1-pos2; | |||
2599 | double new_doca=diff.Mag(); | |||
2600 | ||||
2601 | if (new_doca>doca){ | |||
2602 | int prev_i=i-1; | |||
2603 | // positions and momenta of tracks at the center of the | |||
2604 | // bracketed region | |||
2605 | pos1=this->swim_steps[prev_i].origin; | |||
2606 | DVector3 mom1=this->swim_steps[prev_i].mom; | |||
2607 | pos2=rt2->swim_steps[prev_i].origin; | |||
2608 | DVector3 mom2=rt2->swim_steps[prev_i].mom; | |||
2609 | ||||
2610 | // If we break out of the loop immediately, we have not bracketed the | |||
2611 | // doca yet... | |||
2612 | if (i==1) { // backtrack to find the true doca | |||
2613 | tflight1=tflight2=0.; | |||
2614 | if((track1_kd != NULL__null) && (track2_kd != NULL__null)){ | |||
2615 | cov1=track1_kd->errorMatrix(); | |||
2616 | cov2=track2_kd->errorMatrix(); | |||
2617 | } | |||
2618 | // Initialize the steppers | |||
2619 | DMagneticFieldStepper stepper1(this->bfield, q1, &pos1, &mom1); | |||
2620 | DMagneticFieldStepper stepper2(this->bfield, q2, &pos2, &mom2); | |||
2621 | ||||
2622 | // Do the backtracking... | |||
2623 | int inew=0; | |||
2624 | DVector3 oldpos1=pos1; | |||
2625 | DVector3 oldpos2=pos2; | |||
2626 | while (inew<20){ | |||
2627 | if (pos1.z()<0. || pos2.z()<0. || pos1.z()>400. || pos2.z()>400. | |||
2628 | || pos1.Perp()>65. || pos2.Perp()>65.){ | |||
2629 | break; | |||
2630 | } | |||
2631 | DVector3 B1,B2; | |||
2632 | double ds1=stepper1.Step(&pos1,&B1,-0.5); | |||
2633 | double ds2=stepper2.Step(&pos2,&B2,-0.5); | |||
2634 | ||||
2635 | // Compute the revised estimate for the doca | |||
2636 | diff=pos1-pos2; | |||
2637 | new_doca=diff.Mag(); | |||
2638 | ||||
2639 | if(new_doca > doca){ | |||
2640 | pos1=oldpos1; | |||
2641 | pos2=oldpos2; | |||
2642 | break; | |||
2643 | } | |||
2644 | ||||
2645 | // Propagate the covariance matrices along the trajectories | |||
2646 | if((track1_kd != NULL__null) && (track2_kd != NULL__null)){ | |||
2647 | this->PropagateCovariance(ds1,q1,mass_sq1,mom1,oldpos1,B1,cov1); | |||
2648 | rt2->PropagateCovariance(ds2,q2,mass_sq2,mom2,oldpos2,B2,cov2); | |||
2649 | } | |||
2650 | ||||
2651 | // Store the current positions, doca and adjust flight times | |||
2652 | oldpos1=pos1; | |||
2653 | oldpos2=pos2; | |||
2654 | doca=new_doca; | |||
2655 | ||||
2656 | double one_over_p1_sq=1./mom1.Mag2(); | |||
2657 | tflight1+=ds1*sqrt(1.+mass_sq1*one_over_p1_sq)/SPEED_OF_LIGHT29.9792; | |||
2658 | ||||
2659 | double one_over_p2_sq=1./mom2.Mag2(); | |||
2660 | tflight2+=ds2*sqrt(1.+mass_sq2*one_over_p2_sq)/SPEED_OF_LIGHT29.9792; | |||
2661 | ||||
2662 | // New momenta | |||
2663 | stepper1.GetMomentum(mom1); | |||
2664 | stepper2.GetMomentum(mom2); | |||
2665 | } | |||
2666 | } | |||
2667 | ||||
2668 | // Use Brent's algorithm to find a better approximation for | |||
2669 | // the poca of the two tracks | |||
2670 | double ds=0.5; | |||
2671 | BrentsAlgorithm(pos1,mom1,pos2,mom2,ds,q2,doca); | |||
2672 | ||||
2673 | // "Vertex" is mid-point of line connecting the positions of closest | |||
2674 | // approach of the two tracks | |||
2675 | pos=0.5*(pos1+pos2); | |||
2676 | ||||
2677 | if((track1_kd != NULL__null) && (track2_kd != NULL__null)){ | |||
2678 | // Adjust flight times | |||
2679 | double one_over_p1_sq=1./mom1.Mag2(); | |||
2680 | tflight1+=ds*sqrt(1.+mass_sq1*one_over_p1_sq)/SPEED_OF_LIGHT29.9792; | |||
2681 | ||||
2682 | double one_over_p2_sq=1./mom2.Mag2(); | |||
2683 | tflight2+=ds*sqrt(1.+mass_sq2*one_over_p2_sq)/SPEED_OF_LIGHT29.9792; | |||
2684 | ||||
2685 | track1_kd->setErrorMatrix(cov1); | |||
2686 | track1_kd->setMomentum(mom1); | |||
2687 | track1_kd->setPosition(pos1); | |||
2688 | track1_kd->setTime(track1_kd->time() + tflight1); | |||
2689 | ||||
2690 | track2_kd->setErrorMatrix(cov2); | |||
2691 | track2_kd->setMomentum(mom2); | |||
2692 | track2_kd->setPosition(pos2); | |||
2693 | track2_kd->setTime(track2_kd->time() + tflight2); | |||
2694 | ||||
2695 | // Compute the variance on the doca | |||
2696 | diff=pos1-pos2; | |||
2697 | double dx=diff.x(); | |||
2698 | double dy=diff.y(); | |||
2699 | double dz=diff.z(); | |||
2700 | var_doca=(dx*dx*(cov1(kX,kX)+cov2(kX,kX)) | |||
2701 | +dy*dy*(cov1(kY,kY)+cov2(kY,kY)) | |||
2702 | +dz*dz*(cov1(kZ,kZ)+cov2(kZ,kZ)) | |||
2703 | +2.*dx*dy*(cov1(kX,kY)+cov2(kX,kY)) | |||
2704 | +2.*dx*dz*(cov1(kX,kZ)+cov2(kX,kZ)) | |||
2705 | +2.*dy*dz*(cov1(kY,kZ)+cov2(kY,kZ))) | |||
2706 | /(doca*doca); | |||
2707 | } | |||
2708 | break; | |||
2709 | } | |||
2710 | ||||
2711 | // Propagate the covariance matrices along the trajectories | |||
2712 | if((track1_kd != NULL__null) && (track2_kd != NULL__null)){ | |||
2713 | this->PropagateCovariance(this->swim_steps[i+1].s-swim_step1->s,q1,mass_sq1,swim_step1->mom,swim_step1->origin,swim_step1->B,cov1); | |||
2714 | rt2->PropagateCovariance(rt2->swim_steps[i+1].s-swim_step2->s,q2,mass_sq2,swim_step2->mom,swim_step2->origin,swim_step2->B,cov2); | |||
2715 | } | |||
2716 | ||||
2717 | // Store the current positions and doca | |||
2718 | tflight1=swim_step1->t; | |||
2719 | tflight2=swim_step2->t; | |||
2720 | doca=new_doca; | |||
2721 | } | |||
2722 | ||||
2723 | return NOERROR; | |||
2724 | } | |||
2725 | ||||
2726 | ||||
2727 | // Routine for finding the minimum of a function bracketed between two values | |||
2728 | // (see Numerical Recipes in C, pp. 404-405). | |||
2729 | #define ITMAX20 20 | |||
2730 | #define CGOLD0.3819660 0.3819660 | |||
2731 | #define EPS21.e-4 1.e-4 | |||
2732 | #define ZEPS1.0e-10 1.0e-10 | |||
2733 | #define SHFT(a,b,c,d)(a)=(b);(b)=(c);(c)=(d); (a)=(b);(b)=(c);(c)=(d); | |||
2734 | #define SIGN(a,b)((b)>=0.0?fabs(a):-fabs(a)) ((b)>=0.0?fabs(a):-fabs(a)) | |||
2735 | jerror_t DReferenceTrajectory::BrentsAlgorithm(DVector3 &pos1,DVector3 &mom1, | |||
2736 | DVector3 &pos2,DVector3 &mom2, | |||
2737 | double ds,double q2, | |||
2738 | double &doca) const{ | |||
2739 | double d=0.,u=0.; | |||
2740 | double e=0.0; // will be distance moved on step before last | |||
2741 | double ax=0.; | |||
2742 | double bx=-ds; | |||
2743 | double cx=-2.*ds; | |||
2744 | ||||
2745 | double a=(ax<cx?ax:cx); | |||
2746 | double b=(ax>cx?ax:cx); | |||
2747 | double x=bx,w=bx,v=bx; | |||
2748 | ||||
2749 | // initialization | |||
2750 | double fw=doca; | |||
2751 | double fv=fw; | |||
2752 | double fx=fw; | |||
2753 | double u_old=x; | |||
2754 | DMagneticFieldStepper stepper1(this->bfield, this->q, &pos1, &mom1); | |||
2755 | DMagneticFieldStepper stepper2(this->bfield, q2, &pos2, &mom2); | |||
2756 | ||||
2757 | // main loop | |||
2758 | for (unsigned int iter=1;iter<=ITMAX20;iter++){ | |||
2759 | double xm=0.5*(a+b); | |||
2760 | double tol1=EPS21.e-4*fabs(x)+ZEPS1.0e-10; | |||
2761 | double tol2=2.0*tol1; | |||
2762 | if (fabs(x-xm)<=(tol2-0.5*(b-a))){ | |||
2763 | doca=(pos1-pos2).Mag(); | |||
2764 | ds=cx-x; | |||
2765 | ||||
2766 | // New momenta | |||
2767 | stepper1.GetMomentum(mom1); | |||
2768 | stepper2.GetMomentum(mom2); | |||
2769 | ||||
2770 | return NOERROR; | |||
2771 | } | |||
2772 | // trial parabolic fit | |||
2773 | if (fabs(e)>tol1){ | |||
2774 | double x_minus_w=x-w; | |||
2775 | double x_minus_v=x-v; | |||
2776 | double r=x_minus_w*(fx-fv); | |||
2777 | double q=x_minus_v*(fx-fw); | |||
2778 | double p=x_minus_v*q-x_minus_w*r; | |||
2779 | q=2.0*(q-r); | |||
2780 | if (q>0.0) p=-p; | |||
2781 | q=fabs(q); | |||
2782 | double etemp=e; | |||
2783 | e=d; | |||
2784 | if (fabs(p)>=fabs(0.5*q*etemp) || p<=q*(a-x) || p>=q*(b-x)) | |||
2785 | // fall back on the Golden Section technique | |||
2786 | d=CGOLD0.3819660*(e=(x>=xm?a-x:b-x)); | |||
2787 | else{ | |||
2788 | // parabolic step | |||
2789 | d=p/q; | |||
2790 | u=x+d; | |||
2791 | if (u-a<tol2 || b-u <tol2) | |||
2792 | d=SIGN(tol1,xm-x)((xm-x)>=0.0?fabs(tol1):-fabs(tol1)); | |||
2793 | } | |||
2794 | } else{ | |||
2795 | d=CGOLD0.3819660*(e=(x>=xm?a-x:b-x)); | |||
2796 | } | |||
2797 | u=(fabs(d)>=tol1 ? x+d: x+SIGN(tol1,d)((d)>=0.0?fabs(tol1):-fabs(tol1))); | |||
2798 | ||||
2799 | // Function evaluation | |||
2800 | double du=u_old-u; | |||
2801 | stepper1.Step(&pos1,NULL__null,du); | |||
2802 | stepper2.Step(&pos2,NULL__null,du); | |||
2803 | DVector3 diff=pos1-pos2; | |||
2804 | double fu=diff.Mag(); | |||
2805 | u_old=u; | |||
2806 | ||||
2807 | if (fu<=fx){ | |||
2808 | if (u>=x) a=x; else b=x; | |||
2809 | SHFT(v,w,x,u)(v)=(w);(w)=(x);(x)=(u);; | |||
2810 | SHFT(fv,fw,fx,fu)(fv)=(fw);(fw)=(fx);(fx)=(fu);; | |||
2811 | } | |||
2812 | else { | |||
2813 | if (u<x) a=u; else b=u; | |||
2814 | if (fu<=fw || w==x){ | |||
2815 | v=w; | |||
2816 | w=u; | |||
2817 | fv=fw; | |||
2818 | fw=fu; | |||
2819 | } | |||
2820 | else if (fu<=fv || v==x || v==w){ | |||
2821 | v=u; | |||
2822 | fv=fu; | |||
2823 | } | |||
2824 | } | |||
2825 | } | |||
2826 | ||||
2827 | // We only get here if there is a convergence issue... | |||
2828 | ds=cx-x; | |||
2829 | doca=(pos1-pos2).Mag(); | |||
2830 | stepper1.GetMomentum(mom1); | |||
2831 | stepper2.GetMomentum(mom2); | |||
2832 | ||||
2833 | return NOERROR; | |||
2834 | } | |||
2835 | ||||
2836 |