File: | libraries/TRACKING/DReferenceTrajectory.cc |
Location: | line 2764, column 7 |
Description: | Value stored to 'ds' is never read |
1 | // $Id$ |
2 | // |
3 | // File: DReferenceTrajectory.cc |
4 | // Created: Wed Jul 19 13:42:58 EDT 2006 |
5 | // Creator: davidl (on Darwin swire-b241.jlab.org 8.7.0 powerpc) |
6 | // |
7 | |
8 | #include <signal.h> |
9 | #include <memory> |
10 | #include <cmath> |
11 | |
12 | #include <DVector3.h> |
13 | using namespace std; |
14 | #include <math.h> |
15 | #include <algorithm> |
16 | |
17 | #include "DReferenceTrajectory.h" |
18 | #include "DTrackCandidate.h" |
19 | #include "DMagneticFieldStepper.h" |
20 | #include "HDGEOMETRY/DRootGeom.h" |
21 | #define ONE_THIRD0.33333333333333333 0.33333333333333333 |
22 | #define TWO_THIRD0.66666666666666667 0.66666666666666667 |
23 | #define EPS1e-8 1e-8 |
24 | #define NaNstd::numeric_limits<double>::quiet_NaN() std::numeric_limits<double>::quiet_NaN() |
25 | |
26 | struct StepStruct {DReferenceTrajectory::swim_step_t steps[256];}; |
27 | |
28 | //--------------------------------- |
29 | // DReferenceTrajectory (Constructor) |
30 | //--------------------------------- |
31 | DReferenceTrajectory::DReferenceTrajectory(const DMagneticFieldMap *bfield |
32 | , double q |
33 | , swim_step_t *swim_steps |
34 | , int max_swim_steps |
35 | , double step_size) |
36 | { |
37 | // Copy some values into data members |
38 | this->q = q; |
39 | this->step_size = step_size; |
40 | this->bfield = bfield; |
41 | this->Nswim_steps = 0; |
42 | this->dist_to_rt_depth = 0; |
43 | this->mass = 0.13957; // assume pion mass until otherwise specified |
44 | this->mass_sq=this->mass*this->mass; |
45 | this->hit_cdc_endplate = false; |
46 | this->RootGeom=NULL__null; |
47 | this->geom = NULL__null; |
48 | this->ploss_direction = kForward; |
49 | this->check_material_boundaries = true; |
50 | this->zmin_track_boundary = -100.0; // boundary at which to stop swimming |
51 | this->zmax_track_boundary = 670.0; // boundary at which to stop swimming |
52 | this->Rmax_interior = 65.0; // Maximum radius (in cm) corresponding to inside of BCAL |
53 | this->Rmax_exterior = 88.0; // Maximum radius (in cm) corresponding to outside of BCAL |
54 | |
55 | this->last_phi = 0.0; |
56 | this->last_swim_step = NULL__null; |
57 | this->last_dist_along_wire = 0.0; |
58 | this->last_dz_dphi = 0.0; |
59 | |
60 | this->debug_level = 0; |
61 | |
62 | // Initialize some values from configuration parameters |
63 | BOUNDARY_STEP_FRACTION = 0.80; |
64 | MIN_STEP_SIZE = 0.1; // cm |
65 | MAX_STEP_SIZE = 3.0; // cm |
66 | int MAX_SWIM_STEPS = 2500; |
67 | |
68 | gPARMS->SetDefaultParameter("TRK:BOUNDARY_STEP_FRACTION" , BOUNDARY_STEP_FRACTION, "Fraction of estimated distance to boundary to use as step size"); |
69 | gPARMS->SetDefaultParameter("TRK:MIN_STEP_SIZE" , MIN_STEP_SIZE, "Minimum step size in cm to take when swimming a track with adaptive step sizes"); |
70 | gPARMS->SetDefaultParameter("TRK:MAX_STEP_SIZE" , MAX_STEP_SIZE, "Maximum step size in cm to take when swimming a track with adaptive step sizes"); |
71 | gPARMS->SetDefaultParameter("TRK:MAX_SWIM_STEPS" , MAX_SWIM_STEPS, "Number of swim steps for DReferenceTrajectory to allocate memory for (when not using external buffer)"); |
72 | |
73 | // It turns out that the greatest bottleneck in speed here comes from |
74 | // allocating/deallocating the large block of memory required to hold |
75 | // all of the trajectory info. The preferred way of calling this is |
76 | // with a pointer allocated once at program startup. This code block |
77 | // though allows it to be allocated here if necessary. |
78 | if(!swim_steps){ |
79 | own_swim_steps = true; |
80 | this->max_swim_steps = MAX_SWIM_STEPS; |
81 | this->swim_steps = new swim_step_t[this->max_swim_steps]; |
82 | }else{ |
83 | own_swim_steps = false; |
84 | this->max_swim_steps = max_swim_steps; |
85 | this->swim_steps = swim_steps; |
86 | } |
87 | } |
88 | |
89 | //--------------------------------- |
90 | // DReferenceTrajectory (Copy Constructor) |
91 | //--------------------------------- |
92 | DReferenceTrajectory::DReferenceTrajectory(const DReferenceTrajectory& rt) |
93 | { |
94 | /// The copy constructor will always allocate its own memory for the |
95 | /// swim steps and set its internal flag to indicate that is owns them |
96 | /// regardless of the owner of the source trajectory's. |
97 | |
98 | this->Nswim_steps = rt.Nswim_steps; |
99 | this->q = rt.q; |
100 | this->max_swim_steps = rt.max_swim_steps; |
101 | this->own_swim_steps = true; |
102 | this->step_size = rt.step_size; |
103 | this->bfield = rt.bfield; |
104 | this->last_phi = rt.last_phi; |
105 | this->last_dist_along_wire = rt.last_dist_along_wire; |
106 | this->last_dz_dphi = rt.last_dz_dphi; |
107 | this->RootGeom = rt.RootGeom; |
108 | this->geom = rt.geom; |
109 | this->dist_to_rt_depth = 0; |
110 | this->mass = rt.GetMass(); |
111 | this->mass_sq=this->mass*this->mass; |
112 | this->ploss_direction = rt.ploss_direction; |
113 | this->check_material_boundaries = rt.GetCheckMaterialBoundaries(); |
114 | this->BOUNDARY_STEP_FRACTION = rt.GetBoundaryStepFraction(); |
115 | this->MIN_STEP_SIZE = rt.GetMinStepSize(); |
116 | this->MAX_STEP_SIZE = rt.GetMaxStepSize(); |
117 | this->debug_level=rt.debug_level; |
118 | this->zmin_track_boundary = -100.0; // boundary at which to stop swimming |
119 | this->zmax_track_boundary = 670.0; // boundary at which to stop swimming |
120 | this->Rmax_interior = 65.0; // Maximum radius (in cm) corresponding to inside of BCAL |
121 | this->Rmax_exterior = 88.0; // Maximum radius (in cm) corresponding to outside of BCAL |
122 | |
123 | |
124 | this->swim_steps = new swim_step_t[this->max_swim_steps]; |
125 | this->last_swim_step = NULL__null; |
126 | for(int i=0; i<Nswim_steps; i++) |
127 | { |
128 | swim_steps[i] = rt.swim_steps[i]; |
129 | if(&(rt.swim_steps[i]) == rt.last_swim_step) |
130 | this->last_swim_step = &(swim_steps[i]); |
131 | } |
132 | |
133 | } |
134 | |
135 | //--------------------------------- |
136 | // operator= (Assignment operator) |
137 | //--------------------------------- |
138 | DReferenceTrajectory& DReferenceTrajectory::operator=(const DReferenceTrajectory& rt) |
139 | { |
140 | /// The assignment operator will always make sure the memory allocated |
141 | /// for the swim_steps is owned by the object being copied into. |
142 | /// If it already owns memory of sufficient size, then it will be |
143 | /// reused. If it owns memory that is too small, it will be freed and |
144 | /// a new block allocated. If it does not own its swim_steps coming |
145 | /// in, then it will allocate memory so that it does own it on the |
146 | /// way out. |
147 | |
148 | if(&rt == this)return *this; // protect against self copies |
149 | |
150 | // Free memory if block is too small |
151 | if(own_swim_steps==true && max_swim_steps<rt.Nswim_steps){ |
152 | delete[] swim_steps; |
153 | swim_steps=NULL__null; |
154 | } |
155 | |
156 | // Forget memory block if we don't currently own it |
157 | if(!own_swim_steps){ |
158 | swim_steps=NULL__null; |
159 | } |
160 | |
161 | this->Nswim_steps = rt.Nswim_steps; |
162 | this->q = rt.q; |
163 | this->max_swim_steps = rt.max_swim_steps; |
164 | this->own_swim_steps = true; |
165 | this->step_size = rt.step_size; |
166 | this->bfield = rt.bfield; |
167 | this->last_phi = rt.last_phi; |
168 | this->last_dist_along_wire = rt.last_dist_along_wire; |
169 | this->last_dz_dphi = rt.last_dz_dphi; |
170 | this->RootGeom = rt.RootGeom; |
171 | this->geom = rt.geom; |
172 | this->dist_to_rt_depth = rt.dist_to_rt_depth; |
173 | this->mass = rt.GetMass(); |
174 | this->mass_sq=this->mass*this->mass; |
175 | this->ploss_direction = rt.ploss_direction; |
176 | this->check_material_boundaries = rt.GetCheckMaterialBoundaries(); |
177 | this->BOUNDARY_STEP_FRACTION = rt.GetBoundaryStepFraction(); |
178 | this->MIN_STEP_SIZE = rt.GetMinStepSize(); |
179 | this->MAX_STEP_SIZE = rt.GetMaxStepSize(); |
180 | |
181 | // Allocate memory if needed |
182 | if(swim_steps==NULL__null)this->swim_steps = new swim_step_t[this->max_swim_steps]; |
183 | |
184 | // Copy swim steps |
185 | this->last_swim_step = NULL__null; |
186 | for(int i=0; i<Nswim_steps; i++) |
187 | { |
188 | swim_steps[i] = rt.swim_steps[i]; |
189 | if(&(rt.swim_steps[i]) == rt.last_swim_step) |
190 | this->last_swim_step = &(swim_steps[i]); |
191 | } |
192 | |
193 | |
194 | return *this; |
195 | } |
196 | |
197 | //--------------------------------- |
198 | // ~DReferenceTrajectory (Destructor) |
199 | //--------------------------------- |
200 | DReferenceTrajectory::~DReferenceTrajectory() |
201 | { |
202 | if(own_swim_steps){ |
203 | delete[] swim_steps; |
204 | } |
205 | } |
206 | |
207 | //--------------------------------- |
208 | // CopyWithShift |
209 | //--------------------------------- |
210 | void DReferenceTrajectory::CopyWithShift(const DReferenceTrajectory *rt, DVector3 shift) |
211 | { |
212 | // First, do a straight copy |
213 | *this = *rt; |
214 | |
215 | // Second, shift all positions |
216 | for(int i=0; i<Nswim_steps; i++)swim_steps[i].origin += shift; |
217 | } |
218 | |
219 | |
220 | //--------------------------------- |
221 | // Reset |
222 | //--------------------------------- |
223 | void DReferenceTrajectory::Reset(void){ |
224 | //reset DReferenceTrajectory for re-use |
225 | this->Nswim_steps = 0; |
226 | this->ploss_direction = kForward; |
227 | this->mass = 0.13957; // assume pion mass until otherwise specified |
228 | this->mass_sq=this->mass*this->mass; |
229 | this->hit_cdc_endplate = false; |
230 | this->last_phi = 0.0; |
231 | this->last_swim_step = NULL__null; |
232 | this->last_dist_along_wire = 0.0; |
233 | this->last_dz_dphi = 0.0; |
234 | this->dist_to_rt_depth = 0; |
235 | this->check_material_boundaries = true; |
236 | } |
237 | |
238 | //--------------------------------- |
239 | // FastSwim -- light-weight swim to a wire that does not treat multiple |
240 | // scattering but does handle energy loss. |
241 | // No checks for distance to boundaries are done. |
242 | //--------------------------------- |
243 | void DReferenceTrajectory::FastSwim(const DVector3 &pos, const DVector3 &mom, |
244 | DVector3 &last_pos,DVector3 &last_mom, |
245 | double q,double smax, |
246 | const DCoordinateSystem *wire){ |
247 | DVector3 mypos(pos); |
248 | DVector3 mymom(mom); |
249 | |
250 | // Initialize the stepper |
251 | DMagneticFieldStepper stepper(bfield, q, &pos, &mom); |
252 | double s=0,doca=1000.,old_doca=1000.,dP_dx=0.; |
253 | double mass=GetMass(); |
254 | while (s<smax){ |
255 | // Save old value of doca |
256 | old_doca=doca; |
257 | |
258 | // Adjust step size to take smaller steps in regions of high momentum loss |
259 | if(mass>0. && step_size<0.0 && geom){ |
260 | double KrhoZ_overA=0.0; |
261 | double rhoZ_overA=0.0; |
262 | double LogI=0.0; |
263 | double X0=0.0; |
264 | if (geom->FindMatALT1(mypos,mymom,KrhoZ_overA,rhoZ_overA,LogI,X0) |
265 | ==NOERROR){ |
266 | // Calculate momentum loss due to ionization |
267 | dP_dx = dPdx(mymom.Mag(), KrhoZ_overA, rhoZ_overA,LogI); |
268 | double my_step_size = 0.0001/fabs(dP_dx); |
269 | |
270 | if(my_step_size>MAX_STEP_SIZE)my_step_size=MAX_STEP_SIZE; // maximum step size in cm |
271 | if(my_step_size<MIN_STEP_SIZE)my_step_size=MIN_STEP_SIZE; // minimum step size in cm |
272 | |
273 | stepper.SetStepSize(my_step_size); |
274 | } |
275 | } |
276 | // Swim to next |
277 | double ds=stepper.Step(NULL__null); |
278 | s+=ds; |
279 | |
280 | stepper.GetPosMom(mypos,mymom); |
281 | if (mass>0 && dP_dx<0.){ |
282 | double ptot=mymom.Mag(); |
283 | if (ploss_direction==kForward) ptot+=dP_dx*ds; |
284 | else ptot-=dP_dx*ds; |
285 | mymom.SetMag(ptot); |
286 | stepper.SetStartingParams(q, &mypos, &mymom); |
287 | } |
288 | |
289 | // Break if we have passed the wire |
290 | DVector3 wirepos=wire->origin; |
291 | if (fabs(wire->udir.z())>0.){ // for CDC wires |
292 | wirepos+=((mypos.z()-wire->origin.z())/wire->udir.z())*wire->udir; |
293 | } |
294 | doca=(wirepos-mypos).Mag(); |
295 | if (doca>old_doca) break; |
296 | |
297 | // Store the position and momentum for this step |
298 | last_pos=mypos; |
299 | last_mom=mymom; |
300 | } |
301 | } |
302 | |
303 | // Faster version of the swimmer that uses an alternate stepper and does not |
304 | // check for material boundaries. |
305 | void DReferenceTrajectory::FastSwim(const DVector3 &pos, const DVector3 &mom, double q,double smax, double zmin,double zmax){ |
306 | |
307 | /// (Re)Swim the trajectory starting from pos with momentum mom. |
308 | /// This will use the charge and step size (if given) passed to |
309 | /// the constructor when the object was created. It will also |
310 | /// (re)use the swim_step buffer, replacing it's contents. |
311 | |
312 | // If the charged passed to us is greater that 10, it means use the charge |
313 | // already stored in the class. Otherwise, use what was passed to us. |
314 | if(fabs(q)>10) |
315 | q = this->q; |
316 | else |
317 | this->q = q; |
318 | |
319 | DMagneticFieldStepper stepper(bfield, q, &pos, &mom); |
320 | if(step_size>0.0)stepper.SetStepSize(step_size); |
321 | |
322 | // Step until we hit a boundary (don't track more than 20 meters) |
323 | swim_step_t *swim_step = this->swim_steps; |
324 | double t=0.; |
325 | Nswim_steps = 0; |
326 | double itheta02 = 0.0; |
327 | double itheta02s = 0.0; |
328 | double itheta02s2 = 0.0; |
329 | double X0sum=0.0; |
330 | swim_step_t *last_step=NULL__null; |
331 | double old_radius=10000.; |
332 | |
333 | // Variables used to tag the step at which the track passes into one one of |
334 | // the outer detectors |
335 | index_at_bcal=-1; |
336 | index_at_tof=-1; |
337 | index_at_fcal=-1; |
338 | bool hit_bcal=false,hit_fcal=false,hit_tof=false; |
339 | |
340 | for(double s=0; fabs(s)<smax; Nswim_steps++, swim_step++){ |
341 | |
342 | if(Nswim_steps>=this->max_swim_steps){ |
343 | if (debug_level>0){ |
344 | jerr<<__FILE__"libraries/TRACKING/DReferenceTrajectory.cc"<<":"<<__LINE__344<<" Too many steps in trajectory. Truncating..."<<endl; |
345 | } |
346 | break; |
347 | } |
348 | |
349 | stepper.GetDirs(swim_step->sdir, swim_step->tdir, swim_step->udir); |
350 | stepper.GetPosMom(swim_step->origin, swim_step->mom); |
351 | swim_step->Ro = stepper.GetRo(); |
352 | swim_step->s = s; |
353 | swim_step->t = t; |
354 | |
355 | // Magnetic field at current position |
356 | bfield->GetField(swim_step->origin,swim_step->B); |
357 | |
358 | //magnitude of momentum and beta |
359 | double p_sq=swim_step->mom.Mag2(); |
360 | double one_over_beta_sq=1.+mass_sq/p_sq; |
361 | |
362 | // Add material if geom or RootGeom is not NULL |
363 | // If both are non-NULL, then use RootGeom |
364 | double dP = 0.0; |
365 | double dP_dx=0.0; |
366 | if(RootGeom || geom){ |
367 | double KrhoZ_overA=0.0; |
368 | double rhoZ_overA=0.0; |
369 | double LogI=0.0; |
370 | double X0=0.0; |
371 | jerror_t err; |
372 | if(RootGeom){ |
373 | double rhoZ_overA,rhoZ_overA_logI; |
374 | err = RootGeom->FindMatLL(swim_step->origin, |
375 | rhoZ_overA, |
376 | rhoZ_overA_logI, |
377 | X0); |
378 | KrhoZ_overA=0.1535e-3*rhoZ_overA; |
379 | LogI=rhoZ_overA_logI/rhoZ_overA; |
380 | }else{ |
381 | err = geom->FindMatALT1(swim_step->origin, swim_step->mom, KrhoZ_overA, rhoZ_overA,LogI, X0); |
382 | } |
383 | if(err == NOERROR){ |
384 | if(X0>0.0){ |
385 | double p=sqrt(p_sq); |
386 | double delta_s = s; |
387 | if(last_step)delta_s -= last_step->s; |
388 | double radlen = delta_s/X0; |
389 | |
390 | if(radlen>1.0E-5){ // PDG 2008 pg 271, second to last paragraph |
391 | |
392 | // double theta0 = 0.0136*sqrt(one_over_beta_sq)/p*sqrt(radlen)*(1.0+0.038*log(radlen)); // From PDG 2008 eq 27.12 |
393 | //double theta02 = theta0*theta0; |
394 | double factor=1.0+0.038*log(radlen); |
395 | double theta02=1.8496e-4*factor*factor*radlen*one_over_beta_sq/p_sq; |
396 | |
397 | itheta02 += theta02; |
398 | itheta02s += s*theta02; |
399 | itheta02s2 += s*s*theta02; |
400 | X0sum+=X0; |
401 | } |
402 | |
403 | // Calculate momentum loss due to ionization |
404 | dP_dx = dPdx(p, KrhoZ_overA, rhoZ_overA,LogI); |
405 | } |
406 | } |
407 | last_step = swim_step; |
408 | } |
409 | swim_step->itheta02 = itheta02; |
410 | swim_step->itheta02s = itheta02s; |
411 | swim_step->itheta02s2 = itheta02s2; |
412 | swim_step->invX0=Nswim_steps/X0sum; |
413 | |
414 | if(step_size<0.0){ // step_size<0 indicates auto-calculated step size |
415 | // Adjust step size to take smaller steps in regions of high momentum loss |
416 | double my_step_size = 0.0001/fabs(dP_dx); |
417 | if(my_step_size>MAX_STEP_SIZE)my_step_size=MAX_STEP_SIZE; // maximum step size in cm |
418 | if(my_step_size<MIN_STEP_SIZE)my_step_size=MIN_STEP_SIZE; // minimum step size in cm |
419 | |
420 | stepper.SetStepSize(my_step_size); |
421 | } |
422 | |
423 | // Swim to next |
424 | double ds=stepper.FastStep(swim_step->B); |
425 | |
426 | // Calculate momentum loss due to the step we're about to take |
427 | dP = ds*dP_dx; |
428 | |
429 | // Adjust momentum due to ionization losses |
430 | if(dP!=0.0){ |
431 | DVector3 pos, mom; |
432 | stepper.GetPosMom(pos, mom); |
433 | double ptot = mom.Mag() - dP; // correct for energy loss |
434 | if (ptot<0) {Nswim_steps++; break;} |
435 | mom.SetMag(ptot); |
436 | stepper.SetStartingParams(q, &pos, &mom); |
437 | } |
438 | |
439 | // update flight time |
440 | t+=ds*sqrt(one_over_beta_sq)/SPEED_OF_LIGHT29.9792; |
441 | s += ds; |
442 | |
443 | // Mark places along trajectory where we pass into one of the |
444 | // main detectors |
445 | double R=swim_step->origin.Perp(); |
446 | double z=swim_step->origin.Z(); |
447 | if (hit_bcal==false && R>65. && z<407 &&z>0){ |
448 | index_at_bcal=Nswim_steps-1; |
449 | hit_bcal=true; |
450 | } |
451 | if (hit_tof==false && z>606.){ |
452 | index_at_tof=Nswim_steps-1; |
453 | hit_tof=true; |
454 | } |
455 | if (hit_fcal==false && z>625.){ |
456 | index_at_fcal=Nswim_steps-1; |
457 | hit_fcal=true; |
458 | } |
459 | |
460 | // Exit the loop if we are already inside the volume of the BCAL |
461 | // and the radius is decreasing |
462 | if (R<old_radius && R>65.0 && z<407.0 && z>-100.0){ |
463 | Nswim_steps++; break; |
464 | } |
465 | |
466 | // Exit loop if we leave the tracking volume |
467 | if (z>zmax){Nswim_steps++; break;} |
468 | if(R>88.0 && z<407.0){Nswim_steps++; break;} // ran into BCAL |
469 | if (fabs(swim_step->origin.X())>129. |
470 | || fabs(swim_step->origin.Y())>129.) |
471 | {Nswim_steps++; break;} // left extent of TOF |
472 | if(z>670.0){Nswim_steps++; break;} // ran into FCAL |
473 | if(z<zmin){Nswim_steps++; break;} // exit upstream |
474 | |
475 | old_radius=swim_step->origin.Perp(); |
476 | } |
477 | |
478 | // OK. At this point the positions of the trajectory in the lab |
479 | // frame have been recorded along with the momentum of the |
480 | // particle and the directions of reference trajectory |
481 | // coordinate system at each point. |
482 | } |
483 | |
484 | |
485 | |
486 | |
487 | |
488 | |
489 | //--------------------------------- |
490 | // Swim |
491 | //--------------------------------- |
492 | void DReferenceTrajectory::Swim(const DVector3 &pos, const DVector3 &mom, double q, const DMatrixDSym *cov,double smax, const DCoordinateSystem *wire) |
493 | { |
494 | /// (Re)Swim the trajectory starting from pos with momentum mom. |
495 | /// This will use the charge and step size (if given) passed to |
496 | /// the constructor when the object was created. It will also |
497 | /// (re)use the sim_step buffer, replacing it's contents. |
498 | |
499 | // If the charged passed to us is greater that 10, it means use the charge |
500 | // already stored in the class. Otherwise, use what was passed to us. |
501 | if(fabs(q)>10) |
502 | q = this->q; |
503 | else |
504 | this->q = q; |
505 | |
506 | DMagneticFieldStepper stepper(bfield, q, &pos, &mom); |
507 | if(step_size>0.0)stepper.SetStepSize(step_size); |
508 | |
509 | // Step until we hit a boundary (don't track more than 20 meters) |
510 | swim_step_t *swim_step = this->swim_steps; |
511 | double t=0.; |
512 | Nswim_steps = 0; |
513 | double itheta02 = 0.0; |
514 | double itheta02s = 0.0; |
515 | double itheta02s2 = 0.0; |
516 | double X0sum=0.0; |
517 | swim_step_t *last_step=NULL__null; |
518 | double old_radius=10000.; |
519 | |
520 | DMatrixDSym mycov(7); |
521 | if (cov!=NULL__null){ |
522 | mycov=*cov; |
523 | } |
524 | |
525 | // Reset flag indicating whether we hit the CDC endplate |
526 | // and get the parameters of the endplate so we can check |
527 | // if we hit it while swimming. |
528 | //hit_cdc_endplate = false; |
529 | /* |
530 | #if 0 // The GetCDCEndplate call goes all the way back to the XML and slows down |
531 | // overall tracking by a factor of 20. Therefore, we skip finding it |
532 | // and just hard-code the values instead. 1/28/2011 DL |
533 | double cdc_endplate_z=150+17; // roughly, from memory |
534 | double cdc_endplate_dz=5.0; // roughly, from memory |
535 | double cdc_endplate_rmin=10.0; // roughly, from memory |
536 | double cdc_endplate_rmax=55.0; // roughly, from memory |
537 | if(geom)geom->GetCDCEndplate(cdc_endplate_z, cdc_endplate_dz, cdc_endplate_rmin, cdc_endplate_rmax); |
538 | double cdc_endplate_zmin = cdc_endplate_z - cdc_endplate_dz/2.0; |
539 | double cdc_endplate_zmax = cdc_endplate_zmin + cdc_endplate_dz; |
540 | #else |
541 | double cdc_endplate_rmin=10.0; // roughly, from memory |
542 | double cdc_endplate_rmax=55.0; // roughly, from memory |
543 | double cdc_endplate_zmin = 167.6; |
544 | double cdc_endplate_zmax = 168.2; |
545 | #endif |
546 | */ |
547 | |
548 | #if 0 |
549 | // Get Bfield from stepper to initialize Bz_old |
550 | DVector3 B; |
551 | stepper.GetBField(B); |
552 | double Bz_old = B.z(); |
553 | #endif |
554 | |
555 | // Variables used to tag the step at which the track passes into one |
556 | // one of the outer detectors |
557 | index_at_bcal=-1; |
558 | index_at_tof=-1; |
559 | index_at_fcal=-1; |
560 | bool hit_bcal=false,hit_fcal=false,hit_tof=false; |
561 | |
562 | for(double s=0; fabs(s)<smax; Nswim_steps++, swim_step++){ |
563 | |
564 | if(Nswim_steps>=this->max_swim_steps){ |
565 | if (debug_level>0){ |
566 | jerr<<__FILE__"libraries/TRACKING/DReferenceTrajectory.cc"<<":"<<__LINE__566<<" Too many steps in trajectory. Truncating..."<<endl; |
567 | } |
568 | break; |
569 | } |
570 | |
571 | stepper.GetDirs(swim_step->sdir, swim_step->tdir, swim_step->udir); |
572 | stepper.GetPosMom(swim_step->origin, swim_step->mom); |
573 | swim_step->Ro = stepper.GetRo(); |
574 | swim_step->s = s; |
575 | swim_step->t = t; |
576 | |
577 | //magnitude of momentum and beta |
578 | double p_sq=swim_step->mom.Mag2(); |
579 | double one_over_beta_sq=1.+mass_sq/p_sq; |
580 | |
581 | // Add material if geom or RootGeom is not NULL |
582 | // If both are non-NULL, then use RootGeom |
583 | double dP = 0.0; |
584 | double dP_dx=0.0; |
585 | double s_to_boundary=1.0E6; // initialize to "infinity" in case we don't set this below |
586 | if(RootGeom || geom){ |
587 | double KrhoZ_overA=0.0; |
588 | double rhoZ_overA=0.0; |
589 | double LogI=0.0; |
590 | double X0=0.0; |
591 | jerror_t err; |
592 | if(RootGeom){ |
593 | double rhoZ_overA,rhoZ_overA_logI; |
594 | err = RootGeom->FindMatLL(swim_step->origin, |
595 | rhoZ_overA, |
596 | rhoZ_overA_logI, |
597 | X0); |
598 | KrhoZ_overA=0.1535e-3*rhoZ_overA; |
599 | LogI=rhoZ_overA_logI/rhoZ_overA; |
600 | }else{ |
601 | if(check_material_boundaries){ |
602 | err = geom->FindMatALT1(swim_step->origin, swim_step->mom, KrhoZ_overA, rhoZ_overA,LogI, X0, &s_to_boundary); |
603 | }else{ |
604 | err = geom->FindMatALT1(swim_step->origin, swim_step->mom, KrhoZ_overA, rhoZ_overA,LogI, X0); |
605 | } |
606 | |
607 | // Check if we hit the CDC endplate |
608 | //double z = swim_step->origin.Z(); |
609 | //if(z>=cdc_endplate_zmin && z<=cdc_endplate_zmax){ |
610 | // double r = swim_step->origin.Perp(); |
611 | // if(r>=cdc_endplate_rmin && r<=cdc_endplate_rmax){ |
612 | // hit_cdc_endplate = true; |
613 | //} |
614 | //} |
615 | } |
616 | |
617 | if(err == NOERROR){ |
618 | if(X0>0.0){ |
619 | double p=sqrt(p_sq); |
620 | double delta_s = s; |
621 | if(last_step)delta_s -= last_step->s; |
622 | double radlen = delta_s/X0; |
623 | |
624 | if(radlen>1.0E-5){ // PDG 2008 pg 271, second to last paragraph |
625 | |
626 | // double theta0 = 0.0136*sqrt(one_over_beta_sq)/p*sqrt(radlen)*(1.0+0.038*log(radlen)); // From PDG 2008 eq 27.12 |
627 | //double theta02 = theta0*theta0; |
628 | double factor=1.0+0.038*log(radlen); |
629 | double theta02=1.8496e-4*factor*factor*radlen*one_over_beta_sq/p_sq; |
630 | |
631 | itheta02 += theta02; |
632 | itheta02s += s*theta02; |
633 | itheta02s2 += s*s*theta02; |
634 | X0sum+=X0; |
635 | |
636 | if (cov){ |
637 | |
638 | } |
639 | } |
640 | |
641 | // Calculate momentum loss due to ionization |
642 | dP_dx = dPdx(p, KrhoZ_overA, rhoZ_overA,LogI); |
643 | } |
644 | } |
645 | last_step = swim_step; |
646 | } |
647 | swim_step->itheta02 = itheta02; |
648 | swim_step->itheta02s = itheta02s; |
649 | swim_step->itheta02s2 = itheta02s2; |
650 | swim_step->invX0=Nswim_steps/X0sum; |
651 | |
652 | // Adjust step size to take smaller steps in regions of high momentum loss or field gradient |
653 | if(step_size<0.0){ // step_size<0 indicates auto-calculated step size |
654 | // Take step so as to change momentum by 100keV |
655 | //double my_step_size=p/fabs(dP_dx)*0.01; |
656 | double my_step_size = 0.0001/fabs(dP_dx); |
657 | |
658 | // Now check the field gradient |
659 | #if 0 |
660 | stepper.GetBField(B); |
661 | double Bz = B.z(); |
662 | if (fabs(Bz-Bz_old)>EPS1e-8){ |
663 | double my_step_size_B=0.01*my_step_size |
664 | *fabs(Bz/(Bz_old-Bz)); |
665 | if (my_step_size_B<my_step_size) |
666 | my_step_size=my_step_size_B; |
667 | } |
668 | Bz_old=Bz; // Save old z-component of B-field |
669 | #endif |
670 | // Use the estimated distance to the boundary to make sure we don't overstep |
671 | // into a high density region and miss some material. Use half the estimated |
672 | // distance since it's only an estimate. Note that even though this would lead |
673 | // to infinitely small steps, there is a minimum step size imposed below to |
674 | // ensure the step size is reasonable. |
675 | /* |
676 | double step_size_to_boundary = BOUNDARY_STEP_FRACTION*s_to_boundary; |
677 | if(step_size_to_boundary < my_step_size)my_step_size = step_size_to_boundary; |
678 | */ |
679 | |
680 | if(my_step_size>MAX_STEP_SIZE)my_step_size=MAX_STEP_SIZE; // maximum step size in cm |
681 | if(my_step_size<MIN_STEP_SIZE)my_step_size=MIN_STEP_SIZE; // minimum step size in cm |
682 | |
683 | stepper.SetStepSize(my_step_size); |
684 | } |
685 | |
686 | // Swim to next |
687 | double ds=stepper.Step(NULL__null,&swim_step->B); |
688 | if (cov){ |
689 | PropagateCovariance(ds,q,mass_sq,mom,pos,swim_step->B,mycov); |
690 | swim_step->cov_t_t=mycov(6,6); |
691 | swim_step->cov_px_t=mycov(6,0); |
692 | swim_step->cov_py_t=mycov(6,1); |
693 | swim_step->cov_pz_t=mycov(6,2); |
694 | } |
695 | |
696 | // Calculate momentum loss due to the step we're about to take |
697 | dP = ds*dP_dx; |
698 | |
699 | // Adjust momentum due to ionization losses |
700 | if(dP!=0.0){ |
701 | DVector3 pos, mom; |
702 | stepper.GetPosMom(pos, mom); |
703 | double ptot = mom.Mag() - dP; // correct for energy loss |
704 | bool ranged_out = false; |
705 | /* |
706 | if (ptot<0.05){ |
707 | swim_step->origin.Print(); |
708 | cout<<"N: " << Nswim_steps <<" x " << pos.x() <<" y " <<pos.y() <<" z " << pos.z() <<" r " << pos.Perp()<< " s " << s << " p " << ptot << endl; |
709 | } |
710 | */ |
711 | if(ptot<0.0)ranged_out=true; |
712 | if(dP<0.0 && ploss_direction==kForward)ranged_out=true; |
713 | if(dP>0.0 && ploss_direction==kBackward)ranged_out=true; |
714 | if(mom.Mag()==0.0)ranged_out=true; |
715 | if(ranged_out){ |
716 | Nswim_steps++; // This will at least allow for very low momentum particles to have 1 swim step |
717 | break; |
718 | } |
719 | mom.SetMag(ptot); |
720 | stepper.SetStartingParams(q, &pos, &mom); |
721 | } |
722 | |
723 | // update flight time |
724 | t+=ds*sqrt(one_over_beta_sq)/SPEED_OF_LIGHT29.9792; |
725 | s += ds; |
726 | |
727 | // Mark places along trajectory where we pass into one of the |
728 | // main detectors |
729 | double R=swim_step->origin.Perp(); |
730 | double z=swim_step->origin.Z(); |
731 | if (hit_bcal==false && R>65. && z<407 &&z>0){ |
732 | index_at_bcal=Nswim_steps-1; |
733 | hit_bcal=true; |
734 | } |
735 | if (hit_tof==false && z>618.){ |
736 | index_at_tof=Nswim_steps-1; |
737 | hit_tof=true; |
738 | } |
739 | if (hit_fcal==false && z>625.){ |
740 | index_at_fcal=Nswim_steps-1; |
741 | hit_fcal=true; |
742 | } |
743 | |
744 | // Exit the loop if we are already inside the volume of the BCAL |
745 | // and the radius is decreasing |
746 | if (R<old_radius && R>Rmax_interior && z<407.0 && z>-100.0){ |
747 | Nswim_steps++; break; |
748 | } |
749 | |
750 | |
751 | // Exit loop if we leave the tracking volume |
752 | if(R>Rmax_exterior && z<407.0){Nswim_steps++; break;} // ran into BCAL |
753 | if (fabs(swim_step->origin.X())>129. |
754 | || fabs(swim_step->origin.Y())>129.) |
755 | {Nswim_steps++; break;} // left extent of TOF |
756 | if(z>zmax_track_boundary){Nswim_steps++; break;} // ran into FCAL |
757 | if(z<zmin_track_boundary){Nswim_steps++; break;} // exit upstream |
758 | if(wire && Nswim_steps>0){ // optionally check if we passed a wire we're supposed to be swimming to |
759 | swim_step_t *closest_step = FindClosestSwimStep(wire); |
760 | if(++closest_step!=swim_step){Nswim_steps++; break;} |
761 | } |
762 | |
763 | old_radius=swim_step->origin.Perp(); |
764 | } |
765 | |
766 | // OK. At this point the positions of the trajectory in the lab |
767 | // frame have been recorded along with the momentum of the |
768 | // particle and the directions of reference trajectory |
769 | // coordinate system at each point. |
770 | } |
771 | |
772 | // Routine to find position on the trajectory where the track crosses a radial |
773 | // position R. Also returns the path length to this position. |
774 | jerror_t DReferenceTrajectory::GetIntersectionWithRadius(double R, |
775 | DVector3 &mypos, |
776 | double *s, |
777 | double *t, |
778 | DVector3 *p_at_intersection) const{ |
779 | mypos.SetXYZ(NaNstd::numeric_limits<double>::quiet_NaN(),NaNstd::numeric_limits<double>::quiet_NaN(),NaNstd::numeric_limits<double>::quiet_NaN()); |
780 | if(p_at_intersection) |
781 | p_at_intersection->SetXYZ(NaNstd::numeric_limits<double>::quiet_NaN(),NaNstd::numeric_limits<double>::quiet_NaN(),NaNstd::numeric_limits<double>::quiet_NaN()); |
782 | |
783 | if(Nswim_steps<1){ |
784 | _DBG_std::cerr<<"libraries/TRACKING/DReferenceTrajectory.cc" <<":"<<784<<" "<<"No swim steps! You must \"Swim\" the track before calling GetIntersectionWithRadius(...)"<<endl; |
785 | } |
786 | // Return early if the radius at the end of the reference trajectory is still less than R |
787 | double outer_radius=swim_steps[Nswim_steps-1].origin.Perp(); |
788 | if (outer_radius<R){ |
789 | if (s) *s=0.; |
790 | if (t) *t=0.; |
791 | return VALUE_OUT_OF_RANGE; |
792 | } |
793 | // Return early if the radius at the beginning of the trajectory is outside |
794 | // the radius to which we are trying to match |
795 | double inner_radius=swim_steps[0].origin.Perp(); |
796 | if (inner_radius>R){ |
797 | if (s) *s=0.; |
798 | if (t) *t=0.; |
799 | return VALUE_OUT_OF_RANGE; |
800 | } |
801 | |
802 | |
803 | // Loop over swim steps and find the one that crosses the radius |
804 | swim_step_t *swim_step = swim_steps; |
805 | swim_step_t *step=NULL__null; |
806 | swim_step_t *last_step=NULL__null; |
807 | |
808 | // double inner_radius=swim_step->origin.Perp(); |
809 | for(int i=0; i<Nswim_steps; i++, swim_step++){ |
810 | if (swim_step->origin.Perp()>R){ |
811 | step=swim_step; |
812 | break; |
813 | } |
814 | if (swim_step->origin.Z()>407.0) return VALUE_OUT_OF_RANGE; |
815 | last_step=swim_step; |
816 | } |
817 | if (step==NULL__null||last_step==NULL__null) return VALUE_OUT_OF_RANGE; |
818 | if (p_at_intersection!=NULL__null){ |
819 | *p_at_intersection=last_step->mom; |
820 | } |
821 | |
822 | // At this point, the location where the track intersects the cyclinder |
823 | // is somewhere between last_step and step. For simplicity, we're going |
824 | // to just find the intersection of the cylinder with the line that joins |
825 | // the 2 positions. We do this by working in the X/Y plane only and |
826 | // finding the value of "alpha" which is the fractional distance the |
827 | // intersection point is between last_pos and mypos. We'll then apply |
828 | // the alpha found in the 2D X/Y space to the 3D x/y/Z space to find |
829 | // the actual intersection point. |
830 | DVector2 x1(last_step->origin.X(), last_step->origin.Y()); |
831 | DVector2 x2(step->origin.X(), step->origin.Y()); |
832 | DVector2 dx = x2-x1; |
833 | double A = dx.Mod2(); |
834 | double B = 2.0*(x1.X()*dx.X() + x1.Y()*dx.Y()); |
835 | double C = x1.Mod2() - R*R; |
836 | |
837 | double sqrt_D=sqrt(B*B-4.0*A*C); |
838 | double one_over_denom=0.5/A; |
839 | double alpha1 = (-B + sqrt_D)*one_over_denom; |
840 | double alpha2 = (-B - sqrt_D)*one_over_denom; |
841 | double alpha = alpha1; |
842 | if(alpha1<0.0 || alpha1>1.0)alpha=alpha2; |
843 | if(!isfinite(alpha))return VALUE_OUT_OF_RANGE; |
844 | |
845 | DVector3 delta = step->origin - last_step->origin; |
846 | mypos = last_step->origin + alpha*delta; |
847 | |
848 | // The value of s actually represents the pathlength |
849 | // to the outside point. Adjust it back to the |
850 | // intersection point (approximately). |
851 | if (s) *s = step->s-(1.0-alpha)*delta.Mag(); |
852 | |
853 | // flight time |
854 | if (t){ |
855 | double p_sq=step->mom.Mag2(); |
856 | double one_over_beta=sqrt(1.+mass_sq/p_sq); |
857 | *t = step->t-(1.0-alpha)*delta.Mag()*one_over_beta/SPEED_OF_LIGHT29.9792; |
858 | } |
859 | |
860 | return NOERROR; |
861 | } |
862 | |
863 | //--------------------------------- |
864 | // GetIntersectionWithPlane |
865 | //--------------------------------- |
866 | jerror_t DReferenceTrajectory::GetIntersectionWithPlane(const DVector3 &origin, const DVector3 &norm, DVector3 &pos, double *s,double *t,double *var_t,DetectorSystem_t detector) const{ |
867 | DVector3 dummy; |
868 | return GetIntersectionWithPlane(origin,norm,pos,dummy,s,t,var_t,detector); |
869 | } |
870 | jerror_t DReferenceTrajectory::GetIntersectionWithPlane(const DVector3 &origin, const DVector3 &norm, DVector3 &pos, DVector3 &p_at_intersection, double *s, |
871 | double *t,double *var_t,DetectorSystem_t detector) const |
872 | { |
873 | /// Get the intersection point of this trajectory with a plane. |
874 | /// The plane is specified by <i>origin</i> and <i>norm</i>. The |
875 | /// <i>origin</i> vector should give the coordinates of any point |
876 | /// on the plane and <i>norm</i> should give a vector normal to |
877 | /// the plane. The <i>norm</i> vector will be copied and normalized |
878 | /// so it can be of any magnitude upon entry. |
879 | /// |
880 | /// The coordinates of the intersection point will copied into |
881 | /// the supplied <i>pos</i> vector. If a non-NULL pointer for <i>s</i> |
882 | /// is passed in, the pathlength of the trajectory from its begining |
883 | /// to the intersection point is copied into location pointed to. |
884 | |
885 | // Set reasonable defaults |
886 | pos.SetXYZ(0,0,0); |
887 | if(s)*s=0.0; |
888 | if(t)*t=0.0; |
889 | p_at_intersection.SetXYZ(0,0,0); |
890 | |
891 | // Return early if the z-position of the plane with which we are |
892 | // intersecting is beyong the reference trajectory. |
893 | if (origin.z()>swim_steps[Nswim_steps-1].origin.z()){ |
894 | return VALUE_OUT_OF_RANGE; |
895 | } |
896 | // Find the closest swim step to the position where the track crosses |
897 | // the plane |
898 | int first_i=0; |
899 | switch(detector){ |
900 | case SYS_FCAL: |
901 | if (index_at_fcal<0) return VALUE_OUT_OF_RANGE; |
902 | first_i=index_at_fcal; |
903 | break; |
904 | case SYS_TOF: |
905 | if (index_at_tof<0) return VALUE_OUT_OF_RANGE; |
906 | first_i=index_at_tof; |
907 | break; |
908 | default: |
909 | break; |
910 | } |
911 | swim_step_t *step=FindPlaneCrossing(origin,norm,first_i); |
912 | if(!step){ |
913 | _DBG_std::cerr<<"libraries/TRACKING/DReferenceTrajectory.cc" <<":"<<913<<" "<<"Could not find closest swim step!"<<endl; |
914 | return RESOURCE_UNAVAILABLE; |
915 | } |
916 | |
917 | // Here we follow a scheme described in more detail in the |
918 | // DistToRT(DVector3 hit) method below. The basic idea is to |
919 | // express a point on the helix in terms of a single variable |
920 | // and then solve for that variable by setting the distance |
921 | // to zero. |
922 | // |
923 | // x = Ro*(cos(phi) - 1) |
924 | // y = Ro*sin(phi) |
925 | // z = phi*(dz/dphi) |
926 | // |
927 | // As is done below, we work in the RT coordinate system. Well, |
928 | // sort of. The distance to the plane is given by: |
929 | // |
930 | // d = ( x - c ).n |
931 | // |
932 | // where x is a point on the helix, c is the "origin" point |
933 | // which lies somewhere in the plane and n is the "norm" |
934 | // vector. Since we want a point in the plane, we set d=0 |
935 | // and solve for phi (with the components of x expressed in |
936 | // terms of phi as given in the DistToRT method below). |
937 | // |
938 | // Thus, the equation we need to solve is: |
939 | // |
940 | // x.n - c.n = 0 |
941 | // |
942 | // notice that "c" only gets dotted into "n" so that |
943 | // dot product can occur in any coordinate system. Therefore, |
944 | // we do that in the lab coordinate system to avoid the |
945 | // overhead of transforming "c" to the RT system. The "n" |
946 | // vector, however, still must be transformed. |
947 | // |
948 | // Expanding the trig functions to 2nd order in phi, performing |
949 | // the x.n dot product, and gathering equal powers of phi |
950 | // leads us to he following: |
951 | // |
952 | // (-Ro*nx/2)*phi^2 + (Ro*ny+dz_dphi*nz)*phi - c.n = 0 |
953 | // |
954 | // which is quadratic in phi. We solve for both roots, but use |
955 | // the one with the smller absolute value (if both are finite). |
956 | |
957 | double &Ro = step->Ro; |
958 | |
959 | // OK, having said all of that, it turns out that the above |
960 | // mechanism will tend to fail in regions of low or no |
961 | // field because the value of Ro is very large. Thus, we need to |
962 | // use a straight line projection in such cases. We also |
963 | // want to use a straight line projection if the helical intersection |
964 | // fails for some other reason. |
965 | // |
966 | // The algorthim is then to only try the helical calculation |
967 | // for small (<10m) values of Ro and then do the straight line |
968 | // if R is larger than that OR the helical calculation fails. |
969 | |
970 | // Try helical calculation |
971 | if(Ro<1000.0){ |
972 | double nx = norm.Dot(step->sdir); |
973 | double ny = norm.Dot(step->tdir); |
974 | double nz = norm.Dot(step->udir); |
975 | |
976 | double delta_z = step->mom.Dot(step->udir); |
977 | double delta_phi = step->mom.Dot(step->tdir)/Ro; |
978 | double dz_dphi = delta_z/delta_phi; |
979 | |
980 | double A = -Ro*nx/2.0; |
981 | double B = Ro*ny + dz_dphi*nz; |
982 | double C = norm.Dot(step->origin-origin); |
983 | double sqroot=sqrt(B*B-4.0*A*C); |
984 | double twoA=2.0*A; |
985 | |
986 | double phi_1 = (-B + sqroot)/(twoA); |
987 | double phi_2 = (-B - sqroot)/(twoA); |
988 | |
989 | double phi = fabs(phi_1)<fabs(phi_2) ? phi_1:phi_2; |
990 | if(!isfinite(phi_1))phi = phi_2; |
991 | if(!isfinite(phi_2))phi = phi_1; |
992 | if(isfinite(phi)){ |
993 | |
994 | double my_s = -Ro/2.0 * phi*phi; |
995 | double my_t = Ro * phi; |
996 | double my_u = dz_dphi * phi; |
997 | |
998 | pos = step->origin + my_s*step->sdir + my_t*step->tdir + my_u*step->udir; |
999 | p_at_intersection = step->mom; |
1000 | if(s){ |
1001 | double delta_s = sqrt(my_t*my_t + my_u*my_u); |
1002 | *s = step->s + (phi>0 ? +delta_s:-delta_s); |
1003 | } |
1004 | // flight time |
1005 | if (t){ |
1006 | double delta_s = sqrt(my_t*my_t + my_u*my_u); |
1007 | double ds=(phi>0 ? +delta_s:-delta_s); |
1008 | double p_sq=step->mom.Mag2(); |
1009 | double one_over_beta=sqrt(1.+mass_sq/p_sq); |
1010 | *t = step->t+ds*one_over_beta/SPEED_OF_LIGHT29.9792; |
1011 | } |
1012 | if (var_t){ |
1013 | *var_t=step->cov_t_t; |
1014 | } |
1015 | |
1016 | // Success. Go ahead and return |
1017 | return NOERROR; |
1018 | } |
1019 | } |
1020 | |
1021 | // If we got here then we need to try a straight line calculation |
1022 | double p_sq=step->mom.Mag2(); |
1023 | double dz_over_pz=(origin.z()-step->origin.z())/step->mom.z(); |
1024 | double ds=sqrt(p_sq)*dz_over_pz; |
1025 | pos.SetXYZ(step->origin.x()+dz_over_pz*step->mom.x(), |
1026 | step->origin.y()+dz_over_pz*step->mom.y(), |
1027 | origin.z()); |
1028 | p_at_intersection = step->mom; |
1029 | |
1030 | if(s){ |
1031 | *s = step->s + ds; |
1032 | } |
1033 | // flight time |
1034 | if (t){ |
1035 | double one_over_beta=sqrt(1.+mass_sq/p_sq); |
1036 | *t = step->t+ds*one_over_beta/SPEED_OF_LIGHT29.9792; |
1037 | } |
1038 | // Flight time variance |
1039 | if (var_t){ |
1040 | *var_t=step->cov_t_t; |
1041 | } |
1042 | |
1043 | return NOERROR; |
1044 | } |
1045 | |
1046 | //--------------------------------- |
1047 | // InsertSteps |
1048 | //--------------------------------- |
1049 | int DReferenceTrajectory::InsertSteps(const swim_step_t *start_step, double delta_s, double step_size) |
1050 | { |
1051 | /// Insert additional steps into the reference trajectory starting |
1052 | /// at start_step and swimming for at least delta_s by step_size |
1053 | /// sized steps. Both delta_s and step_size are in centimeters. |
1054 | /// If the value of delta_s is negative then the particle's momentum |
1055 | /// and charge are reversed before swimming. This could be a problem |
1056 | /// if energy loss is implemented. |
1057 | |
1058 | if(!start_step)return -1; |
1059 | |
1060 | // We do this by creating another, temporary DReferenceTrajectory object |
1061 | // on the stack and swimming it. |
1062 | DVector3 pos = start_step->origin; |
1063 | DVector3 mom = start_step->mom; |
1064 | double my_q = q; |
1065 | int direction = +1; |
1066 | if(delta_s<0.0){ |
1067 | mom *= -1.0; |
1068 | my_q = -q; |
1069 | direction = -1; |
1070 | } |
1071 | |
1072 | // Here I allocate the steps using an auto_ptr so I don't have to mess with |
1073 | // deleting them at all of the possible exits. The problem with auto_ptr |
1074 | // is it can't handle arrays so it has to be wrapped in a struct. |
1075 | auto_ptr<StepStruct> steps_aptr(new StepStruct); |
1076 | DReferenceTrajectory::swim_step_t *steps = steps_aptr->steps; |
1077 | DReferenceTrajectory rt(bfield , my_q , steps , 256); |
1078 | rt.SetStepSize(step_size); |
1079 | rt.Swim(pos, mom, my_q,NULL__null,fabs(delta_s)); |
1080 | if(rt.Nswim_steps==0)return 1; |
1081 | |
1082 | // Check that there is enough space to add these points |
1083 | if((Nswim_steps+rt.Nswim_steps)>max_swim_steps){ |
1084 | //_DBG_<<"Not enough swim steps available to add new ones! Max="<<max_swim_steps<<" had="<<Nswim_steps<<" new="<<rt.Nswim_steps<<endl; |
1085 | return 2; |
1086 | } |
1087 | |
1088 | // At this point, we may have swum forward or backwards so the points |
1089 | // will need to be added either before start_step or after it. We also |
1090 | // may want to replace an old step that overlaps our high density steps |
1091 | // since they are presumably more accurate. Find the indexes of the |
1092 | // existing steps that the new steps will be inserted between. |
1093 | double sdiff = rt.swim_steps[rt.Nswim_steps-1].s; |
1094 | double s1 = start_step->s; |
1095 | double s2 = start_step->s + (double)direction*sdiff; |
1096 | double smin = s1<s2 ? s1:s2; |
1097 | double smax = s1<s2 ? s2:s1; |
1098 | int istep_start = 0; |
1099 | int istep_end = 0; |
1100 | for(int i=0; i<Nswim_steps; i++){ |
1101 | if(swim_steps[i].s < smin)istep_start = i; |
1102 | if(swim_steps[i].s <= smax)istep_end = i+1; |
1103 | } |
1104 | |
1105 | // istep_start and istep_end now point to the steps we want to keep. |
1106 | // All steps between them (exclusive) will be overwritten. Note that |
1107 | // the original start_step should be in the "overwrite" range since |
1108 | // it is included already in the new trajectory. |
1109 | int steps_to_overwrite = istep_end - istep_start - 1; |
1110 | int steps_to_shift = rt.Nswim_steps - steps_to_overwrite; |
1111 | |
1112 | // Shift the steps down (or is it up?) starting with istep_end. |
1113 | for(int i=Nswim_steps-1; i>=istep_end; i--)swim_steps[i+steps_to_shift] = swim_steps[i]; |
1114 | |
1115 | // Copy the new steps into this object |
1116 | double s_0 = start_step->s; |
1117 | double itheta02_0 = start_step->itheta02; |
1118 | double itheta02s_0 = start_step->itheta02s; |
1119 | double itheta02s2_0 = start_step->itheta02s2; |
1120 | for(int i=0; i<rt.Nswim_steps; i++){ |
1121 | int index = direction>0 ? (istep_start+1+i):(istep_start+1+rt.Nswim_steps-1-i); |
1122 | swim_steps[index] = rt.swim_steps[i]; |
1123 | swim_steps[index].s = s_0 + (double)direction*swim_steps[index].s; |
1124 | swim_steps[index].itheta02 = itheta02_0 + (double)direction*swim_steps[index].itheta02; |
1125 | swim_steps[index].itheta02s = itheta02s_0 + (double)direction*swim_steps[index].itheta02s; |
1126 | swim_steps[index].itheta02s2 = itheta02s2_0 + (double)direction*swim_steps[index].itheta02s2; |
1127 | if(direction<0.0){ |
1128 | swim_steps[index].sdir *= -1.0; |
1129 | swim_steps[index].tdir *= -1.0; |
1130 | } |
1131 | } |
1132 | Nswim_steps += rt.Nswim_steps-steps_to_overwrite; |
1133 | |
1134 | // Note that the above procedure may leave us with "kinks" in the itheta0 |
1135 | // variables. It may be that we need to recalculate those for all of the |
1136 | // new points and the ones after them by making one more pass. I'm hoping |
1137 | // it is a realitively small correction though so we can skip it here. |
1138 | return 0; |
1139 | } |
1140 | |
1141 | //--------------------------------- |
1142 | // DistToRTwithTime |
1143 | //--------------------------------- |
1144 | double DReferenceTrajectory::DistToRTwithTime(DVector3 hit, double *s,double *t, |
1145 | double *var_t, |
1146 | DetectorSystem_t detector) const{ |
1147 | double dist=DistToRT(hit,s,detector); |
1148 | if (s!=NULL__null && t!=NULL__null) |
1149 | { |
1150 | if(last_swim_step==NULL__null) |
1151 | { |
1152 | *s = 1.0E6; |
1153 | *t = 1.0E6; |
1154 | if (var_t!=NULL__null){ |
1155 | *var_t=1.0E6; |
1156 | } |
1157 | } |
1158 | else |
1159 | { |
1160 | double p_sq=last_swim_step->mom.Mag2(); |
1161 | double one_over_beta=sqrt(1.+mass_sq/p_sq); |
1162 | *t=last_swim_step->t+(*s-last_swim_step->s)*one_over_beta/SPEED_OF_LIGHT29.9792; |
1163 | if (var_t!=NULL__null){ |
1164 | *var_t=last_swim_step->cov_t_t; |
1165 | } |
1166 | } |
1167 | } |
1168 | return dist; |
1169 | } |
1170 | |
1171 | //--------------------------------- |
1172 | // DistToRT |
1173 | //--------------------------------- |
1174 | double DReferenceTrajectory::DistToRT(DVector3 hit, double *s, |
1175 | DetectorSystem_t detector) const |
1176 | { |
1177 | last_swim_step=NULL__null; |
1178 | if(Nswim_steps<1)_DBG__std::cerr<<"libraries/TRACKING/DReferenceTrajectory.cc" <<":"<<1178<<std::endl; |
1179 | |
1180 | int start_index=0; |
1181 | switch(detector){ |
1182 | case SYS_BCAL: |
1183 | if (index_at_bcal<0) return numeric_limits<double>::quiet_NaN(); |
1184 | start_index=index_at_bcal; |
1185 | break; |
1186 | case SYS_FCAL: |
1187 | if (index_at_fcal<0) return numeric_limits<double>::quiet_NaN(); |
1188 | start_index=index_at_fcal; |
1189 | break; |
1190 | case SYS_TOF: |
1191 | if (index_at_tof<0) return numeric_limits<double>::quiet_NaN(); |
1192 | start_index=index_at_tof; |
1193 | break; |
1194 | default: |
1195 | break; |
1196 | } |
1197 | |
1198 | // First, find closest step to point |
1199 | swim_step_t *swim_step = &swim_steps[start_index]; |
1200 | swim_step_t *step=NULL__null; |
1201 | |
1202 | //double min_delta2 = 1.0E6; |
1203 | double old_delta2=10.e6,delta2=1.0e6; |
1204 | |
1205 | // Check if we should start at the end of the reference trajectory |
1206 | // or the beginning... |
1207 | int last_index=Nswim_steps-1; |
1208 | double forward_delta2=(swim_step->origin - hit).Mag2(); |
1209 | double backward_delta2=(swim_steps[last_index].origin-hit).Mag2(); |
1210 | |
1211 | if (forward_delta2<backward_delta2){ // start at the beginning |
1212 | for(int i=start_index; i<Nswim_steps; i++, swim_step++){ |
1213 | |
1214 | DVector3 pos_diff = swim_step->origin - hit; |
1215 | delta2 = pos_diff.Mag2(); |
1216 | |
1217 | if (delta2>old_delta2){ |
1218 | break; |
1219 | } |
1220 | |
1221 | //if(delta2 < min_delta2){ |
1222 | //min_delta2 = delta2; |
1223 | |
1224 | step = swim_step; |
1225 | old_delta2=delta2; |
1226 | //} |
1227 | } |
1228 | } |
1229 | else{// start at the end |
1230 | for(int i=last_index; i>=start_index; i--){ |
1231 | swim_step=&swim_steps[i]; |
1232 | DVector3 pos_diff = swim_step->origin - hit; |
1233 | delta2 = pos_diff.Mag2(); |
1234 | if (delta2>old_delta2) break; |
1235 | |
1236 | //if(delta2 < min_delta2){ |
1237 | //min_delta2 = delta2; |
1238 | |
1239 | step = swim_step; |
1240 | old_delta2=delta2; |
1241 | //} |
1242 | } |
1243 | |
1244 | } |
1245 | |
1246 | if(step==NULL__null){ |
1247 | // It seems to occasionally occur that we have 1 swim step |
1248 | // and it's values are invalid. Supress warning messages |
1249 | // for these as they are "known" (even if not fully understood!) |
1250 | if(s != NULL__null) |
1251 | *s = 1.0E6; |
1252 | if(Nswim_steps>1){ |
1253 | _DBG_std::cerr<<"libraries/TRACKING/DReferenceTrajectory.cc" <<":"<<1253<<" "<<"\"hit\" passed to DistToRT(DVector3) out of range!"<<endl; |
1254 | _DBG_std::cerr<<"libraries/TRACKING/DReferenceTrajectory.cc" <<":"<<1254<<" "<<"hit x,y,z = "<<hit.x()<<", "<<hit.y()<<", "<<hit.z()<<" Nswim_steps="<<Nswim_steps<<" min_delta2="<<delta2<<endl; |
1255 | } |
1256 | return 1.0E6; |
1257 | } |
1258 | |
1259 | // store last step |
1260 | last_swim_step=step; |
1261 | |
1262 | |
1263 | // Next, define a point on the helical segment defined by the |
1264 | // swim step it the RT coordinate system. The directions of |
1265 | // the RT coordinate system are defined by step->xdir, step->ydir, |
1266 | // and step->zdir. The coordinates of a point on the helix |
1267 | // in this coordinate system are: |
1268 | // |
1269 | // x = Ro*(cos(phi) - 1) |
1270 | // y = Ro*sin(phi) |
1271 | // z = phi*(dz/dphi) |
1272 | // |
1273 | // where phi is the phi angle of the point in this coordinate system. |
1274 | // phi=0 corresponds to the swim step point itself |
1275 | // |
1276 | // Transform the given coordinates to the RT coordinate system |
1277 | // and call these x0,y0,z0. Then, the distance of point to a |
1278 | // point on the helical segment is given by: |
1279 | // |
1280 | // d^2 = (x0-x)^2 + (y0-y)^2 + (z0-z)^2 |
1281 | // |
1282 | // where x,y,z are all functions of phi as given above. |
1283 | // |
1284 | // writing out d^2 in terms of phi, but using the small angle |
1285 | // approximation for the trig functions, an equation for the |
1286 | // distance in only phi is obtained. Taking the derivative |
1287 | // and setting it equal to zero leaves a 3rd order polynomial |
1288 | // in phi whose root corresponds to the minimum distance. |
1289 | // Skipping some math, this equation has the form: |
1290 | // |
1291 | // d(d^2)/dphi = 0 = Ro^2*phi^3 + 2*alpha*phi + beta |
1292 | // |
1293 | // where: |
1294 | // alpha = x0*Ro + Ro^2 + (dz/dphi)^2 |
1295 | // |
1296 | // beta = -2*y0*Ro - 2*z0*(dz/dphi) |
1297 | // |
1298 | // The above 3rd order poly is convenient in that it does not |
1299 | // contain a phi^2 term. This means we can skip the step |
1300 | // done in the general case where a change of variables is |
1301 | // made such that the 2nd order term disappears. |
1302 | // |
1303 | // In general, an equation of the form |
1304 | // |
1305 | // w^3 + 3.0*b*w + 2*c = 0 |
1306 | // |
1307 | // has one real root: |
1308 | // |
1309 | // w0 = q - p |
1310 | // |
1311 | // where: |
1312 | // q^3 = d - c |
1313 | // p^3 = d + c |
1314 | // d^2 = b^3 + c^2 (don't confuse with d^2 above!) |
1315 | // |
1316 | // So for us ... |
1317 | // |
1318 | // 3b = 2*alpha/(Ro^2) |
1319 | // 2c = beta/(Ro^2) |
1320 | |
1321 | hit -= step->origin; |
1322 | double x0 = hit.Dot(step->sdir); |
1323 | double y0 = hit.Dot(step->tdir); |
1324 | double z0 = hit.Dot(step->udir); |
1325 | double &Ro = step->Ro; |
1326 | double Ro2 = Ro*Ro; |
1327 | double delta_z = step->mom.Dot(step->udir); |
1328 | double delta_phi = step->mom.Dot(step->tdir)/Ro; |
1329 | double dz_dphi = delta_z/delta_phi; |
1330 | |
1331 | // double alpha = x0*Ro + Ro2 + pow(dz_dphi,2.0); |
1332 | double alpha=x0*Ro + Ro2 +dz_dphi*dz_dphi; |
1333 | // double beta = -2.0*y0*Ro - 2.0*z0*dz_dphi; |
1334 | double beta = -2.0*(y0*Ro + z0*dz_dphi); |
1335 | // double b = (2.0*alpha/Ro2)/3.0; |
1336 | double b= TWO_THIRD0.66666666666666667*alpha/Ro2; |
1337 | // double c = (beta/Ro2)/2.0; |
1338 | double c = 0.5*(beta/Ro2); |
1339 | // double d = sqrt(pow(b,3.0) + pow(c,2.0)); |
1340 | double d2=b*b*b+c*c; |
1341 | double phi=0.,dist2=1e8; |
1342 | if (d2>=0){ |
1343 | double d=sqrt(d2); |
1344 | //double q = pow(d-c, ONE_THIRD); |
1345 | //double p = pow(d+c, ONE_THIRD); |
1346 | double p=cbrt(d+c); |
1347 | double q=cbrt(d-c); |
1348 | phi = q - p; |
1349 | if (fabs(phi)<0.2){ // check small angle approximation |
1350 | double phisq=phi*phi; |
1351 | |
1352 | dist2 = 0.25*Ro2*phisq*phisq + alpha*phisq + beta*phi |
1353 | + x0*x0 + y0*y0 + z0*z0; |
1354 | } |
1355 | else{ |
1356 | return numeric_limits<double>::quiet_NaN(); |
1357 | } |
1358 | } |
1359 | else{ |
1360 | // Use DeMoivre's theorem to find the cube root of a complex |
1361 | // number. In this case there are three real solutions. |
1362 | double d=sqrt(-d2); |
1363 | c*=-1.; |
1364 | double temp=sqrt(cbrt(c*c+d*d)); |
1365 | double theta1=ONE_THIRD0.33333333333333333*atan2(d,c); |
1366 | double sum_over_2=temp*cos(theta1); |
1367 | double diff_over_2=-temp*sin(theta1); |
1368 | |
1369 | double phi0=2.*sum_over_2; |
1370 | double phi0sq=phi0*phi0; |
1371 | double phi1=-sum_over_2+sqrt(3)*diff_over_2; |
1372 | double phi1sq=phi1*phi1; |
1373 | double phi2=-sum_over_2-sqrt(3)*diff_over_2; |
1374 | double phi2sq=phi2*phi2; |
1375 | double d2_2 = 0.25*Ro2*phi2sq*phi2sq + alpha*phi2sq + beta*phi2 + x0*x0 + y0*y0 + z0*z0; |
1376 | double d2_1 = 0.25*Ro2*phi1sq*phi1sq + alpha*phi1sq + beta*phi1 + x0*x0 + y0*y0 + z0*z0; |
1377 | double d2_0 = 0.25*Ro2*phi0sq*phi0sq + alpha*phi0sq + beta*phi0 + x0*x0 + y0*y0 + z0*z0; |
1378 | |
1379 | if (d2_0<d2_1 && d2_0<d2_2){ |
1380 | phi=phi0; |
1381 | dist2=d2_0; |
1382 | } |
1383 | else if (d2_1<d2_0 && d2_1<d2_2){ |
1384 | phi=phi1; |
1385 | dist2=d2_1; |
1386 | } |
1387 | else{ |
1388 | phi=phi2; |
1389 | dist2=d2_2; |
1390 | } |
1391 | if (fabs(phi)<0.2){ // Check small angle approximation |
1392 | return numeric_limits<double>::quiet_NaN(); |
1393 | } |
1394 | |
1395 | if (std::isnan(Ro)) |
1396 | { |
1397 | } |
1398 | } |
1399 | |
1400 | // Calculate distance along track ("s") |
1401 | if(s!=NULL__null){ |
1402 | double dz = dz_dphi*phi; |
1403 | double Rodphi = Ro*phi; |
1404 | double ds = sqrt(dz*dz + Rodphi*Rodphi); |
1405 | *s = step->s + (phi>0.0 ? ds:-ds); |
1406 | } |
1407 | |
1408 | this->last_phi = phi; |
1409 | this->last_swim_step = step; |
1410 | this->last_dz_dphi = dz_dphi; |
1411 | |
1412 | return sqrt(dist2); |
1413 | } |
1414 | |
1415 | //--------------------------------- |
1416 | // FindClosestSwimStep |
1417 | //--------------------------------- |
1418 | DReferenceTrajectory::swim_step_t* DReferenceTrajectory::FindClosestSwimStep(const DCoordinateSystem *wire, int *istep_ptr) const |
1419 | { |
1420 | /// Find the closest swim step to the given wire. The value of |
1421 | /// "L" should be the active wire length. The coordinate system |
1422 | /// defined by "wire" should have its origin at the center of |
1423 | /// the wire with the wire running in the direction of udir. |
1424 | |
1425 | if(istep_ptr)*istep_ptr=-1; |
1426 | |
1427 | if(Nswim_steps<1){ |
1428 | _DBG_std::cerr<<"libraries/TRACKING/DReferenceTrajectory.cc" <<":"<<1428<<" "<<"No swim steps! You must \"Swim\" the track before calling FindClosestSwimStep(...)"<<endl; |
1429 | } |
1430 | |
1431 | // Make sure we have a wire first! |
1432 | if(!wire)return NULL__null; |
1433 | |
1434 | // Loop over swim steps and find the one closest to the wire |
1435 | swim_step_t *swim_step = swim_steps; |
1436 | swim_step_t *step=NULL__null; |
1437 | //double min_delta2 = 1.0E6; |
1438 | double old_delta2=1.0e6; |
1439 | double L_over_2 = wire->L/2.0; // half-length of wire in cm |
1440 | int istep=-1; |
1441 | |
1442 | double dx, dy, dz; |
1443 | |
1444 | // w is a vector to the origin of the wire |
1445 | // u is a unit vector along the wire |
1446 | |
1447 | double wx, wy, wz; |
1448 | double ux, uy, uz; |
1449 | |
1450 | wx = wire->origin.X(); |
1451 | wy = wire->origin.Y(); |
1452 | wz = wire->origin.Z(); |
1453 | |
1454 | ux = wire->udir.X(); |
1455 | uy = wire->udir.Y(); |
1456 | uz = wire->udir.Z(); |
1457 | |
1458 | int i; |
1459 | for(i=0; i<Nswim_steps; i++, swim_step++){ |
1460 | // Find the point's position along the wire. If the point |
1461 | // is past the end of the wire, calculate the distance |
1462 | // from the end of the wire. |
1463 | // DVector3 pos_diff = swim_step->origin - wire->origin; |
1464 | |
1465 | dx = swim_step->origin.X() - wx; |
1466 | dy = swim_step->origin.Y() - wy; |
1467 | dz = swim_step->origin.Z() - wz; |
1468 | |
1469 | // double u = wire->udir.Dot(pos_diff); |
1470 | double u = ux * dx + uy * dy + uz * dz; |
1471 | |
1472 | // Find distance perpendicular to wire |
1473 | // double delta2 = pos_diff.Mag2() - u*u; |
1474 | double delta2 = dx*dx + dy*dy + dz*dz - u*u; |
1475 | |
1476 | // If point is past end of wire, calculate distance |
1477 | // from wire's end by adding on distance along wire direction. |
1478 | if( fabs(u)>L_over_2){ |
1479 | // delta2 += pow(fabs(u)-L_over_2, 2.0); |
1480 | double u_minus_L_over_2=fabs(u)-L_over_2; |
1481 | delta2 += ( u_minus_L_over_2*u_minus_L_over_2 ); |
1482 | // printf("step %d\n",i); |
1483 | } |
1484 | |
1485 | if(debug_level>3)_DBG_std::cerr<<"libraries/TRACKING/DReferenceTrajectory.cc" <<":"<<1485<<" "<<"delta2="<<delta2<<" old_delta2="<<old_delta2<<endl; |
1486 | if (delta2>old_delta2) break; |
1487 | |
1488 | //if(delta2 < min_delta2){ |
1489 | // min_delta2 = delta2; |
1490 | step = swim_step; |
1491 | istep=i; |
1492 | |
1493 | //} |
1494 | //printf("%d delta %f min %f\n",i,delta2,min_delta2); |
1495 | old_delta2=delta2; |
1496 | } |
1497 | |
1498 | if(istep_ptr)*istep_ptr=istep; |
1499 | |
1500 | if(debug_level>3)_DBG_std::cerr<<"libraries/TRACKING/DReferenceTrajectory.cc" <<":"<<1500<<" "<<"found closest step at i="<<i<<" istep_ptr="<<istep_ptr<<endl; |
1501 | |
1502 | return step; |
1503 | } |
1504 | |
1505 | //--------------------------------- |
1506 | // FindClosestSwimStep |
1507 | //--------------------------------- |
1508 | DReferenceTrajectory::swim_step_t* DReferenceTrajectory::FindClosestSwimStep(const DVector3 &origin, DVector3 norm, int *istep_ptr) const |
1509 | { |
1510 | /// Find the closest swim step to the plane specified by origin |
1511 | /// and norm. origin should indicate any point in the plane and |
1512 | /// norm a vector normal to the plane. |
1513 | if(istep_ptr)*istep_ptr=-1; |
1514 | |
1515 | if(Nswim_steps<1){ |
1516 | _DBG_std::cerr<<"libraries/TRACKING/DReferenceTrajectory.cc" <<":"<<1516<<" "<<"No swim steps! You must \"Swim\" the track before calling FindClosestSwimStep(...)"<<endl; |
1517 | } |
1518 | |
1519 | // Make sure normal vector is unit lenght |
1520 | norm.SetMag(1.0); |
1521 | |
1522 | // Loop over swim steps and find the one closest to the plane |
1523 | swim_step_t *swim_step = swim_steps; |
1524 | swim_step_t *step=NULL__null; |
1525 | //double min_dist = 1.0E6; |
1526 | double old_dist=1.0e6; |
1527 | int istep=-1; |
1528 | |
1529 | for(int i=0; i<Nswim_steps; i++, swim_step++){ |
1530 | |
1531 | // Distance to plane is dot product of normal vector with any |
1532 | // vector pointing from the current step to a point in the plane |
1533 | double dist = fabs(norm.Dot(swim_step->origin-origin)); |
1534 | |
1535 | if (dist>old_dist) break; |
1536 | |
1537 | // Check if we're the closest step |
1538 | //if(dist < min_dist){ |
1539 | //min_dist = dist; |
1540 | |
1541 | step = swim_step; |
1542 | istep=i; |
1543 | //} |
1544 | old_dist=dist; |
1545 | |
1546 | // We should probably have a break condition here so we don't |
1547 | // waste time looking all the way to the end of the track after |
1548 | // we've passed the plane. |
1549 | } |
1550 | |
1551 | if(istep_ptr)*istep_ptr=istep; |
1552 | |
1553 | return step; |
1554 | } |
1555 | |
1556 | |
1557 | //--------------------------------- |
1558 | // FindPlaneCrossing |
1559 | //--------------------------------- |
1560 | DReferenceTrajectory::swim_step_t* DReferenceTrajectory::FindPlaneCrossing(const DVector3 &origin, DVector3 norm,int first_i,int *istep_ptr) const |
1561 | { |
1562 | /// Find the closest swim step to the position where the track crosses |
1563 | /// the plane specified by origin |
1564 | /// and norm. origin should indicate any point in the plane and |
1565 | /// norm a vector normal to the plane. |
1566 | if(istep_ptr)*istep_ptr=-1; |
1567 | |
1568 | if(Nswim_steps<1){ |
1569 | _DBG_std::cerr<<"libraries/TRACKING/DReferenceTrajectory.cc" <<":"<<1569<<" "<<"No swim steps! You must \"Swim\" the track before calling FindPlaneCrossing(...)"<<endl; |
1570 | raise(SIGSEGV11);// force seg. fault |
1571 | } |
1572 | |
1573 | // Make sure normal vector is unit lenght |
1574 | norm.SetMag(1.0); |
1575 | |
1576 | // Loop over swim steps and find the one closest to the plane |
1577 | swim_step_t *swim_step = &swim_steps[first_i]; |
1578 | swim_step_t *step=NULL__null; |
1579 | //double min_dist = 1.0E6; |
1580 | int istep=-1; |
1581 | double old_dist=1.0e6; |
1582 | |
1583 | // Check if we should start from the beginning of the reference |
1584 | // trajectory or the end |
1585 | int last_index=Nswim_steps-1; |
1586 | double forward_dist= norm.Dot(swim_step->origin-origin); |
1587 | double backward_dist= norm.Dot(swim_steps[last_index].origin-origin); |
1588 | if (fabs(forward_dist)<fabs(backward_dist)){ // start at beginning |
1589 | for(int i=first_i; i<Nswim_steps; i++, swim_step++){ |
1590 | |
1591 | // Distance to plane is dot product of normal vector with any |
1592 | // vector pointing from the current step to a point in the plane |
1593 | //double dist = fabs(norm.Dot(swim_step->origin-origin)); |
1594 | double dist = norm.Dot(swim_step->origin-origin); |
1595 | |
1596 | // We've crossed the plane when the sign of dist changes |
1597 | if (dist*old_dist<0 && i>0) { |
1598 | if (fabs(dist)<fabs(old_dist)){ |
1599 | step=swim_step; |
1600 | istep=i; |
1601 | } |
1602 | break; |
1603 | } |
1604 | step = swim_step; |
1605 | istep=i; |
1606 | old_dist=dist; |
1607 | } |
1608 | } |
1609 | else{ // start at end |
1610 | for(int i=last_index; i>=0; i--){ |
1611 | swim_step=&swim_steps[i]; |
1612 | double dist = norm.Dot(swim_step->origin-origin); |
1613 | // We've crossed the plane when the sign of dist changes |
1614 | if (dist*old_dist<0 && i<last_index) { |
1615 | if (fabs(dist)<fabs(old_dist)){ |
1616 | step=swim_step; |
1617 | istep=i; |
1618 | } |
1619 | break; |
1620 | } |
1621 | step = swim_step; |
1622 | istep=i; |
1623 | old_dist=dist; |
1624 | } |
1625 | |
1626 | } |
1627 | |
1628 | if(istep_ptr)*istep_ptr=istep; |
1629 | |
1630 | return step; |
1631 | } |
1632 | |
1633 | |
1634 | |
1635 | |
1636 | //--------------------------------- |
1637 | // DistToRT |
1638 | //--------------------------------- |
1639 | double DReferenceTrajectory::DistToRT(const DCoordinateSystem *wire, double *s) const |
1640 | { |
1641 | /// Find the closest distance to the given wire in cm. The value of |
1642 | /// "L" should be the active wire length (in cm). The coordinate system |
1643 | /// defined by "wire" should have its origin at the center of |
1644 | /// the wire with the wire running in the direction of udir. |
1645 | swim_step_t *step=FindClosestSwimStep(wire); |
1646 | |
1647 | return (step && step->s>0) ? DistToRT(wire, step, s):std::numeric_limits<double>::quiet_NaN(); |
1648 | } |
1649 | |
1650 | //--------------------------------- |
1651 | // DistToRTBruteForce |
1652 | //--------------------------------- |
1653 | double DReferenceTrajectory::DistToRTBruteForce(const DCoordinateSystem *wire, double *s) const |
1654 | { |
1655 | /// Find the closest distance to the given wire in cm. The value of |
1656 | /// "L" should be the active wire length (in cm). The coordinate system |
1657 | /// defined by "wire" should have its origin at the center of |
1658 | /// the wire with the wire running in the direction of udir. |
1659 | swim_step_t *step=FindClosestSwimStep(wire); |
1660 | |
1661 | return step ? DistToRTBruteForce(wire, step, s):std::numeric_limits<double>::quiet_NaN(); |
1662 | } |
1663 | |
1664 | //------------------ |
1665 | // DistToRT |
1666 | //------------------ |
1667 | double DReferenceTrajectory::DistToRT(const DCoordinateSystem *wire, const swim_step_t *step, double *s) const |
1668 | { |
1669 | /// Calculate the distance of the given wire(in the lab |
1670 | /// reference frame) to the Reference Trajectory which the |
1671 | /// given swim step belongs to. This uses the momentum directions |
1672 | /// and positions of the swim step |
1673 | /// to define a curve and calculate the distance of the hit |
1674 | /// from it. The swim step should be the closest one to the wire. |
1675 | /// IMPORTANT: This approximates the helix locally by a parabola. |
1676 | /// This means the swim step should be fairly close |
1677 | /// to the wire so that this approximation is valid. If the |
1678 | /// reference trajectory from which the swim step came is too |
1679 | /// sparse, the results will not be nearly as good. |
1680 | |
1681 | // Interestingly enough, this is one of the harder things to figure |
1682 | // out in the tracking code which is why the explanations may be |
1683 | // a bit long. |
1684 | |
1685 | // The general idea is to define the helix in a coordinate system |
1686 | // in which the wire runs along the z-axis. The distance to the |
1687 | // wire is then defined just in the X/Y plane of this coord. system. |
1688 | // The distance is expressed as a function of the phi angle in the |
1689 | // natural coordinate system of the helix. This way, phi=0 corresponds |
1690 | // to the swim step point itself and the DOCA point should be |
1691 | // at a small phi angle. |
1692 | // |
1693 | // The minimum distance between the helical segment and the wire |
1694 | // will be a function of sin(phi), cos(phi) and phi. Approximating |
1695 | // sin(phi) by phi and cos(phi) by (1-phi^2) leaves a 4th order |
1696 | // polynomial in phi. Taking the derivative leaves a 3rd order |
1697 | // polynomial whose root is the phi corresponding to the |
1698 | // Distance Of Closest Approach(DOCA) point on the helix. Plugging |
1699 | // that value of phi back into the distance formula gives |
1700 | // us the minimum distance between the track and the wire. |
1701 | |
1702 | // First, we need to define the coordinate system in which the |
1703 | // wire runs along the z-axis. This is actually done already |
1704 | // in the CDC package for each wire once, at program start. |
1705 | // The directions of the axes are defined in wire->sdir, |
1706 | // wire->tdir, and wire->udir. |
1707 | |
1708 | // Next, define a point on the helical segment defined by the |
1709 | // swim step it the RT coordinate system. The directions of |
1710 | // the RT coordinate system are defined by step->xdir, step->ydir, |
1711 | // and step->zdir. The coordinates of a point on the helix |
1712 | // in this coordinate system are: |
1713 | // |
1714 | // x = Ro*(cos(phi) - 1) |
1715 | // y = Ro*sin(phi) |
1716 | // z = phi*(dz/dphi) |
1717 | // |
1718 | // where phi is the phi angle of the point in this coordinate system. |
1719 | |
1720 | // Now, a vector describing the helical point in the LAB coordinate |
1721 | // system is: |
1722 | // |
1723 | // h = x*xdir + y*ydir + z*zdir + pos |
1724 | // |
1725 | // where h,xdir,ydir,zdir and pos are all 3-vectors. |
1726 | // xdir,ydir,zdir are unit vectors defining the directions |
1727 | // of the RT coord. system axes in the lab coord. system. |
1728 | // pos is a vector defining the position of the swim step |
1729 | // in the lab coord.system |
1730 | |
1731 | // Now we just need to find the extent of "h" in the wire's |
1732 | // coordinate system (period . means dot product): |
1733 | // |
1734 | // s = (h-wpos).sdir |
1735 | // t = (h-wpos).tdir |
1736 | // u = (h-wpos).udir |
1737 | // |
1738 | // where wpos is the position of the center of the wire in |
1739 | // the lab coord. system and is given by wire->wpos. |
1740 | |
1741 | // At this point, the values of s,t, and u repesent a point |
1742 | // on the helix in the coord. system of the wire with the |
1743 | // wire in the "u" direction and positioned at the origin. |
1744 | // The distance(squared) from the wire to the point on the helix |
1745 | // is given by: |
1746 | // |
1747 | // d^2 = s^2 + t^2 |
1748 | // |
1749 | // where s and t are both functions of phi. |
1750 | |
1751 | // So, we'll define the values of "s" and "t" above as: |
1752 | // |
1753 | // s = A*x + B*y + C*z + D |
1754 | // t = E*x + F*y + G*z + H |
1755 | // |
1756 | // where A,B,C,D,E,F,G, and H are constants defined below |
1757 | // and x,y,z are all functions of phi defined above. |
1758 | // (period . means dot product) |
1759 | // |
1760 | // A = sdir.xdir |
1761 | // B = sdir.ydir |
1762 | // C = sdir.zdir |
1763 | // D = sdir.(pos-wpos) |
1764 | // |
1765 | // E = tdir.xdir |
1766 | // F = tdir.ydir |
1767 | // G = tdir.zdir |
1768 | // H = tdir.(pos-wpos) |
1769 | const DVector3 &xdir = step->sdir; |
1770 | const DVector3 &ydir = step->tdir; |
1771 | const DVector3 &zdir = step->udir; |
1772 | const DVector3 &sdir = wire->sdir; |
1773 | const DVector3 &tdir = wire->tdir; |
1774 | const DVector3 &udir = wire->udir; |
1775 | DVector3 pos_diff = step->origin - wire->origin; |
1776 | |
1777 | double A = sdir.Dot(xdir); |
1778 | double B = sdir.Dot(ydir); |
1779 | double C = sdir.Dot(zdir); |
1780 | double D = sdir.Dot(pos_diff); |
1781 | |
1782 | double E = tdir.Dot(xdir); |
1783 | double F = tdir.Dot(ydir); |
1784 | double G = tdir.Dot(zdir); |
1785 | double H = tdir.Dot(pos_diff); |
1786 | |
1787 | // OK, here is the dirty part. Using the approximations given above |
1788 | // to write the x and y functions in terms of phi^2 and phi (instead |
1789 | // of cos and sin) we put them into the equations for s and t above. |
1790 | // Then, inserting those into the equation for d^2 above that, we |
1791 | // get a very long equation in terms of the constants A,...H and |
1792 | // phi up to 4th order. Combining coefficients for similar powers |
1793 | // of phi yields an equation of the form: |
1794 | // |
1795 | // d^2 = Q*phi^4 + R*phi^3 + S*phi^2 + T*phi + U |
1796 | // |
1797 | // The dirty part is that it takes the better part of a sheet of |
1798 | // paper to work out the relations for Q,...U in terms of |
1799 | // A,...H, and Ro, dz/dphi. You can work it out yourself on |
1800 | // paper to verify that the equations below are correct. |
1801 | double Ro = step->Ro; |
1802 | double Ro2 = Ro*Ro; |
1803 | double delta_z = step->mom.Dot(step->udir); |
1804 | double delta_phi = step->mom.Dot(step->tdir)/Ro; |
1805 | double dz_dphi = delta_z/delta_phi; |
1806 | double dz_dphi2=dz_dphi*dz_dphi; |
1807 | double Ro_dz_dphi=Ro*dz_dphi; |
1808 | |
1809 | // double Q = pow(A*Ro/2.0, 2.0) + pow(E*Ro/2.0, 2.0); |
1810 | double Q=0.25*Ro2*(A*A+E*E); |
1811 | // double R = -(2.0*A*B*Ro2 + 2.0*A*C*Ro_dz_dphi + 2.0*E*F*Ro2 + 2.0*E*G*Ro_dz_dphi)/2.0; |
1812 | double R = -((A*B+E*F)*Ro2 + (A*C+E*G)*Ro_dz_dphi); |
1813 | // double S = pow(B*Ro, 2.0) + pow(C*dz_dphi,2.0) + 2.0*B*C*Ro_dz_dphi - 2.0*A*D*Ro/2.0 |
1814 | //+ pow(F*Ro, 2.0) + pow(G*dz_dphi,2.0) + 2.0*F*G*Ro_dz_dphi - 2.0*E*H*Ro/2.0; |
1815 | double S= (B*B+F*F)*Ro2+(C*C+G*G)*dz_dphi2+2.0*(B*C+F*G)*Ro_dz_dphi |
1816 | -(A*D+E*H)*Ro; |
1817 | // double T = 2.0*B*D*Ro + 2.0*C*D*dz_dphi + 2.0*F*H*Ro + 2.0*G*H*dz_dphi; |
1818 | double T = 2.0*((B*D+F*H)*Ro + (C*D+G*H)*dz_dphi); |
1819 | double U = D*D + H*H; |
1820 | |
1821 | // Aaarghh! my fingers hurt just from typing all of that! |
1822 | // |
1823 | // OK, now we differentiate the above equation for d^2 to get: |
1824 | // |
1825 | // d(d^2)/dphi = 4*Q*phi^3 + 3*R*phi^2 + 2*S*phi + T |
1826 | // |
1827 | // NOTE: don't confuse "R" with "Ro" in the above equations! |
1828 | // |
1829 | // Now we have to solve the 3rd order polynomial for the phi value of |
1830 | // the point of closest approach on the RT. This is a well documented |
1831 | // procedure. Essentially, when you have an equation of the form: |
1832 | // |
1833 | // x^3 + a2*x^2 + a1*x + a0 = 0; |
1834 | // |
1835 | // a change of variables is made such that w = x + a2/3 which leads |
1836 | // to a third order poly with no w^2 term: |
1837 | // |
1838 | // w^3 + 3.0*b*w + 2*c = 0 |
1839 | // |
1840 | // where: |
1841 | // b = a1/3 - (a2^2)/9 |
1842 | // c = a0/2 - a1*a2/6 + (a2^3)/27 |
1843 | // |
1844 | // The one real root of this is: |
1845 | // |
1846 | // w0 = q - p |
1847 | // |
1848 | // where: |
1849 | // q^3 = d - c |
1850 | // p^3 = d + c |
1851 | // d^2 = b^3 + c^2 (don't confuse with d^2 above!) |
1852 | // |
1853 | // For us this means that: |
1854 | // a2 = 3*R/(4*Q) |
1855 | // a1 = 2*S/(4*Q) |
1856 | // a0 = T/(4*Q) |
1857 | // |
1858 | // A potential problem could occur if Q is at or very close to zero. |
1859 | // This situation occurs when both A and E are zero. This would mean |
1860 | // that both sdir and tdir are perpendicular to xdir which means |
1861 | // xdir is in the same direction as udir (got that?). Physically, |
1862 | // this corresponds to the situation when both the momentum and |
1863 | // the magnetic field are perpendicular to the wire (though not |
1864 | // necessarily perpendicular to each other). This situation can't |
1865 | // really occur in the CDC detector where the chambers are well |
1866 | // contained in a region where the field is essentially along z as |
1867 | // are the wires. |
1868 | // |
1869 | // Just to be safe, we check that Q is greater than |
1870 | // some minimum before solving for phi. If it is too small, we fall |
1871 | // back to solving the quadratic equation for phi. |
1872 | double phi =0.0; |
1873 | if(fabs(Q)>1.0E-6){ |
1874 | /* |
1875 | double fourQ = 4.0*Q; |
1876 | double a2 = 3.0*R/fourQ; |
1877 | double a1 = 2.0*S/fourQ; |
1878 | double a0 = T/fourQ; |
1879 | */ |
1880 | double one_over_fourQ=0.25/Q; |
1881 | double a2=3.0*R*one_over_fourQ; |
1882 | double a1=2.0*S*one_over_fourQ; |
1883 | double a0=T*one_over_fourQ; |
1884 | double a2sq=a2*a2; |
1885 | /* |
1886 | double b = a1/3.0 - a2*a2/9.0; |
1887 | double c = a0/2.0 - a1*a2/6.0 + a2*a2*a2/27.0; |
1888 | */ |
1889 | double b=ONE_THIRD0.33333333333333333*(a1-ONE_THIRD0.33333333333333333*a2sq); |
1890 | double c=0.5*(a0-ONE_THIRD0.33333333333333333*a1*a2)+a2*a2sq/27.0; |
1891 | double my_d2=b*b*b+c*c; |
1892 | if (my_d2>0){ |
1893 | //double d = sqrt(pow(b, 3.0) + pow(c, 2.0)); // occasionally, this is zero. See below |
1894 | double d=sqrt(my_d2); |
1895 | //double q = pow(d - c, ONE_THIRD); |
1896 | //double p = pow(d + c, ONE_THIRD); |
1897 | double q=cbrt(d-c); |
1898 | double p=cbrt(d+c); |
1899 | |
1900 | double w0 = q - p; |
1901 | //phi = w0 - a2/3.0; |
1902 | phi = w0 - ONE_THIRD0.33333333333333333*a2; |
1903 | } |
1904 | else{ |
1905 | // Use DeMoivre's theorem to find the cube root of a complex |
1906 | // number. In this case there are three real solutions. |
1907 | double d=sqrt(-my_d2); |
1908 | c*=-1.; |
1909 | double temp=sqrt(cbrt(c*c+d*d)); |
1910 | double theta1=ONE_THIRD0.33333333333333333*atan2(d,c); |
1911 | double sum_over_2=temp*cos(theta1); |
1912 | double diff_over_2=-temp*sin(theta1); |
1913 | |
1914 | double phi0=-a2/3+2.*sum_over_2; |
1915 | double phi1=-a2/3-sum_over_2+sqrt(3)*diff_over_2; |
1916 | double phi2=-a2/3-sum_over_2-sqrt(3)*diff_over_2; |
1917 | |
1918 | double d2_0 = U + phi0*(T + phi0*(S + phi0*(R + phi0*Q))); |
1919 | double d2_1 = U + phi1*(T + phi1*(S + phi1*(R + phi1*Q))); |
1920 | double d2_2 = U + phi2*(T + phi2*(S + phi2*(R + phi2*Q))); |
1921 | |
1922 | if (d2_0<d2_1 && d2_0<d2_2){ |
1923 | phi=phi0; |
1924 | } |
1925 | else if (d2_1<d2_0 && d2_1<d2_2){ |
1926 | phi=phi1; |
1927 | } |
1928 | else{ |
1929 | phi=phi2; |
1930 | } |
1931 | } |
1932 | } |
1933 | |
1934 | if(fabs(Q)<=1.0E-6 || !isfinite(phi)){ |
1935 | double a = 3.0*R; |
1936 | double b = 2.0*S; |
1937 | double c = 1.0*T; |
1938 | phi = (-b + sqrt(b*b - 4.0*a*c))/(2.0*a); |
1939 | } |
1940 | |
1941 | // The accuracy of this method is limited by how close the step is to the |
1942 | // actual minimum. If the value of phi is large then the step size is |
1943 | // not too close and we should add another couple of steps in the right |
1944 | // place in order to get a more accurate value. Note that while this will |
1945 | // increase the time it takes this round, presumably the fitter will be |
1946 | // calling this often for each wire and having a high density of points |
1947 | // near the wires will just make subsequent calls go quicker. This also |
1948 | // allows larger initial step sizes with the high density regions getting |
1949 | // filled in as needed leading to overall faster tracking. |
1950 | #if 0 |
1951 | if(isfinite(phi) && fabs(phi)>2.0E-4){ |
1952 | if(dist_to_rt_depth>=3){ |
1953 | _DBG_std::cerr<<"libraries/TRACKING/DReferenceTrajectory.cc" <<":"<<1953<<" "<<"3 or more recursive calls to DistToRT(). Something is wrong! bailing ..."<<endl; |
1954 | //for(int k=0; k<Nswim_steps; k++){ |
1955 | // DVector3 &v = swim_steps[k].origin; |
1956 | // _DBG_<<" "<<k<<": "<<v.X()<<", "<<v.Y()<<", "<<v.Z()<<endl; |
1957 | //} |
1958 | //exit(-1); |
1959 | return std::numeric_limits<double>::quiet_NaN(); |
1960 | } |
1961 | double scale_step = 1.0; |
1962 | double s_range = 1.0*scale_step; |
1963 | double step_size = 0.02*scale_step; |
1964 | int err = InsertSteps(step, phi>0.0 ? +s_range:-s_range, step_size); // Add new steps near this step by swimming in the direction of phi |
1965 | if(!err){ |
1966 | step=FindClosestSwimStep(wire); // Find the new closest step |
1967 | if(!step)return std::numeric_limits<double>::quiet_NaN(); |
1968 | dist_to_rt_depth++; |
1969 | double doca = DistToRT(wire, step, s); // re-call ourself with the new step |
1970 | dist_to_rt_depth--; |
1971 | return doca; |
1972 | }else{ |
1973 | if(err<0)return std::numeric_limits<double>::quiet_NaN(); |
1974 | |
1975 | // If InsertSteps() returns an error > 0 then it indicates that it |
1976 | // was unable to add additional steps (perhaps because there |
1977 | // aren't enough spaces available). In that case, we just go ahead |
1978 | // and use the phi we have and make the best estimate possible. |
1979 | } |
1980 | } |
1981 | #endif |
1982 | |
1983 | // It is possible at this point that the value of phi corresponds to |
1984 | // a point past the end of the wire. We should check for this here and |
1985 | // recalculate, if necessary, the DOCA at the end of the wire. First, |
1986 | // calculate h (the vector defined way up above) and dot it into the |
1987 | // wire's u-direction to get the position of the DOCA point along the |
1988 | // wire. |
1989 | double x = -0.5*Ro*phi*phi; |
1990 | double y = Ro*phi; |
1991 | double z = dz_dphi*phi; |
1992 | DVector3 h = pos_diff + x*xdir + y*ydir + z*zdir; |
1993 | double u = h.Dot(udir); |
1994 | if(fabs(u) > wire->L/2.0){ |
1995 | // Looks like our DOCA point is past the end of the wire. |
1996 | // Find phi corresponding to the end of the wire. |
1997 | double L_over_2 = u>0.0 ? wire->L/2.0:-wire->L/2.0; |
1998 | double a = -0.5*Ro*udir.Dot(xdir); |
1999 | double b = Ro*udir.Dot(ydir) + dz_dphi*udir.Dot(zdir); |
2000 | double c = udir.Dot(pos_diff) - L_over_2; |
2001 | double twoa=2.0*a; |
2002 | double sqroot=sqrt(b*b-4.0*a*c); |
2003 | double phi1 = (-b + sqroot)/(twoa); |
2004 | double phi2 = (-b - sqroot)/(twoa); |
2005 | phi = fabs(phi1)<fabs(phi2) ? phi1:phi2; |
2006 | u=L_over_2; |
2007 | } |
2008 | this->last_dist_along_wire = u; |
2009 | |
2010 | // Use phi to calculate DOCA |
2011 | double d2 = U + phi*(T + phi*(S + phi*(R + phi*Q))); |
2012 | double d = sqrt(d2); |
2013 | |
2014 | // Calculate distance along track ("s") |
2015 | double dz = dz_dphi*phi; |
2016 | double Rodphi = Ro*phi; |
2017 | double ds = sqrt(dz*dz + Rodphi*Rodphi); |
2018 | if(s)*s=step->s + (phi>0.0 ? ds:-ds); |
2019 | if(debug_level>3){ |
2020 | _DBG_std::cerr<<"libraries/TRACKING/DReferenceTrajectory.cc" <<":"<<2020<<" "<<"distance to rt: "<<*s<<" from step at "<<step->s<<" with ds="<<ds<<" d="<<d<<" dz="<<dz<<" Rodphi="<<Rodphi<<endl; |
2021 | _DBG_std::cerr<<"libraries/TRACKING/DReferenceTrajectory.cc" <<":"<<2021<<" "<<"phi="<<phi<<" U="<<U<<" u="<<u<<endl; |
2022 | } |
2023 | |
2024 | // Remember phi and step so additional info on the point can be obtained |
2025 | this->last_phi = phi; |
2026 | this->last_swim_step = step; |
2027 | this->last_dz_dphi = dz_dphi; |
2028 | |
2029 | return d; // WARNING: This could return nan! |
2030 | } |
2031 | |
2032 | //------------------ |
2033 | // DistToRTBruteForce |
2034 | //------------------ |
2035 | double DReferenceTrajectory::DistToRTBruteForce(const DCoordinateSystem *wire, const swim_step_t *step, double *s) const |
2036 | { |
2037 | /// Calculate the distance of the given wire(in the lab |
2038 | /// reference frame) to the Reference Trajectory which the |
2039 | /// given swim step belongs to. This uses the momentum directions |
2040 | /// and positions of the swim step |
2041 | /// to define a curve and calculate the distance of the hit |
2042 | /// from it. The swim step should be the closest one to the wire. |
2043 | /// IMPORTANT: This calculates the distance using a "brute force" |
2044 | /// method of taking tiny swim steps to find the minimum distance. |
2045 | /// It is vey SLOW and you should be using DistToRT(...) instead. |
2046 | /// This is only here to provide an independent check of DistToRT(...). |
2047 | |
2048 | const DVector3 &xdir = step->sdir; |
2049 | const DVector3 &ydir = step->tdir; |
2050 | const DVector3 &zdir = step->udir; |
2051 | const DVector3 &sdir = wire->sdir; |
2052 | const DVector3 &tdir = wire->tdir; |
2053 | DVector3 pos_diff = step->origin - wire->origin; |
2054 | |
2055 | double Ro = step->Ro; |
2056 | double delta_z = step->mom.Dot(step->udir); |
2057 | double delta_phi = step->mom.Dot(step->tdir)/Ro; |
2058 | double dz_dphi = delta_z/delta_phi; |
2059 | |
2060 | // Brute force |
2061 | double min_d2 = 1.0E6; |
2062 | double phi=M_PI3.14159265358979323846; |
2063 | for(int i=-2000; i<2000; i++){ |
2064 | double myphi=(double)i*0.000005; |
2065 | DVector3 d = Ro*(cos(myphi)-1.0)*xdir |
2066 | + Ro*sin(myphi)*ydir |
2067 | + dz_dphi*myphi*zdir |
2068 | + pos_diff; |
2069 | |
2070 | double d2 = pow(d.Dot(sdir),2.0) + pow(d.Dot(tdir),2.0); |
2071 | if(d2<min_d2){ |
2072 | min_d2 = d2; |
2073 | phi = myphi; |
2074 | this->last_phi = myphi; |
2075 | } |
2076 | } |
2077 | double d2 = min_d2; |
2078 | double d = sqrt(d2); |
2079 | this->last_phi = phi; |
2080 | this->last_swim_step = step; |
2081 | this->last_dz_dphi = dz_dphi; |
2082 | |
2083 | // Calculate distance along track ("s") |
2084 | double dz = dz_dphi*phi; |
2085 | double Rodphi = Ro*phi; |
2086 | double ds = sqrt(dz*dz + Rodphi*Rodphi); |
2087 | if(s)*s=step->s + (phi>0.0 ? ds:-ds); |
2088 | |
2089 | return d; |
2090 | } |
2091 | |
2092 | //------------------ |
2093 | // Straw_dx |
2094 | //------------------ |
2095 | double DReferenceTrajectory::Straw_dx(const DCoordinateSystem *wire, double radius) const |
2096 | { |
2097 | /// Find the distance traveled within the specified radius of the |
2098 | /// specified wire. This will give the "dx" component of a dE/dx |
2099 | /// measurement for cylindrical geometry as we have with straw tubes. |
2100 | /// |
2101 | /// At this point, the estimate is done using a simple linear |
2102 | /// extrapolation from the DOCA point in the direction of the momentum |
2103 | /// to the 2 points at which it itersects the given radius. Segments |
2104 | /// which extend past the end of the wire will be clipped to the end |
2105 | /// of the wire before calculating the total dx. |
2106 | |
2107 | // First, find the DOCA point for this wire |
2108 | double s; |
2109 | double doca = DistToRT(wire, &s); |
2110 | if(!isfinite(doca)) |
2111 | return 0.0; |
2112 | |
2113 | // If doca is outside of the given radius, then we're done |
2114 | if(doca>=radius)return 0.0; |
2115 | |
2116 | // Get the location and momentum direction of the DOCA point |
2117 | DVector3 pos, momdir; |
2118 | GetLastDOCAPoint(pos, momdir); |
2119 | if(momdir.Mag()!=0.0)momdir.SetMag(1.0); |
2120 | |
2121 | // Get wire direction |
2122 | const DVector3 &udir = wire->udir; |
2123 | |
2124 | // Calculate vectors used to form quadratic equation for "alpha" |
2125 | // the distance along the mometum direction from the DOCA point |
2126 | // to the intersection with a cylinder of the given radius. |
2127 | DVector3 A = udir.Cross(pos-wire->origin); |
2128 | DVector3 B = udir.Cross(momdir); |
2129 | |
2130 | // If the magnitude of B is zero at this point, it means the momentum |
2131 | // direction is parallel to the wire. In this case, this method will |
2132 | // not work. Return NaN. |
2133 | if(B.Mag()<1.0E-10)return std::numeric_limits<double>::quiet_NaN(); |
2134 | |
2135 | double a = B.Mag(); |
2136 | double b = A.Dot(B); |
2137 | double c = A.Mag() - radius; |
2138 | double d = sqrt(b*b - 4.0*a*c); |
2139 | |
2140 | // The 2 roots should correspond to the 2 intersection points. |
2141 | double alpha1 = (-b + d)/(2.0*a); |
2142 | double alpha2 = (-b - d)/(2.0*a); |
2143 | |
2144 | DVector3 int1 = pos + alpha1*momdir; |
2145 | DVector3 int2 = pos + alpha2*momdir; |
2146 | |
2147 | // Check if point1 is past the end of the wire |
2148 | double q = udir.Dot(int1 - wire->origin); |
2149 | if(fabs(q) > wire->L/2.0){ |
2150 | double gamma = udir.Dot(wire->origin - pos) + (q>0.0 ? +1.0:-1.0)*wire->L/2.0; |
2151 | gamma /= momdir.Dot(udir); |
2152 | int1 = pos + gamma*momdir; |
2153 | } |
2154 | |
2155 | // Check if point2 is past the end of the wire |
2156 | q = udir.Dot(int2 - wire->origin); |
2157 | if(fabs(q) > wire->L/2.0){ |
2158 | double gamma = udir.Dot(wire->origin - pos) + (q>0.0 ? +1.0:-1.0)*wire->L/2.0; |
2159 | gamma /= momdir.Dot(udir); |
2160 | int2 = pos + gamma*momdir; |
2161 | } |
2162 | |
2163 | // Calculate distance |
2164 | DVector3 delta = int1 - int2; |
2165 | |
2166 | return delta.Mag(); |
2167 | } |
2168 | |
2169 | //------------------ |
2170 | // GetLastDOCAPoint |
2171 | //------------------ |
2172 | void DReferenceTrajectory::GetLastDOCAPoint(DVector3 &pos, DVector3 &mom) const |
2173 | { |
2174 | /// Use values saved by the last call to one of the DistToRT functions |
2175 | /// to calculate the 3-D DOCA position in lab coordinates and momentum |
2176 | /// in GeV/c. |
2177 | |
2178 | if(last_swim_step==NULL__null){ |
2179 | if(Nswim_steps>0){ |
2180 | last_swim_step = &swim_steps[0]; |
2181 | last_phi = 0.0; |
2182 | }else{ |
2183 | pos.SetXYZ(NaNstd::numeric_limits<double>::quiet_NaN(),NaNstd::numeric_limits<double>::quiet_NaN(),NaNstd::numeric_limits<double>::quiet_NaN()); |
2184 | mom.SetXYZ(NaNstd::numeric_limits<double>::quiet_NaN(),NaNstd::numeric_limits<double>::quiet_NaN(),NaNstd::numeric_limits<double>::quiet_NaN()); |
2185 | return; |
2186 | } |
2187 | } |
2188 | |
2189 | // If last_phi is not finite, set it to 0 as a last resort |
2190 | if(!isfinite(last_phi))last_phi = 0.0; |
2191 | |
2192 | const DVector3 &xdir = last_swim_step->sdir; |
2193 | const DVector3 &ydir = last_swim_step->tdir; |
2194 | const DVector3 &zdir = last_swim_step->udir; |
2195 | |
2196 | double x = -(last_swim_step->Ro/2.0)*last_phi*last_phi; |
2197 | double y = last_swim_step->Ro*last_phi; |
2198 | double z = last_dz_dphi*last_phi; |
2199 | |
2200 | pos = last_swim_step->origin + x*xdir + y*ydir + z*zdir; |
2201 | mom = last_swim_step->mom; |
2202 | |
2203 | mom.Rotate(-last_phi, zdir); |
2204 | } |
2205 | |
2206 | //------------------ |
2207 | // GetLastDOCAPoint |
2208 | //------------------ |
2209 | DVector3 DReferenceTrajectory::GetLastDOCAPoint(void) const |
2210 | { |
2211 | /// Use values saved by the last call to one of the DistToRT functions |
2212 | /// to calculate the 3-D DOCA position in lab coordinates. This is |
2213 | /// mainly intended for debugging. |
2214 | if(last_swim_step==NULL__null){ |
2215 | if(Nswim_steps>0){ |
2216 | last_swim_step = &swim_steps[0]; |
2217 | last_phi = 0.0; |
2218 | }else{ |
2219 | return DVector3(NaNstd::numeric_limits<double>::quiet_NaN(),NaNstd::numeric_limits<double>::quiet_NaN(),NaNstd::numeric_limits<double>::quiet_NaN()); |
2220 | } |
2221 | } |
2222 | const DVector3 &xdir = last_swim_step->sdir; |
2223 | const DVector3 &ydir = last_swim_step->tdir; |
2224 | const DVector3 &zdir = last_swim_step->udir; |
2225 | double Ro = last_swim_step->Ro; |
2226 | double delta_z = last_swim_step->mom.Dot(zdir); |
2227 | double delta_phi = last_swim_step->mom.Dot(ydir)/Ro; |
2228 | double dz_dphi = delta_z/delta_phi; |
2229 | |
2230 | double x = -(Ro/2.0)*last_phi*last_phi; |
2231 | double y = Ro*last_phi; |
2232 | double z = dz_dphi*last_phi; |
2233 | |
2234 | return last_swim_step->origin + x*xdir + y*ydir + z*zdir; |
2235 | } |
2236 | |
2237 | //------------------ |
2238 | // dPdx |
2239 | //------------------ |
2240 | double DReferenceTrajectory::dPdx_from_A_Z_rho(double ptot, double A, double Z, double density) const |
2241 | { |
2242 | double I = (Z*12.0 + 7.0)*1.0E-9; // From Leo 2nd ed. pg 25. |
2243 | if (Z>=13) I=(9.76*Z+58.8*pow(Z,-0.19))*1.0e-9; |
2244 | double rhoZ_overA=density*Z/A; |
2245 | double KrhoZ_overA = 0.1535e-3*rhoZ_overA; |
2246 | |
2247 | return dPdx(ptot, KrhoZ_overA,rhoZ_overA,log(I)); |
2248 | } |
2249 | |
2250 | //------------------ |
2251 | // dPdx |
2252 | //------------------ |
2253 | double DReferenceTrajectory::dPdx(double ptot, double KrhoZ_overA, |
2254 | double rhoZ_overA,double LogI) const |
2255 | { |
2256 | /// Calculate the momentum loss per unit distance traversed of the material with |
2257 | /// the given A, Z, and density. Value returned is in GeV/c per cm |
2258 | /// This follows the July 2008 PDG section 27.2 ppg 268-270. |
2259 | if(mass==0.0)return 0.0; // no ionization losses for neutrals |
2260 | |
2261 | double gammabeta = ptot/mass; |
2262 | double gammabeta2=gammabeta*gammabeta; |
2263 | double gamma = sqrt(gammabeta2+1.); |
2264 | double beta = gammabeta/gamma; |
2265 | double beta2=beta*beta; |
2266 | double me = 0.511E-3; |
2267 | double m_ratio=me/mass; |
2268 | double two_me_gammabeta2=2.*me*gammabeta2; |
2269 | |
2270 | double Tmax = two_me_gammabeta2/(1.0+2.0*gamma*m_ratio+m_ratio*m_ratio); |
2271 | //double K = 0.307075E-3; // GeV gm^-1 cm^2 |
2272 | // Density effect |
2273 | double delta=0.; |
2274 | double X=log10(gammabeta); |
2275 | double X0,X1; |
2276 | double Cbar=2.*(LogI-log(28.816e-9*sqrt(rhoZ_overA)))+1.; |
2277 | if (rhoZ_overA>0.01){ // not a gas |
2278 | if (LogI<-1.6118){ // I<100 |
2279 | if (Cbar<=3.681) X0=0.2; |
2280 | else X0=0.326*Cbar-1.; |
2281 | X1=2.; |
2282 | } |
2283 | else{ |
2284 | if (Cbar<=5.215) X0=0.2; |
2285 | else X0=0.326*Cbar-1.5; |
2286 | X1=3.; |
2287 | } |
2288 | } |
2289 | else { // gases |
2290 | X1=4.; |
2291 | if (Cbar<=9.5) X0=1.6; |
2292 | else if (Cbar>9.5 && Cbar<=10.) X0=1.7; |
2293 | else if (Cbar>10 && Cbar<=10.5) X0=1.8; |
2294 | else if (Cbar>10.5 && Cbar<=11.) X0=1.9; |
2295 | else if (Cbar>11.0 && Cbar<=12.25) X0=2.; |
2296 | else if (Cbar>12.25 && Cbar<=13.804){ |
2297 | X0=2.; |
2298 | X1=5.; |
2299 | } |
2300 | else { |
2301 | X0=0.326*Cbar-2.5; |
2302 | X1=5.; |
2303 | } |
2304 | } |
2305 | if (X>=X0 && X<X1) |
2306 | delta=4.606*X-Cbar+(Cbar-4.606*X0)*pow((X1-X)/(X1-X0),3.); |
2307 | else if (X>=X1) |
2308 | delta= 4.606*X-Cbar; |
2309 | |
2310 | double dEdx = KrhoZ_overA/beta2*(log(two_me_gammabeta2*Tmax) |
2311 | -2.*LogI - 2.0*beta2 -delta); |
2312 | |
2313 | double dP_dx = dEdx/beta; |
2314 | |
2315 | //double g = 0.350/sqrt(-log(0.06)); |
2316 | //dP_dx *= 1.0 + exp(-pow(ptot/g,2.0)); // empirical for really low momentum particles |
2317 | |
2318 | |
2319 | if(ploss_direction==kBackward)dP_dx = -dP_dx; |
2320 | |
2321 | return dP_dx; |
2322 | } |
2323 | |
2324 | //------------------ |
2325 | // Dump |
2326 | //------------------ |
2327 | void DReferenceTrajectory::Dump(double zmin, double zmax) |
2328 | { |
2329 | swim_step_t *step = swim_steps; |
2330 | for(int i=0; i<Nswim_steps; i++, step++){ |
2331 | vector<pair<string,string> > item; |
2332 | double x = step->origin.X(); |
2333 | double y = step->origin.Y(); |
2334 | double z = step->origin.Z(); |
2335 | if(z<zmin || z>zmax)continue; |
2336 | |
2337 | double px = step->mom.X(); |
2338 | double py = step->mom.Y(); |
2339 | double pz = step->mom.Z(); |
2340 | |
2341 | cout<<i<<": "; |
2342 | cout<<"(x,y,z)=("<<x<<","<<y<<","<<z<<") "; |
2343 | cout<<"(px,py,pz)=("<<px<<","<<py<<","<<pz<<") "; |
2344 | cout<<"(Ro,s,t)=("<<step->Ro<<","<<step->s<<","<<step->t<<") "; |
2345 | cout<<endl; |
2346 | } |
2347 | |
2348 | } |
2349 | |
2350 | // Propagate the covariance matrix for {px,py,pz,x,y,z,t} along the step ds |
2351 | jerror_t DReferenceTrajectory::PropagateCovariance(double ds,double q, |
2352 | double mass_sq, |
2353 | const DVector3 &mom, |
2354 | const DVector3 &pos, |
2355 | const DVector3 &B, |
2356 | DMatrixDSym &C) const{ |
2357 | DMatrix J(7,7); |
2358 | |
2359 | double one_over_p_sq=1./mom.Mag2(); |
2360 | double one_over_p=sqrt(one_over_p_sq); |
2361 | double px=mom.X(); |
2362 | double py=mom.Y(); |
2363 | double pz=mom.Z(); |
2364 | double Bx=B.x(),By=B.y(),Bz=B.z(); |
2365 | |
2366 | double ds_over_p=ds*one_over_p; |
2367 | double factor=0.003*q*ds_over_p; |
2368 | double temp=(Bz*py-Bx*pz)*one_over_p_sq; |
2369 | J(0,0)=1-factor*px*temp; |
2370 | J(0,1)=factor*(Bz-py*temp); |
2371 | J(0,2)=-factor*(By+pz*temp); |
2372 | |
2373 | temp=(Bx*pz-Bz*px)*one_over_p_sq; |
2374 | J(1,0)=-factor*(Bz+px*temp); |
2375 | J(1,1)=1-factor*py*temp; |
2376 | J(1,2)=factor*(Bx-pz*temp); |
2377 | |
2378 | temp=(By*px-Bx*py)*one_over_p_sq; |
2379 | J(2,0)=factor*(By-px*temp); |
2380 | J(2,1)=-factor*(Bx+py*temp); |
2381 | J(2,2)=1-factor*pz*temp; |
2382 | |
2383 | J(3,3)=1.; |
2384 | double ds_over_p3=one_over_p_sq*ds_over_p; |
2385 | J(3,0)=ds_over_p*(1-px*px*one_over_p_sq); |
2386 | J(3,1)=-px*py*ds_over_p3; |
2387 | J(3,2)=-px*pz*ds_over_p3; |
2388 | |
2389 | J(4,4)=1.; |
2390 | J(4,0)=J(3,1); |
2391 | J(4,1)=ds_over_p*(1-py*py*one_over_p_sq); |
2392 | J(4,2)=-py*pz*ds_over_p3; |
2393 | |
2394 | J(5,5)=1.; |
2395 | J(5,0)=J(3,2); |
2396 | J(5,1)=J(4,2); |
2397 | J(5,2)=ds_over_p*(1-pz*pz*one_over_p_sq); |
2398 | |
2399 | J(6,6)=1.; |
2400 | |
2401 | double fac2=(-ds/SPEED_OF_LIGHT29.9792)*mass_sq*one_over_p_sq*one_over_p_sq |
2402 | /sqrt(1.+mass_sq*one_over_p_sq); |
2403 | J(6,0)=fac2*px; |
2404 | J(6,1)=fac2*py; |
2405 | J(6,2)=fac2*pz; |
2406 | |
2407 | C=C.Similarity(J); |
2408 | |
2409 | return NOERROR; |
2410 | } |
2411 | |
2412 | // Find the position along a reference trajectory closest to a line. |
2413 | // The error matrix for the line can also be input via a pointer. The error |
2414 | // matrix is expected to be 7x7 with the order {Px,Py,Pz,X,Y,Z,T}. |
2415 | // Outputs the kinematic data object (including the covariance) at this |
2416 | // position, and the doca and the variance on the doca. |
2417 | jerror_t DReferenceTrajectory::FindPOCAtoLine(const DVector3 &origin, |
2418 | const DVector3 &dir, |
2419 | const DMatrixDSym *covline, |
2420 | DKinematicData *track_kd, |
2421 | DVector3 &commonpos, double &doca, double &var_doca) const{ |
2422 | const swim_step_t *swim_step=this->swim_steps; |
2423 | DMatrixDSym cov(7); |
2424 | if(track_kd!=NULL__null) |
2425 | cov=track_kd->errorMatrix(); |
2426 | doca=1000.; |
2427 | double tflight=0.; |
2428 | double mass_sq=this->mass_sq; |
2429 | double q=this->q; |
2430 | double step_size=1.0,s=-step_size; |
2431 | DVector3 oldpos,oldmom; |
2432 | DVector3 point=origin; |
2433 | |
2434 | // Find the magnitude of the direction vector |
2435 | double pscale=dir.Mag(); |
2436 | // If the magnitude of the direction vector is zero, don't bother to propagate |
2437 | // along a line from the input origin... |
2438 | bool move_along_line=(pscale>0)?true:false; |
2439 | |
2440 | // Propagate along the reference trajectory, comparing to the line at each |
2441 | // step |
2442 | for (int i=0;i<this->Nswim_steps-1; i++, swim_step++){ |
2443 | DVector3 pos=swim_step->origin; |
2444 | DVector3 diff=pos-point; |
2445 | double new_doca=diff.Mag(); |
2446 | if (new_doca>doca){ |
2447 | if (i==1){ // backtrack to find the true doca |
2448 | tflight=0.; |
2449 | |
2450 | swim_step=this->swim_steps; |
2451 | if(track_kd!=NULL__null) |
2452 | cov=track_kd->errorMatrix(); |
2453 | |
2454 | pos=swim_step->origin; |
2455 | DVector3 mom=swim_step->mom; |
2456 | DMagneticFieldStepper stepper(this->bfield, this->q, &pos, &mom); |
2457 | |
2458 | int inew=0; |
2459 | while (inew<100){ |
2460 | DVector3 B; |
2461 | double ds=stepper.Step(&pos,&B,-0.5); |
2462 | // Compute the revised estimate for the doca |
2463 | diff=pos-point; |
2464 | new_doca=diff.Mag(); |
2465 | |
2466 | if(new_doca > doca) break; |
2467 | |
2468 | // Propagate the covariance matrix of the track along the trajectory |
2469 | if(track_kd!=NULL__null){ |
2470 | this->PropagateCovariance(ds,q,mass_sq,mom,oldpos,B,cov); |
2471 | } |
2472 | |
2473 | // Store the current positions, doca and adjust flight times |
2474 | oldpos=pos; |
2475 | doca=new_doca; |
2476 | |
2477 | double one_over_p_sq=1./mom.Mag2(); |
2478 | tflight+=ds*sqrt(1.+mass_sq*one_over_p_sq)/SPEED_OF_LIGHT29.9792; |
2479 | |
2480 | // New momentum |
2481 | stepper.GetMomentum(mom); |
2482 | |
2483 | oldmom=/*(-1.)*/mom; |
2484 | inew++; |
2485 | |
2486 | // New point on line |
2487 | if (move_along_line){ |
2488 | point-=(step_size/pscale)*dir; |
2489 | s-=step_size; |
2490 | } |
2491 | } |
2492 | } |
2493 | if(track_kd!=NULL__null) |
2494 | { |
2495 | track_kd->setErrorMatrix(cov); |
2496 | track_kd->setMomentum(oldmom); |
2497 | track_kd->setPosition(oldpos); |
2498 | track_kd->setTime(track_kd->time() + tflight); |
2499 | } |
2500 | |
2501 | // Compute the variance on the doca |
2502 | diff=oldpos-point; |
2503 | double dx=diff.x(); |
2504 | double dy=diff.y(); |
2505 | double dz=diff.z(); |
2506 | |
2507 | if(track_kd==NULL__null) |
2508 | break; |
2509 | //calculate var_doca |
2510 | if (covline==NULL__null){ |
2511 | var_doca=(dx*dx*(cov(kX,kX))+dy*dy*(cov(kY,kY)) |
2512 | +dz*dz*(cov(kZ,kZ))+2.*dx*dy*(cov(kX,kY)) |
2513 | +2.*dx*dz*(cov(kX,kZ))+2.*dy*dz*(cov(kY,kZ))) |
2514 | /(doca*doca); |
2515 | } |
2516 | else{ |
2517 | DMatrixDSym cov2(*covline); |
2518 | if (move_along_line){ |
2519 | double two_s=2.*s; |
2520 | double s_sq=s*s; |
2521 | cov2(kX,kX)+=two_s*cov2(kPx,kX)+s_sq*cov2(kPx,kPx); |
2522 | cov2(kY,kY)+=two_s*cov2(kPy,kY)+s_sq*cov2(kPy,kPy); |
2523 | cov2(kZ,kZ)+=two_s*cov2(kPz,kZ)+s_sq*cov2(kPz,kPz); |
2524 | } |
2525 | var_doca=(dx*dx*(cov(kX,kX)+cov2(kX,kX)) |
2526 | +dy*dy*(cov(kY,kY)+cov2(kY,kY)) |
2527 | +dz*dz*(cov(kZ,kZ)+cov2(kZ,kZ)) |
2528 | +2.*dx*dy*(cov(kX,kY)+cov2(kX,kY)) |
2529 | +2.*dx*dz*(cov(kX,kZ)+cov2(kX,kZ)) |
2530 | +2.*dy*dz*(cov(kY,kZ)+cov2(kY,kZ))) |
2531 | /(doca*doca); |
2532 | } |
2533 | break; |
2534 | } |
2535 | // New point on line |
2536 | if (move_along_line){ |
2537 | point+=(step_size/pscale)*dir; |
2538 | s+=step_size; |
2539 | } |
2540 | |
2541 | // Propagate the covariance matrix of the track along the trajectory |
2542 | this->PropagateCovariance(this->swim_steps[i+1].s-swim_step->s,q,mass_sq,swim_step->mom,swim_step->origin,swim_step->B,cov); |
2543 | |
2544 | // Store the current position and doca |
2545 | oldpos=pos; |
2546 | oldmom=swim_step->mom; |
2547 | tflight=swim_step->t; |
2548 | doca=new_doca; |
2549 | } |
2550 | |
2551 | // "Vertex" is mid-point of line connecting the positions of closest |
2552 | // approach of the two tracks |
2553 | commonpos = 0.5*(oldpos + point); |
2554 | |
2555 | return NOERROR; |
2556 | } |
2557 | |
2558 | // Find the position along a reference trajectory closest to a given point. |
2559 | // The error matrix for the point can also be input via a pointer. The error |
2560 | // matrix is expected to be 7x7, with the order {Px,Py,Pz,X,Y,Z,T}. |
2561 | // Outputs the kinematic data object (including the covariance) at this |
2562 | // position,and the doca and the variance on the doca. |
2563 | jerror_t DReferenceTrajectory::FindPOCAtoPoint(const DVector3 &point, |
2564 | const DMatrixDSym *covpoint, |
2565 | DKinematicData *track_kd, |
2566 | double &doca, double &var_doca) const{ |
2567 | if (track_kd==NULL__null) return RESOURCE_UNAVAILABLE; |
2568 | |
2569 | DVector3 dir, commonpos; |
2570 | return FindPOCAtoLine(point,dir,covpoint,track_kd,commonpos,doca,var_doca); |
2571 | } |
2572 | |
2573 | // Find the mid-point of the line connecting the points of closest approach of the |
2574 | // trajectories of two tracks. Return the positions, momenta, and error matrices |
2575 | // at these points for the two tracks. |
2576 | jerror_t DReferenceTrajectory::IntersectTracks(const DReferenceTrajectory *rt2, DKinematicData *track1_kd, DKinematicData *track2_kd, DVector3 &pos, double &doca, double &var_doca) const { |
2577 | const swim_step_t *swim_step1=this->swim_steps; |
2578 | const swim_step_t *swim_step2=rt2->swim_steps; |
2579 | |
2580 | DMatrixDSym cov1(7), cov2(7); |
2581 | |
2582 | if((track1_kd != NULL__null) && (track2_kd != NULL__null)){ |
2583 | cov1=track1_kd->errorMatrix(); |
2584 | cov2=track2_kd->errorMatrix(); |
2585 | } |
2586 | |
2587 | double q1=this->q; |
2588 | double q2=rt2->q; |
2589 | double mass_sq1=this->mass_sq; |
2590 | double mass_sq2=rt2->mass_sq; |
2591 | |
2592 | // Initialize the doca and traverse both particles' trajectories |
2593 | doca=1000.; |
2594 | double tflight1=0.,tflight2=0.; |
2595 | for (int i=0;i<this->Nswim_steps-1&&i<rt2->Nswim_steps-1; i++, swim_step1++, swim_step2++){ |
2596 | DVector3 pos1=swim_step1->origin; |
2597 | DVector3 pos2=swim_step2->origin; |
2598 | DVector3 diff=pos1-pos2; |
2599 | double new_doca=diff.Mag(); |
2600 | |
2601 | if (new_doca>doca){ |
2602 | int prev_i=i-1; |
2603 | // positions and momenta of tracks at the center of the |
2604 | // bracketed region |
2605 | pos1=this->swim_steps[prev_i].origin; |
2606 | DVector3 mom1=this->swim_steps[prev_i].mom; |
2607 | pos2=rt2->swim_steps[prev_i].origin; |
2608 | DVector3 mom2=rt2->swim_steps[prev_i].mom; |
2609 | |
2610 | // If we break out of the loop immediately, we have not bracketed the |
2611 | // doca yet... |
2612 | if (i==1) { // backtrack to find the true doca |
2613 | tflight1=tflight2=0.; |
2614 | if((track1_kd != NULL__null) && (track2_kd != NULL__null)){ |
2615 | cov1=track1_kd->errorMatrix(); |
2616 | cov2=track2_kd->errorMatrix(); |
2617 | } |
2618 | // Initialize the steppers |
2619 | DMagneticFieldStepper stepper1(this->bfield, q1, &pos1, &mom1); |
2620 | DMagneticFieldStepper stepper2(this->bfield, q2, &pos2, &mom2); |
2621 | |
2622 | // Do the backtracking... |
2623 | int inew=0; |
2624 | DVector3 oldpos1=pos1; |
2625 | DVector3 oldpos2=pos2; |
2626 | while (inew<20){ |
2627 | if (pos1.z()<0. || pos2.z()<0. || pos1.z()>400. || pos2.z()>400. |
2628 | || pos1.Perp()>65. || pos2.Perp()>65.){ |
2629 | break; |
2630 | } |
2631 | DVector3 B1,B2; |
2632 | double ds1=stepper1.Step(&pos1,&B1,-0.5); |
2633 | double ds2=stepper2.Step(&pos2,&B2,-0.5); |
2634 | |
2635 | // Compute the revised estimate for the doca |
2636 | diff=pos1-pos2; |
2637 | new_doca=diff.Mag(); |
2638 | |
2639 | if(new_doca > doca){ |
2640 | pos1=oldpos1; |
2641 | pos2=oldpos2; |
2642 | break; |
2643 | } |
2644 | |
2645 | // Propagate the covariance matrices along the trajectories |
2646 | if((track1_kd != NULL__null) && (track2_kd != NULL__null)){ |
2647 | this->PropagateCovariance(ds1,q1,mass_sq1,mom1,oldpos1,B1,cov1); |
2648 | rt2->PropagateCovariance(ds2,q2,mass_sq2,mom2,oldpos2,B2,cov2); |
2649 | } |
2650 | |
2651 | // Store the current positions, doca and adjust flight times |
2652 | oldpos1=pos1; |
2653 | oldpos2=pos2; |
2654 | doca=new_doca; |
2655 | |
2656 | double one_over_p1_sq=1./mom1.Mag2(); |
2657 | tflight1+=ds1*sqrt(1.+mass_sq1*one_over_p1_sq)/SPEED_OF_LIGHT29.9792; |
2658 | |
2659 | double one_over_p2_sq=1./mom2.Mag2(); |
2660 | tflight2+=ds2*sqrt(1.+mass_sq2*one_over_p2_sq)/SPEED_OF_LIGHT29.9792; |
2661 | |
2662 | // New momenta |
2663 | stepper1.GetMomentum(mom1); |
2664 | stepper2.GetMomentum(mom2); |
2665 | } |
2666 | } |
2667 | |
2668 | // Use Brent's algorithm to find a better approximation for |
2669 | // the poca of the two tracks |
2670 | double ds=0.5; |
2671 | BrentsAlgorithm(pos1,mom1,pos2,mom2,ds,q2,doca); |
2672 | |
2673 | // "Vertex" is mid-point of line connecting the positions of closest |
2674 | // approach of the two tracks |
2675 | pos=0.5*(pos1+pos2); |
2676 | |
2677 | if((track1_kd != NULL__null) && (track2_kd != NULL__null)){ |
2678 | // Adjust flight times |
2679 | double one_over_p1_sq=1./mom1.Mag2(); |
2680 | tflight1+=ds*sqrt(1.+mass_sq1*one_over_p1_sq)/SPEED_OF_LIGHT29.9792; |
2681 | |
2682 | double one_over_p2_sq=1./mom2.Mag2(); |
2683 | tflight2+=ds*sqrt(1.+mass_sq2*one_over_p2_sq)/SPEED_OF_LIGHT29.9792; |
2684 | |
2685 | track1_kd->setErrorMatrix(cov1); |
2686 | track1_kd->setMomentum(mom1); |
2687 | track1_kd->setPosition(pos1); |
2688 | track1_kd->setTime(track1_kd->time() + tflight1); |
2689 | |
2690 | track2_kd->setErrorMatrix(cov2); |
2691 | track2_kd->setMomentum(mom2); |
2692 | track2_kd->setPosition(pos2); |
2693 | track2_kd->setTime(track2_kd->time() + tflight2); |
2694 | |
2695 | // Compute the variance on the doca |
2696 | diff=pos1-pos2; |
2697 | double dx=diff.x(); |
2698 | double dy=diff.y(); |
2699 | double dz=diff.z(); |
2700 | var_doca=(dx*dx*(cov1(kX,kX)+cov2(kX,kX)) |
2701 | +dy*dy*(cov1(kY,kY)+cov2(kY,kY)) |
2702 | +dz*dz*(cov1(kZ,kZ)+cov2(kZ,kZ)) |
2703 | +2.*dx*dy*(cov1(kX,kY)+cov2(kX,kY)) |
2704 | +2.*dx*dz*(cov1(kX,kZ)+cov2(kX,kZ)) |
2705 | +2.*dy*dz*(cov1(kY,kZ)+cov2(kY,kZ))) |
2706 | /(doca*doca); |
2707 | } |
2708 | break; |
2709 | } |
2710 | |
2711 | // Propagate the covariance matrices along the trajectories |
2712 | if((track1_kd != NULL__null) && (track2_kd != NULL__null)){ |
2713 | this->PropagateCovariance(this->swim_steps[i+1].s-swim_step1->s,q1,mass_sq1,swim_step1->mom,swim_step1->origin,swim_step1->B,cov1); |
2714 | rt2->PropagateCovariance(rt2->swim_steps[i+1].s-swim_step2->s,q2,mass_sq2,swim_step2->mom,swim_step2->origin,swim_step2->B,cov2); |
2715 | } |
2716 | |
2717 | // Store the current positions and doca |
2718 | tflight1=swim_step1->t; |
2719 | tflight2=swim_step2->t; |
2720 | doca=new_doca; |
2721 | } |
2722 | |
2723 | return NOERROR; |
2724 | } |
2725 | |
2726 | |
2727 | // Routine for finding the minimum of a function bracketed between two values |
2728 | // (see Numerical Recipes in C, pp. 404-405). |
2729 | #define ITMAX20 20 |
2730 | #define CGOLD0.3819660 0.3819660 |
2731 | #define EPS21.e-4 1.e-4 |
2732 | #define ZEPS1.0e-10 1.0e-10 |
2733 | #define SHFT(a,b,c,d)(a)=(b);(b)=(c);(c)=(d); (a)=(b);(b)=(c);(c)=(d); |
2734 | #define SIGN(a,b)((b)>=0.0?fabs(a):-fabs(a)) ((b)>=0.0?fabs(a):-fabs(a)) |
2735 | jerror_t DReferenceTrajectory::BrentsAlgorithm(DVector3 &pos1,DVector3 &mom1, |
2736 | DVector3 &pos2,DVector3 &mom2, |
2737 | double ds,double q2, |
2738 | double &doca) const{ |
2739 | double d=0.,u=0.; |
2740 | double e=0.0; // will be distance moved on step before last |
2741 | double ax=0.; |
2742 | double bx=-ds; |
2743 | double cx=-2.*ds; |
2744 | |
2745 | double a=(ax<cx?ax:cx); |
2746 | double b=(ax>cx?ax:cx); |
2747 | double x=bx,w=bx,v=bx; |
2748 | |
2749 | // initialization |
2750 | double fw=doca; |
2751 | double fv=fw; |
2752 | double fx=fw; |
2753 | double u_old=x; |
2754 | DMagneticFieldStepper stepper1(this->bfield, this->q, &pos1, &mom1); |
2755 | DMagneticFieldStepper stepper2(this->bfield, q2, &pos2, &mom2); |
2756 | |
2757 | // main loop |
2758 | for (unsigned int iter=1;iter<=ITMAX20;iter++){ |
2759 | double xm=0.5*(a+b); |
2760 | double tol1=EPS21.e-4*fabs(x)+ZEPS1.0e-10; |
2761 | double tol2=2.0*tol1; |
2762 | if (fabs(x-xm)<=(tol2-0.5*(b-a))){ |
2763 | doca=(pos1-pos2).Mag(); |
2764 | ds=cx-x; |
Value stored to 'ds' is never read | |
2765 | |
2766 | // New momenta |
2767 | stepper1.GetMomentum(mom1); |
2768 | stepper2.GetMomentum(mom2); |
2769 | |
2770 | return NOERROR; |
2771 | } |
2772 | // trial parabolic fit |
2773 | if (fabs(e)>tol1){ |
2774 | double x_minus_w=x-w; |
2775 | double x_minus_v=x-v; |
2776 | double r=x_minus_w*(fx-fv); |
2777 | double q=x_minus_v*(fx-fw); |
2778 | double p=x_minus_v*q-x_minus_w*r; |
2779 | q=2.0*(q-r); |
2780 | if (q>0.0) p=-p; |
2781 | q=fabs(q); |
2782 | double etemp=e; |
2783 | e=d; |
2784 | if (fabs(p)>=fabs(0.5*q*etemp) || p<=q*(a-x) || p>=q*(b-x)) |
2785 | // fall back on the Golden Section technique |
2786 | d=CGOLD0.3819660*(e=(x>=xm?a-x:b-x)); |
2787 | else{ |
2788 | // parabolic step |
2789 | d=p/q; |
2790 | u=x+d; |
2791 | if (u-a<tol2 || b-u <tol2) |
2792 | d=SIGN(tol1,xm-x)((xm-x)>=0.0?fabs(tol1):-fabs(tol1)); |
2793 | } |
2794 | } else{ |
2795 | d=CGOLD0.3819660*(e=(x>=xm?a-x:b-x)); |
2796 | } |
2797 | u=(fabs(d)>=tol1 ? x+d: x+SIGN(tol1,d)((d)>=0.0?fabs(tol1):-fabs(tol1))); |
2798 | |
2799 | // Function evaluation |
2800 | double du=u_old-u; |
2801 | stepper1.Step(&pos1,NULL__null,du); |
2802 | stepper2.Step(&pos2,NULL__null,du); |
2803 | DVector3 diff=pos1-pos2; |
2804 | double fu=diff.Mag(); |
2805 | u_old=u; |
2806 | |
2807 | if (fu<=fx){ |
2808 | if (u>=x) a=x; else b=x; |
2809 | SHFT(v,w,x,u)(v)=(w);(w)=(x);(x)=(u);; |
2810 | SHFT(fv,fw,fx,fu)(fv)=(fw);(fw)=(fx);(fx)=(fu);; |
2811 | } |
2812 | else { |
2813 | if (u<x) a=u; else b=u; |
2814 | if (fu<=fw || w==x){ |
2815 | v=w; |
2816 | w=u; |
2817 | fv=fw; |
2818 | fw=fu; |
2819 | } |
2820 | else if (fu<=fv || v==x || v==w){ |
2821 | v=u; |
2822 | fv=fu; |
2823 | } |
2824 | } |
2825 | } |
2826 | |
2827 | // We only get here if there is a convergence issue... |
2828 | ds=cx-x; |
2829 | doca=(pos1-pos2).Mag(); |
2830 | stepper1.GetMomentum(mom1); |
2831 | stepper2.GetMomentum(mom2); |
2832 | |
2833 | return NOERROR; |
2834 | } |
2835 | |
2836 |