File: | /volatile/halld/gluex/nightly/2024-03-22/Linux_CentOS7.7-x86_64-gcc4.8.5/halld_recon/src/libraries/BCAL/DBCALCluster_factory.cc |
Location: | line 797, column 164 |
Description: | Value stored to 'connected' is never read |
1 | /* |
2 | * DBCALCluster_factory.cc |
3 | * |
4 | * Created by Matthew Shepherd on 3/12/11. |
5 | * |
6 | */ |
7 | |
8 | #include <iostream> |
9 | |
10 | using namespace std; |
11 | |
12 | #include "DANA/DApplication.h" |
13 | #include "BCAL/DBCALGeometry.h" |
14 | #include "BCAL/DBCALHit.h" |
15 | #include "BCAL/DBCALUnifiedHit.h" |
16 | |
17 | #include "BCAL/DBCALCluster_factory.h" |
18 | |
19 | #include "units.h" |
20 | #include <TMath.h> |
21 | |
22 | bool PointSort( const DBCALPoint* p1, const DBCALPoint* p2 ){ |
23 | |
24 | return ( p1->E() > p2->E() ); |
25 | } |
26 | |
27 | bool ClusterSort( const DBCALCluster* c1, const DBCALCluster* c2 ){ |
28 | |
29 | return ( c1->E() > c2->E() ); |
30 | } |
31 | |
32 | DBCALCluster_factory::DBCALCluster_factory() : |
33 | m_mergeSig( 5 ), |
34 | m_moliereRadius( 3.7*k_cm ), |
35 | m_clust_hit_timecut ( 20.0*k_nsec ), |
36 | m_timeCut( 8.0*k_nsec ){ |
37 | |
38 | // The phi and theta direction inclusion curves are described in: |
39 | // http://argus.phys.uregina.ca/gluex/DocDB/0029/002998/003/CAL_meeting_may5.pdf. |
40 | // The theta direction inclusion curve needs to be a function of theta. C1_parm and |
41 | // C2_parm are parameters [0] and [1] in dtheta_inclusion_curve. |
42 | } |
43 | |
44 | jerror_t |
45 | DBCALCluster_factory::init(void){ |
46 | |
47 | m_BCALGeom = NULL__null; |
48 | return NOERROR; |
49 | |
50 | } |
51 | |
52 | jerror_t |
53 | DBCALCluster_factory::fini( void ){ |
54 | |
55 | return NOERROR; |
56 | } |
57 | |
58 | jerror_t DBCALCluster_factory::brun(JEventLoop *loop, int32_t runnumber) { |
59 | DApplication* app = dynamic_cast<DApplication*>(loop->GetJApplication()); |
60 | DGeometry* geom = app->GetDGeometry(runnumber); |
61 | geom->GetTargetZ(m_z_target_center); |
62 | |
63 | // load BCAL Geometry |
64 | vector<const DBCALGeometry *> BCALGeomVec; |
65 | loop->Get(BCALGeomVec); |
66 | if(BCALGeomVec.size() == 0) |
67 | throw JException("Could not load DBCALGeometry object!"); |
68 | m_BCALGeom = BCALGeomVec[0]; |
69 | |
70 | |
71 | loop->GetCalib("/BCAL/effective_velocities", effective_velocities); |
72 | |
73 | loop->GetCalib("/BCAL/attenuation_parameters",attenuation_parameters); |
74 | |
75 | BCALCLUSTERVERBOSE = 0; |
76 | gPARMS->SetDefaultParameter("BCALCLUSTERVERBOSE", BCALCLUSTERVERBOSE, "VERBOSE level for BCAL Cluster overlap success and conditions"); |
77 | //command line parameter to investigate what points are being added to clusters and what clusters are being merged together. // Track fitterer helper class |
78 | |
79 | |
80 | vector<const DTrackFitter *> fitters; |
81 | loop->Get(fitters); |
82 | |
83 | if(fitters.size()<1){ |
84 | _DBG_std::cerr<<"libraries/BCAL/DBCALCluster_factory.cc"<< ":"<<84<<" "<<"Unable to get a DTrackFinder object!"<<endl; |
85 | return RESOURCE_UNAVAILABLE; |
86 | } |
87 | |
88 | fitter = fitters[0]; |
89 | |
90 | return NOERROR; |
91 | } |
92 | |
93 | jerror_t |
94 | DBCALCluster_factory::evnt( JEventLoop *loop, uint64_t eventnumber ){ |
95 | |
96 | vector< const DBCALPoint* > twoEndPoint; |
97 | vector< const DBCALPoint* > usedPoints; |
98 | loop->Get(twoEndPoint); |
99 | |
100 | // Want to add singled-ended hits to the Clusters. |
101 | |
102 | // Looking for hits that are single-ended. |
103 | |
104 | vector< const DBCALUnifiedHit* > hits; |
105 | loop->Get(hits); |
106 | |
107 | vector< const DTrackWireBased* > tracks; |
108 | loop->Get(tracks); |
109 | |
110 | // first arrange the list of hits so they are grouped by cell |
111 | map< int, vector< const DBCALUnifiedHit* > > cellHitMap; |
112 | for( vector< const DBCALUnifiedHit* >::const_iterator hitPtr = hits.begin(); |
113 | hitPtr != hits.end(); |
114 | ++hitPtr ){ |
115 | |
116 | const DBCALUnifiedHit& hit = (**hitPtr); |
117 | |
118 | int id = m_BCALGeom->cellId( hit.module, hit.layer, hit.sector ); |
119 | |
120 | if( cellHitMap.find( id ) == cellHitMap.end() ){ |
121 | |
122 | cellHitMap[id] = vector< const DBCALUnifiedHit* >(); |
123 | } |
124 | |
125 | cellHitMap[id].push_back( *hitPtr ); |
126 | } |
127 | |
128 | // now we should try to add on single-ended hits ... |
129 | vector< const DBCALUnifiedHit* > single_ended_hits; |
130 | |
131 | for( map< int, vector< const DBCALUnifiedHit* > >::iterator mapItr = cellHitMap.begin(); |
132 | mapItr != cellHitMap.end(); |
133 | ++mapItr ){ |
134 | |
135 | if( mapItr->second.size() == 1 ){ |
136 | // only one hit in the cell |
137 | |
138 | const DBCALUnifiedHit* hit = mapItr->second[0]; |
139 | |
140 | single_ended_hits.push_back(hit); |
141 | |
142 | } |
143 | } |
144 | |
145 | vector<DBCALCluster*> clusters = clusterize( twoEndPoint, usedPoints, single_ended_hits, tracks ); |
146 | |
147 | // load our vector of clusters into the factory member data |
148 | for( vector<DBCALCluster*>::iterator clust = clusters.begin(); |
149 | clust != clusters.end(); |
150 | ++clust ){ |
151 | |
152 | if( isnan((**clust).t()) == 1 || isnan((**clust).phi()) == 1 || isnan((**clust).theta()) == 1 ) continue; |
153 | // put in an energy threshold for clusters |
154 | if( (**clust).E() < 5*k_MeV ) { |
155 | delete *clust; |
156 | continue; |
157 | } |
158 | vector<const DBCALPoint*>points=(**clust).points(); |
159 | for (unsigned int i=0;i<points.size();i++){ |
160 | (**clust).AddAssociatedObject(points[i]); |
161 | } |
162 | _data.push_back(*clust); |
163 | } |
164 | return NOERROR; |
165 | } |
166 | |
167 | vector<DBCALCluster*> |
168 | DBCALCluster_factory::clusterize( vector< const DBCALPoint* > points , vector< const DBCALPoint* > usedPoints , vector< const DBCALUnifiedHit* > hits, vector< const DTrackWireBased* > tracks ) const { |
169 | |
170 | // first sort the points by energy |
171 | sort( points.begin(), points.end(), PointSort ); |
172 | |
173 | vector<DBCALCluster*> clusters(0); |
174 | |
175 | // ahh.. more hard coded numbers that should probably |
176 | // come from a database or something |
177 | float seedThresh = 1.*k_GeV; |
178 | float minSeed = 10*k_MeV; |
179 | //We have a big problem with noise in the outer layer of the detector |
180 | //(the noise is the greatest in the outer layer, since the number of SiPMs |
181 | //being summed is also the greatest here). |
182 | //Thus there are a lot of DBCALPoint's in this layer that are pure noise hits. |
183 | //The simplest way to deal with this is to prevent outer layer points |
184 | //from seeding clusters. So hits in the outer layer can be associated |
185 | //with existing clusters, but cannot create their own cluster. |
186 | //This is okay since since isolated hits in the outer layer |
187 | //is not really a signature we expect for many physical showers. |
188 | //However, if a hit is sufficiently energetic, it is unlikely to be a noise |
189 | //hit. For this reason, we allow 4th layer hits to seed clusters, |
190 | //but we need a different (higher) minimum seed energy. |
191 | float layer4_minSeed = 50*k_MeV; |
192 | float tracked_phi = 0.; |
193 | float matched_dphi = .175; |
194 | float matched_dtheta = .087; |
195 | |
196 | while( seedThresh > minSeed ) { |
197 | |
198 | bool usedPoint = false; |
199 | |
200 | for( vector< const DBCALPoint* >::iterator pt = points.begin(); |
201 | pt != points.end(); |
202 | ++pt ){ |
203 | |
204 | // first see if point should be added to an existing |
205 | // cluster |
206 | |
207 | int q = 0; |
208 | |
209 | // Check if a point is matched to a track |
210 | for( vector< const DTrackWireBased* >::iterator trk = tracks.begin(); |
211 | trk != tracks.end(); |
212 | ++trk ){ |
213 | DVector3 track_pos(0.0, 0.0, 0.0); |
214 | double point_r = (**pt).r(); |
215 | double point_z = (**pt).z(); |
216 | vector<DTrackFitter::Extrapolation_t>extrapolations=(*trk)->extrapolations.at(SYS_BCAL); |
217 | if (fitter->ExtrapolateToRadius(point_r,extrapolations,track_pos)){ |
218 | double dPhi=track_pos.Phi()-(**pt).phi(); |
219 | if (dPhi<-M_PI3.14159265358979323846) dPhi+=2.*M_PI3.14159265358979323846; |
220 | if (dPhi>M_PI3.14159265358979323846) dPhi-=2.*M_PI3.14159265358979323846; |
221 | double point_theta_global = fabs(atan2(point_r,point_z + m_z_target_center )); // convert point z-position origin to global frame to match tracks origin |
222 | double dTheta = fabs(point_theta_global - track_pos.Theta()); |
223 | matched_dphi=0.175+0.175*exp(-0.8*extrapolations[0].momentum.Mag()); |
224 | if(fabs(dPhi) < matched_dphi && dTheta < matched_dtheta){ |
225 | q = 1; // if point and track are matched then set q = 1 |
226 | tracked_phi = extrapolations[0].position.Phi(); |
227 | break; |
228 | } |
229 | } |
230 | } |
231 | |
232 | for( vector<DBCALCluster*>::iterator clust = clusters.begin(); |
233 | clust != clusters.end(); |
234 | ++clust ){ |
235 | |
236 | if((**clust).Q()==1){ |
237 | if(overlap_charged( **clust,*pt, tracked_phi ) ){ |
238 | usedPoints.push_back( *pt ); |
239 | int point_q = 1; |
240 | (**clust).addPoint( *pt, point_q ); |
241 | points.erase( pt ); |
242 | usedPoint = true; |
243 | break; |
244 | } |
245 | } |
246 | if( overlap( **clust, *pt ) ){ |
247 | if (q==1 && (**pt).layer()!=1) q=0; |
248 | // assign point q=1 if it's in layer 1 because track matching tends to be improved in layer 1 than later layers where the cluster seed is. This would allow us to jump into the charged clustering routines on the fly. |
249 | usedPoints.push_back( *pt ); |
250 | (**clust).addPoint( *pt , q); |
251 | points.erase( pt ); |
252 | usedPoint = true; |
253 | break; |
254 | } |
255 | // once we erase a point the iterator is no longer useful |
256 | // and we start the loop over, so that a point doesn't get added to |
257 | // multiple clusters. We will recycle through points later to |
258 | // check if a point was added to its closest cluster. |
259 | } |
260 | |
261 | if( usedPoint ) break; |
262 | |
263 | // if the point doesn't overlap with a cluster see if it can become a |
264 | // new seed |
265 | if( (**pt).E() > seedThresh && ((**pt).layer() != 4 || (**pt).E() > layer4_minSeed) ){ |
266 | clusters.push_back(new DBCALCluster( *pt, m_z_target_center, q, m_BCALGeom ) ); |
267 | usedPoints.push_back( *pt ); |
268 | points.erase( pt ); |
269 | usedPoint = true; |
270 | break; |
271 | } |
272 | } |
273 | |
274 | recycle_points( usedPoints, clusters); |
275 | // recycle through points that were added to a cluster and check if they |
276 | // were added to their closest cluster. If they weren't then we remove |
277 | // the point from its original cluster and add it to its closest cluster. |
278 | |
279 | double point_reatten_E = 0.; |
280 | merge( clusters, point_reatten_E ); |
281 | // lower the threshold to look for new seeds if none of |
282 | // the existing points were used as new clusters or assigned |
283 | // to existing clusters |
284 | if( !usedPoint ) seedThresh /= 2; |
285 | } |
286 | |
287 | // add the single-ended hits that overlap with a cluster that was made from points |
288 | for( vector< const DBCALUnifiedHit* >::iterator ht = hits.begin(); |
289 | ht != hits.end(); |
290 | ++ht){ |
291 | bool usedHit = false; |
292 | |
293 | for( vector<DBCALCluster*>::iterator clust = clusters.begin(); |
294 | clust != clusters.end(); |
295 | ++clust ){ |
296 | |
297 | if( overlap( **clust, *ht ) ){ |
298 | |
299 | int channel_calib = 16*((**ht).module-1)+4*((**ht).layer-1)+(**ht).sector-1; // need to use cellID for objects in DBCALGeometry but the CCDB uses a different channel numbering scheme, so use channel_calib when accessing CCDB tables. |
300 | |
301 | // given the location of the cluster, we need the best guess |
302 | // for z with respect to target at this radius |
303 | |
304 | double z = (**clust).rho()*cos((**clust).theta()) + m_z_target_center; |
305 | double d = ( ((**ht).end == 0) ? (z - m_BCALGeom->GetBCAL_center() + m_BCALGeom->GetBCAL_length()/2.0) : (m_BCALGeom->GetBCAL_center() + m_BCALGeom->GetBCAL_length()/2.0 - z)); // d gives the distance to upstream or downstream end of BCAL depending on where the hit was with respect to the cluster z position. |
306 | double lambda = attenuation_parameters[channel_calib][0]; |
307 | double hit_E = (**ht).E; |
308 | double hit_E_unattenuated = hit_E/exp(-d/lambda); // hit energy unattenuated wrt the cluster z position |
309 | |
310 | (**clust).addHit( *ht, hit_E_unattenuated ); |
311 | usedHit = true; |
312 | } |
313 | if( usedHit ) break; |
314 | } |
315 | } |
316 | return clusters; |
317 | } |
318 | |
319 | void |
320 | DBCALCluster_factory::recycle_points( vector<const DBCALPoint*> usedPoints, vector<DBCALCluster*>& clusters) const{ |
321 | |
322 | if ( clusters.size() <= 1 ) return; |
323 | |
324 | int q = 2; |
325 | |
326 | sort( clusters.begin(), clusters.end(), ClusterSort ); |
327 | |
328 | for( vector<const DBCALPoint*>::const_iterator usedpt = usedPoints.begin(); |
329 | usedpt != usedPoints.end(); |
330 | ++usedpt ){ |
331 | |
332 | bool got_overlap=false; |
333 | double min_phi=1e6; |
334 | |
335 | for( vector<DBCALCluster*>::iterator clust = clusters.begin(); |
336 | clust != clusters.end(); |
337 | ++clust ){ |
338 | |
339 | if( overlap( **clust, *usedpt ) ){ |
340 | got_overlap=true; |
341 | |
342 | float deltaPhi = (**clust).phi() - (*usedpt)->phi(); |
343 | if (deltaPhi<-M_PI3.14159265358979323846) deltaPhi+=2.*M_PI3.14159265358979323846; |
344 | if (deltaPhi>M_PI3.14159265358979323846) deltaPhi-=2.*M_PI3.14159265358979323846; |
345 | if (fabs(deltaPhi)<min_phi){ |
346 | min_phi=fabs(deltaPhi); |
347 | } |
348 | } |
349 | } |
350 | |
351 | if(got_overlap==false) break; |
352 | |
353 | // Find the points closest cluster in distance along the sphere and in phi |
354 | for( vector<DBCALCluster*>::iterator clust = clusters.begin(); |
355 | clust != clusters.end(); |
356 | ++clust ){ |
357 | bool best_clust = false; |
358 | vector<const DBCALPoint*>associated_points=(**clust).points(); |
359 | |
360 | float deltaPhi = (**clust).phi() - (*usedpt)->phi(); |
361 | if (deltaPhi<-M_PI3.14159265358979323846) deltaPhi+=2.*M_PI3.14159265358979323846; |
362 | if (deltaPhi>M_PI3.14159265358979323846) deltaPhi-=2.*M_PI3.14159265358979323846; |
363 | deltaPhi=fabs(deltaPhi); |
364 | |
365 | for(unsigned int j = 0 ; j < associated_points.size(); j++){ |
366 | // Check to see if the point we are comparing to the cluster |
367 | // is already in that cluster. |
368 | if (fabs((*usedpt)->E()-associated_points[j]->E())<1e-4 |
369 | && fabs(deltaPhi-min_phi)<1e-4) best_clust=true; |
370 | if(BCALCLUSTERVERBOSE>1)cout << " clust E = " << (**clust).E() <<" assoc point E = " << associated_points[j]->E() << " points E = " << (*usedpt)->E() << " clust match = " << best_clust << endl; |
371 | } |
372 | if(best_clust==true) break; |
373 | // if the point was originally placed in its "best" cluster then we don't want to touch it. |
374 | if(best_clust==0){ |
375 | int added_point = 0; |
376 | int removed_point = 0; |
377 | for(unsigned int i = 0 ; i < associated_points.size(); i++){ |
378 | bool point_match = (fabs((*usedpt)->E()-associated_points[i]->E())<1e-4); |
379 | if( point_match==0 && added_point==0 && fabs(deltaPhi-min_phi)<1e-4){ |
380 | (**clust).addPoint( *usedpt , q ); |
381 | // if the point found a closer cluster then we add it to the closer cluster. |
382 | // The point is now an associated object of the closer cluster. |
383 | added_point=1; |
384 | } |
385 | if( point_match==1 && removed_point==0 && fabs(deltaPhi-min_phi)>1e-4){ |
386 | (**clust).removePoint( *usedpt ); |
387 | // Now we remove the point from its original cluster since it has been added |
388 | // to its closest cluster. The point is no longer an associated object of |
389 | // the original cluster. |
390 | removed_point=1; |
391 | } |
392 | } |
393 | } |
394 | } |
395 | } |
396 | } |
397 | |
398 | void |
399 | DBCALCluster_factory::merge( vector<DBCALCluster*>& clusters, double point_reatten_E ) const { |
400 | |
401 | if( clusters.size() <= 1 ) return; |
402 | |
403 | sort( clusters.begin(), clusters.end(), ClusterSort ); |
404 | |
405 | bool stillMerging = true; |
406 | |
407 | float low_z_lim = -100.; |
408 | float high_z_lim = 500.; |
409 | |
410 | while( stillMerging ){ |
411 | |
412 | stillMerging = false; |
413 | for( vector<DBCALCluster*>::iterator hClust = clusters.begin(); |
414 | hClust != clusters.end() - 1; |
415 | ++hClust ){ |
416 | |
417 | vector<const DBCALPoint*>hClust_points=(**hClust).points(); |
418 | |
419 | for( vector<DBCALCluster*>::iterator lClust = hClust + 1; |
420 | lClust != clusters.end(); |
421 | ++lClust ){ |
422 | |
423 | vector<const DBCALPoint*>lClust_points=(**lClust).points(); |
424 | vector<const DBCALPoint*>hClust_points=(**hClust).points(); |
425 | |
426 | if( overlap( **hClust, **lClust ) ){ |
427 | |
428 | point_reatten_E = 0.; |
429 | |
430 | if (hClust_points.size() == 1) { |
431 | |
432 | for( unsigned int i = 0 ; i < hClust_points.size() ; i++){ |
433 | |
434 | if (hClust_points[i]->z() > low_z_lim && hClust_points[i]->z() < high_z_lim) point_reatten_E = 0.; |
435 | else { |
436 | int channel_calib = 16*(hClust_points[i]->module()-1)+4*(hClust_points[i]->layer()-1)+hClust_points[i]->sector()-1; |
437 | |
438 | double fibLen = m_BCALGeom->GetBCAL_length(); |
439 | |
440 | double point_z = hClust_points[i]->z(); |
441 | double zLocal = point_z + m_z_target_center - m_BCALGeom->GetBCAL_center(); |
442 | |
443 | double dUp = 0.5 * fibLen + zLocal; |
444 | double dDown = 0.5 * fibLen - zLocal; |
445 | if (dUp>fibLen) dUp=fibLen; |
446 | if (dUp<0) dUp=0; |
447 | if (dDown>fibLen) dDown=fibLen; |
448 | if (dDown<0) dDown=0; |
449 | |
450 | double lambda = attenuation_parameters[channel_calib][0]; |
451 | double attUp = exp( -dUp / lambda ); |
452 | double attDown = exp( -dDown / lambda ); |
453 | |
454 | double US_unatten_E = hClust_points[i]->E_US()*attUp; |
455 | double DS_unatten_E = hClust_points[i]->E_DS()*attDown; |
456 | |
457 | double zLocal_clust = m_BCALGeom->GetBCAL_inner_rad()/tan((**lClust).theta()) + m_z_target_center - m_BCALGeom->GetBCAL_center(); |
458 | double dUp_clust = 0.5 * fibLen + zLocal_clust; |
459 | double dDown_clust = 0.5 * fibLen - zLocal_clust; |
460 | |
461 | double attUp_clust = exp( -dUp_clust / lambda ); |
462 | double attDown_clust = exp( -dDown_clust / lambda ); |
463 | |
464 | double US_reattn_E = US_unatten_E/attUp_clust; |
465 | double DS_reattn_E = DS_unatten_E/attDown_clust; |
466 | point_reatten_E = 0.5 * ( US_reattn_E + DS_reattn_E); |
467 | |
468 | } |
469 | } |
470 | } |
471 | |
472 | if (lClust_points.size() == 1) { |
473 | |
474 | for( unsigned int i = 0 ; i < lClust_points.size() ; i++){ |
475 | |
476 | if (lClust_points[i]->z() > low_z_lim && lClust_points[i]->z() < high_z_lim) point_reatten_E = 0.; |
477 | else{ |
478 | int channel_calib = 16*(lClust_points[i]->module()-1)+4*(lClust_points[i]->layer()-1)+lClust_points[i]->sector()-1; |
479 | |
480 | double fibLen = m_BCALGeom->GetBCAL_length(); |
481 | |
482 | double point_z = lClust_points[i]->z(); |
483 | double zLocal = point_z + m_z_target_center - m_BCALGeom->GetBCAL_center(); |
484 | |
485 | double dUp = 0.5 * fibLen + zLocal; |
486 | double dDown = 0.5 * fibLen - zLocal; |
487 | if (dUp>fibLen) dUp=fibLen; |
488 | if (dUp<0) dUp=0; |
489 | if (dDown>fibLen) dDown=fibLen; |
490 | if (dDown<0) dDown=0; |
491 | |
492 | double lambda = attenuation_parameters[channel_calib][0]; |
493 | double attUp = exp( -dUp / lambda ); |
494 | double attDown = exp( -dDown / lambda ); |
495 | |
496 | double US_unatten_E = lClust_points[i]->E_US()*attUp; |
497 | double DS_unatten_E = lClust_points[i]->E_DS()*attDown; |
498 | |
499 | double zLocal_clust = m_BCALGeom->GetBCAL_inner_rad()/tan((**hClust).theta()) + m_z_target_center - m_BCALGeom->GetBCAL_center(); |
500 | double dUp_clust = 0.5 * fibLen + zLocal_clust; |
501 | double dDown_clust = 0.5 * fibLen - zLocal_clust; |
502 | |
503 | double attUp_clust = exp( -dUp_clust / lambda ); |
504 | double attDown_clust = exp( -dDown_clust / lambda ); |
505 | |
506 | double US_reattn_E = US_unatten_E/attUp_clust; |
507 | double DS_reattn_E = DS_unatten_E/attDown_clust; |
508 | point_reatten_E = 0.5 * ( US_reattn_E + DS_reattn_E); |
509 | |
510 | } |
511 | } |
512 | } |
513 | |
514 | if( (**lClust).Q() == 1 && (**hClust).Q() == 0) { |
515 | (**lClust).mergeClust(**hClust, point_reatten_E); |
516 | delete *hClust; |
517 | clusters.erase( hClust ); |
518 | } |
519 | |
520 | else { |
521 | (**hClust).mergeClust(**lClust, point_reatten_E); |
522 | delete *lClust; |
523 | clusters.erase( lClust ); |
524 | } |
525 | |
526 | // now iterators are invalid and we need to bail out of loops |
527 | stillMerging = true; |
528 | break; |
529 | } |
530 | } |
531 | if( stillMerging ) break; |
532 | } |
533 | } |
534 | } |
535 | |
536 | bool |
537 | DBCALCluster_factory::overlap( const DBCALCluster& highEClust, |
538 | const DBCALCluster& lowEClust ) const { |
539 | |
540 | float sigTheta = fabs( highEClust.theta() - lowEClust.theta() ) / |
541 | sqrt( highEClust.sigTheta() * highEClust.sigTheta() + |
542 | lowEClust.sigTheta() * lowEClust.sigTheta() ); |
543 | |
544 | // difference in phi is tricky due to overlap at 0/2pi |
545 | // order based on phi and then take the minimum of the difference |
546 | // and the difference with 2pi added to the smallest |
547 | |
548 | float deltaPhi = highEClust.phi() - lowEClust.phi(); |
549 | float deltaPhiAlt = ( highEClust.phi() > lowEClust.phi() ? |
550 | highEClust.phi() - lowEClust.phi() - 2*TMath::Pi() : |
551 | lowEClust.phi() - highEClust.phi() - 2*TMath::Pi() ); |
552 | |
553 | deltaPhi = min( fabs( deltaPhi ), fabs( deltaPhiAlt ) ); |
554 | |
555 | float sigPhi = deltaPhi / |
556 | sqrt( highEClust.sigPhi() * highEClust.sigPhi() + |
557 | lowEClust.sigPhi() * lowEClust.sigPhi() ); |
558 | |
559 | //We can't rely entirely on sigTheta and sigPhi as defined above. |
560 | //For high-energy clusters, the position uncertainties will be very small, |
561 | //so sigTheta/sigPhi will be large, and clusters may not merge properly. |
562 | //To fix this, force clusters to merge if delta_z and delta_phi are both |
563 | //very small. This is hopefully only a temporary fix. |
564 | |
565 | //deltaPhi_force_merge and delta_z_force_merge were determined by looking |
566 | //at the separation of decay photons from pi0's from a pythia sample. |
567 | //There are no events where the decay photons have separation |
568 | //(delta_phi < 0.2 && delta_z < 25 cm), so in most cases it should be safe |
569 | //to merge clusters together if they are so close. |
570 | const double deltaPhi_force_merge = 0.1; //radians |
571 | const double delta_z_force_merge = 15.0*k_cm; |
572 | |
573 | //A major cause of extra clusters are lower energy hits, which have poor |
574 | //z-resolution and so are not properly merged. Treat low energy |
575 | //clusters (< 40 MeV) as a special case. Again, hopefully this is only |
576 | //a temporary fix until we have a more comprehensive solution. |
577 | const double delta_z_force_merge_low_E = 40.0*k_cm; |
578 | const double low_E = .04*k_GeV; |
579 | |
580 | double z1 = m_BCALGeom->GetBCAL_inner_rad()/tan(highEClust.theta()); |
581 | double z2 = m_BCALGeom->GetBCAL_inner_rad()/tan(lowEClust.theta()); |
582 | double delta_z = fabs(z1-z2); |
583 | |
584 | bool theta_match = (sigTheta < m_mergeSig) || (delta_z < delta_z_force_merge) || (delta_z < delta_z_force_merge_low_E && lowEClust.E() < low_E); |
585 | |
586 | bool phi_match = (sigPhi < m_mergeSig) || (deltaPhi < deltaPhi_force_merge); |
587 | |
588 | //very loose cut to check that the two clusters are in time |
589 | bool time_match = (highEClust.t() - lowEClust.t()) < m_timeCut; |
590 | |
591 | if(BCALCLUSTERVERBOSE>1) cout << " clust merge: " << " theta match success = " << theta_match << " phi match = " << phi_match << " time match = " << time_match << " high E = " << highEClust.E() << " low E = " << lowEClust.E() << " highE z = " << z1 << " lowE z = " << z2 << " deltaTheta = " << fabs(highEClust.theta()-lowEClust.theta()) << " sigTheta = " << sigTheta << " highE sigTheta = " << highEClust.sigTheta() << " lowE sigTheta = " << lowEClust.sigTheta() << endl; |
592 | |
593 | vector<const DBCALPoint*> highE_points; |
594 | highE_points = (highEClust).points(); |
595 | |
596 | vector<const DBCALPoint*> lowE_points; |
597 | lowE_points = (lowEClust).points(); |
598 | |
599 | double highE_summed_z = 0.; |
600 | double highE_summed_phi = 0.; |
601 | double highE_summed_zphi = 0.; |
602 | double highE_summed_z_sq = 0.; |
603 | double highE_slope = 0.; |
604 | double highE_y_intercept = 0.; |
605 | |
606 | double lowE_summed_z = 0.; |
607 | double lowE_summed_phi = 0.; |
608 | double lowE_summed_zphi = 0.; |
609 | double lowE_summed_z_sq = 0.; |
610 | double lowE_slope = 0.; |
611 | double lowE_y_intercept = 0.; |
612 | |
613 | int connected = 0; |
614 | // double z_match = 50.; |
615 | double slope_match = 0.01; |
616 | double intercept_match = 1.8; |
617 | double deltaPhi_match = 0.2; |
618 | |
619 | int lowE_global_sector = 0; |
620 | int highE_global_sector = 0; |
621 | int lowE_point_layer = 0; |
622 | |
623 | for(unsigned int i = 0 ; i < lowE_points.size() ; i ++){ |
624 | // adjust the points phi position to be close to the cluster phi position at the 0/2pi phi boundary |
625 | if(lowEClust.phi() > lowE_points[i]->phi() ){ |
626 | if( fabs( lowEClust.phi() - lowE_points[i]->phi() - 2*TMath::Pi() ) < TMath::Pi() ) lowE_points[i]->add2Pi(); |
627 | } |
628 | else{ |
629 | if( fabs( lowE_points[i]->phi() - lowEClust.phi() - 2*TMath::Pi() ) < TMath::Pi() ) lowE_points[i]->sub2Pi(); |
630 | } |
631 | |
632 | // compute quantities to be used to calculate the direction of the lower energy cluster if we need it for merging. |
633 | lowE_summed_z += lowE_points[i]->z(); |
634 | lowE_summed_phi += lowE_points[i]->phi();; |
635 | lowE_summed_zphi += lowE_points[i]->z()*lowE_points[i]->phi(); |
636 | lowE_summed_z_sq += lowE_points[i]->z()*lowE_points[i]->z(); |
637 | if(lowE_points.size()==1) { |
638 | lowE_global_sector = 4*(lowE_points[i]->module()-1) + lowE_points[i]->sector(); |
639 | lowE_point_layer = lowE_points[i]->layer(); |
640 | } |
641 | } |
642 | |
643 | for(unsigned int i = 0 ; i < highE_points.size() ; i ++){ |
644 | // adjust the points phi position to be close to the cluster phi position at the 0/2pi phi boundary |
645 | if(highEClust.phi() > highE_points[i]->phi() ){ |
646 | if( fabs( highEClust.phi() - highE_points[i]->phi() - 2*TMath::Pi() ) < TMath::Pi() ) highE_points[i]->add2Pi(); |
647 | } |
648 | else{ |
649 | if( fabs( highE_points[i]->phi() - highEClust.phi() - 2*TMath::Pi() ) < TMath::Pi() ) highE_points[i]->sub2Pi(); |
650 | } |
651 | // compute quantities to be used to calculate the direction of the higher energy cluster if we need it for merging. |
652 | highE_summed_z += highE_points[i]->z(); |
653 | highE_summed_phi += highE_points[i]->phi();; |
654 | highE_summed_zphi += highE_points[i]->z()*highE_points[i]->phi(); |
655 | highE_summed_z_sq += highE_points[i]->z()*highE_points[i]->z(); |
656 | highE_global_sector = 4*(highE_points[i]->module()-1) + highE_points[i]->sector(); |
657 | if(lowE_points.size()==1 && lowE_point_layer == highE_points[i]->layer() && ( lowE_global_sector+1 == highE_global_sector || lowE_global_sector-1 == highE_global_sector ) ) connected = 1; // clustesr that contain only a single point won't have any fit parameters and will make it hard for them to merge, this connected int will force a merge if a single point cluster is connected to a cluster without any points adjacent to it. |
658 | } |
659 | |
660 | // calculate slopes and intercepts of the 2 clusters direction and if one of the clusters is matched to a track then we will require their fit parameter quantities |
661 | // to match for their merging criteria. This allows us to relax their phi position proximity merging criteria since split clusters matched to tracks tend to be |
662 | // further distributed in the azimuthal direction than neutral clusters. |
663 | |
664 | highE_slope = (highE_summed_z*highE_summed_phi - highE_points.size()*highE_summed_zphi)/(highE_summed_z*highE_summed_z - highE_points.size()*highE_summed_z_sq); |
665 | highE_y_intercept = (highE_summed_zphi*highE_summed_z - highE_summed_phi*highE_summed_z_sq)/(highE_summed_z*highE_summed_z - highE_points.size()*highE_summed_z_sq); |
666 | |
667 | lowE_slope = (lowE_summed_z*lowE_summed_phi - lowE_points.size()*lowE_summed_zphi)/(lowE_summed_z*lowE_summed_z - lowE_points.size()*lowE_summed_z_sq); |
668 | lowE_y_intercept = (lowE_summed_zphi*lowE_summed_z - lowE_summed_phi*lowE_summed_z_sq)/(lowE_summed_z*lowE_summed_z - lowE_points.size()*lowE_summed_z_sq); |
669 | |
670 | double delta_slope = fabs(highE_slope - lowE_slope) ; |
671 | double delta_intercept = fabs(highE_y_intercept - lowE_y_intercept) ; |
672 | |
673 | highE_points.clear(); |
674 | lowE_points.clear(); |
675 | |
676 | |
677 | // If both clusters trying to merge together were NOT matched to a track then use neutral clusterizer merging critera of theta and phi matching. |
678 | // If EITHER of the 2 clusters trying to merge together were amtched to a track then use the information about the direction of the cluster for merging. |
679 | |
680 | if (highEClust.Q() == 0 && lowEClust.Q() == 0 ) return theta_match && phi_match && time_match; |
681 | |
682 | else return ( ( delta_slope < slope_match && delta_intercept < intercept_match && deltaPhi < deltaPhi_match ) || connected == 1 ) ; |
683 | |
684 | |
685 | } |
686 | |
687 | bool |
688 | DBCALCluster_factory::overlap( const DBCALCluster& clust, |
689 | const DBCALPoint* point ) const { |
690 | |
691 | |
692 | float deltaTheta = fabs( clust.theta() - point->theta() ); |
693 | /* sigTheta not used |
694 | float sigTheta = deltaTheta / sqrt( clust.sigTheta() * clust.sigTheta() + |
695 | point->sigTheta() * point->sigTheta() ); |
696 | */ |
697 | |
698 | // difference in phi is tricky due to overlap at 0/2pi |
699 | // order based on phi and then take the minimum of the difference |
700 | // and the difference with 2pi added to the smallest |
701 | |
702 | float deltaPhi = clust.phi() - point->phi(); |
703 | float deltaPhiAlt = ( clust.phi() > point->phi() ? |
704 | clust.phi() - point->phi() - 2*TMath::Pi() : |
705 | point->phi() - clust.phi() - 2*TMath::Pi() ); |
706 | |
707 | deltaPhi = min( fabs( deltaPhi ), fabs( deltaPhiAlt ) ); |
708 | |
709 | /* sigPhi not used |
710 | float sigPhi = deltaPhi / |
711 | sqrt( clust.sigPhi() * clust.sigPhi() + |
712 | point->sigPhi() * point->sigPhi() ); |
713 | */ |
714 | |
715 | float rho = ( clust.rho() + point->rho() ) / 2; |
716 | float theta = ( clust.theta() + point->theta() ) / 2; |
717 | |
718 | float sep = sqrt( ( rho * deltaTheta ) * ( rho * deltaTheta ) + |
719 | ( rho * sin( theta ) * deltaPhi ) * ( rho * sin( theta ) * deltaPhi ) ); |
720 | |
721 | float sep_term1 = rho*deltaTheta; |
722 | float sep_term2 = rho*sin(theta)*deltaPhi; |
723 | |
724 | //very loose cuts to make sure the two hits are in time |
725 | bool time_match = fabs(clust.t() - point->t()) < m_timeCut; |
726 | |
727 | double clust_z = clust.rho()*cos(clust.theta()); |
728 | |
729 | //double c1 = C1_parm->Eval(clust_z); |
730 | double c1=23.389+19.093*tanh(-0.0104*(clust_z-201.722)); |
731 | |
732 | //double c2 = C2_parm->Eval(clust_z); |
733 | double c2=0.151+0.149*tanh(-0.016*(clust_z-275.194)); |
734 | |
735 | //dtheta_inclusion_curve->SetParameter(0,c1); |
736 | //dtheta_inclusion_curve->SetParameter(1,c2); |
737 | |
738 | //double inclusion_val = sep_inclusion_curve->Eval(sep); |
739 | double inclusion_val=exp(-sep/30.)-0.1; |
740 | |
741 | //double inclusion_val1 = dtheta_inclusion_curve->Eval(sep_term1); |
742 | double inclusion_val1=exp(-(sep_term1-0.1)/c1)-c2+.15; |
743 | |
744 | //double inclusion_val2 = dphi_inclusion_curve->Eval(sep_term2); |
745 | double inclusion_val2=exp(-(sep_term2-2.)/2.5)-sep_term2*0.002+0.07; |
746 | |
747 | // We consider fractional energy (point.E/Clust.E) as a function of spatial separation between |
748 | // a point and cluster to determine if the point should be included in the cluster. |
749 | // These distributions are tighter in the phihat direction than along thetahat. For more details |
750 | // on how the selection criteria for cluster,point overlap function go to logbook entry 3396018. |
751 | |
752 | if(BCALCLUSTERVERBOSE>0) cout << "(m,l,s) = (" <<point->module()<<","<<point->layer()<<","<<point->sector()<<")" << " sep = " << sep << "sep1 = " << sep_term1 << " sep2 = " << sep_term2 << " inclusion value = " << inclusion_val << " inclusion val1= " << inclusion_val1 << " inclusion val2= " << inclusion_val2<< " time match = " << time_match << " clust E = " << clust.E() << " point E = " << point->E() << " energy ratio = " << point->E()/(point->E()+clust.E()) << " clust theta = " << clust.theta()*180./3.14159 << " point theta = " << point->theta()*180./3.14159 << " sep rho*deltaTheta = " << ( rho * deltaTheta ) << endl; |
753 | |
754 | if(sep>m_moliereRadius && sep<7.*m_moliereRadius &&sep_term2>=2.*m_moliereRadius){ |
755 | return ((point->E()/(point->E()+clust.E())) < inclusion_val1 ) && ((point->E()/(point->E()+clust.E())) < inclusion_val2 ) && time_match && deltaPhi*180./3.14159<10.; |
756 | } |
757 | |
758 | else{ |
759 | return ((point->E()/(point->E()+clust.E())) < (inclusion_val1+.2)) && sep < 10.*m_moliereRadius && time_match && sep_term2<2.*m_moliereRadius; |
760 | } |
761 | |
762 | } |
763 | |
764 | |
765 | bool |
766 | DBCALCluster_factory::overlap_charged( const DBCALCluster& clust, |
767 | const DBCALPoint* point, float tracked_phi) const { |
768 | |
769 | |
770 | // difference in phi is tricky due to overlap at 0/2pi |
771 | // order based on phi and then take the minimum of the difference |
772 | // and the difference with 2pi added to the smallest |
773 | |
774 | float phiCut = 0.65417; |
775 | |
776 | vector<const DBCALPoint*> assoc_points; |
777 | assoc_points = (clust).points(); |
778 | |
779 | double summed_r = 0.; |
780 | double summed_phi = 0.; |
781 | double summed_rphi = 0.; |
782 | double summed_r_sq = 0.; |
783 | |
784 | double summed_z = 0.; |
785 | double summed_zphi = 0.; |
786 | double summed_z_sq = 0.; |
787 | |
788 | double slope = 0.; |
789 | double y_intercept = 0.; |
790 | |
791 | int point_global_sector = 4*(point->module()-1) + point->sector(); |
792 | int point_layer = point->layer(); |
793 | int connected = 0; |
794 | |
795 | for(unsigned int i = 0 ; i < assoc_points.size() ; i ++){ |
796 | int assoc_point_global_sector = 4*(assoc_points[i]->module() - 1) + assoc_points[i]->sector(); |
797 | if( point_layer == assoc_points[i]->layer() && ( point_global_sector + 1 == assoc_point_global_sector || point_global_sector - 1 == assoc_point_global_sector) ) connected = 1; |
Value stored to 'connected' is never read | |
798 | summed_r += assoc_points[i]->r(); |
799 | summed_z += assoc_points[i]->z(); |
800 | if( tracked_phi > assoc_points[i]->phi() ){ |
801 | if( fabs( tracked_phi - assoc_points[i]->phi() - 2*TMath::Pi() ) < TMath::Pi() ) assoc_points[i]->add2Pi(); |
802 | } |
803 | else{ |
804 | if( fabs( assoc_points[i]->phi() - tracked_phi - 2*TMath::Pi() ) < TMath::Pi() ) assoc_points[i]->sub2Pi(); |
805 | } |
806 | |
807 | summed_phi += assoc_points[i]->phi(); |
808 | summed_rphi += assoc_points[i]->r()*assoc_points[i]->phi(); |
809 | summed_r_sq += assoc_points[i]->r()*assoc_points[i]->r(); |
810 | summed_zphi += assoc_points[i]->z()*assoc_points[i]->phi(); |
811 | summed_z_sq += assoc_points[i]->z()*assoc_points[i]->z(); |
812 | |
813 | } |
814 | |
815 | if(assoc_points.size()<2){ |
816 | slope = (tracked_phi - summed_phi)/(m_BCALGeom->GetBCAL_inner_rad() - summed_r); |
817 | y_intercept = tracked_phi - slope*m_BCALGeom->GetBCAL_inner_rad(); |
818 | } |
819 | |
820 | else{ |
821 | slope = (summed_z*summed_phi - assoc_points.size()*summed_zphi)/(summed_z*summed_z - assoc_points.size()*summed_z_sq); |
822 | y_intercept = (summed_zphi*summed_z - summed_phi*summed_z_sq)/(summed_z*summed_z - assoc_points.size()*summed_z_sq); |
823 | } |
824 | |
825 | float fit_phi = 0.; |
826 | |
827 | if(assoc_points.size() < 2) fit_phi = slope*point->r() + y_intercept; |
828 | else fit_phi = slope*point->z() + y_intercept; |
829 | |
830 | assoc_points.clear(); |
831 | |
832 | float deltaPhi = fit_phi-point->phi(); |
833 | float deltaPhiAlt = ( fit_phi > point->phi() ? |
834 | fit_phi - point->phi() - 2*TMath::Pi() : |
835 | point->phi() - fit_phi - 2*TMath::Pi() ); |
836 | |
837 | deltaPhi = min( fabs( deltaPhi ), fabs( deltaPhiAlt ) ); |
838 | |
839 | float rho = point->rho(); |
840 | float theta = point->theta(); |
841 | |
842 | float deltaTheta = fabs( clust.theta() - point->theta() ); |
843 | |
844 | float sep = sqrt( ( rho * deltaTheta ) * ( rho * deltaTheta ) + |
845 | ( rho * sin( theta ) * deltaPhi ) * ( rho * sin( theta ) * deltaPhi ) ); |
846 | |
847 | float sep_term1 = rho*deltaTheta; |
848 | float sep_term2 = rho*sin(theta)*deltaPhi; |
849 | |
850 | //very loose cuts to make sure the two hits are in time |
851 | bool time_match = fabs(clust.t() - point->t()) < m_timeCut; |
852 | |
853 | bool phi_match = fabs( clust.phi() - point->phi() ) < phiCut; |
854 | |
855 | double clust_z = clust.rho()*cos(clust.theta()); |
856 | |
857 | //double c1 = C1_parm->Eval(clust_z); |
858 | double c1=23.389+19.093*tanh(-0.0104*(clust_z-201.722)); |
859 | |
860 | //double c2 = C2_parm->Eval(clust_z); |
861 | double c2=0.151+0.149*tanh(-0.016*(clust_z-275.194)); |
862 | |
863 | //dtheta_inclusion_curve->SetParameter(0,c1); |
864 | //dtheta_inclusion_curve->SetParameter(1,c2); |
865 | |
866 | //double inclusion_val = sep_inclusion_curve->Eval(sep); |
867 | double inclusion_val=exp(-sep/30.)-0.1; |
868 | |
869 | //double inclusion_val1 = dtheta_inclusion_curve->Eval(sep_term1); |
870 | double inclusion_val1=exp(-(sep_term1-0.1)/c1)-c2+.15; |
871 | |
872 | double inclusion_val2 = exp(-(sep_term2-2.)/1.5) - sep_term2*.007 + .15; |
873 | |
874 | // We consider fractional energy (point.E/Clust.E) as a function of spatial separation between |
875 | // a point and cluster to determine if the point should be included in the cluster. |
876 | // These distributions are tighter in the phihat direction than along thetahat. For more details |
877 | // on how the selection criteria for cluster,point overlap function go to logbook entry 3396018. |
878 | |
879 | if(BCALCLUSTERVERBOSE>1) cout << "(m,l,s) = (" <<point->module()<<","<<point->layer()<<","<<point->sector()<<")" << " sep = " << sep << "sep1 = " << sep_term1 << " sep2 = " << sep_term2 << " inclusion value = " << inclusion_val << " inclusion val1= " << inclusion_val1 << " inclusion val2= " << inclusion_val2<< " time match = " << time_match << " clust E = " << clust.E() << " point E = " << point->E() << " energy ratio = " << point->E()/(point->E()+clust.E()) << " clust theta = " << clust.theta()*180./3.14159 << " point theta = " << point->theta()*180./3.14159 << " sep rho*deltaTheta = " << ( rho * deltaTheta ) << endl; |
880 | |
881 | if(sep>m_moliereRadius && sep<7.*m_moliereRadius &&sep_term2>=2.*m_moliereRadius){ |
882 | return ((point->E()/(point->E()+clust.E())) < (inclusion_val1) ) && ((point->E()/(point->E()+clust.E())) < (inclusion_val2) ) && time_match && phi_match; |
883 | } |
884 | |
885 | else{ |
886 | return ((point->E()/(point->E()+clust.E())) < (inclusion_val1 + .2)) && sep < 10.*m_moliereRadius && time_match && sep_term2<2.*m_moliereRadius; |
887 | } |
888 | |
889 | return connected == 1; |
890 | |
891 | } |
892 | |
893 | |
894 | bool |
895 | DBCALCluster_factory::overlap( const DBCALCluster& clust, |
896 | const DBCALUnifiedHit* hit ) const { |
897 | |
898 | int cellId = m_BCALGeom->cellId( hit->module, hit->layer, hit->sector ); |
899 | |
900 | float cellPhi = m_BCALGeom->phi( cellId ); |
901 | float cellSigPhi = m_BCALGeom->phiSize( cellId ); |
902 | |
903 | // annoying +- 2pi business to try to find the best delta phi |
904 | |
905 | float deltaPhi = clust.phi() - cellPhi; |
906 | float deltaPhiAlt = ( clust.phi() > cellPhi ? |
907 | clust.phi() - cellPhi - 2*TMath::Pi() : |
908 | cellPhi - clust.phi() - 2*TMath::Pi() ); |
909 | deltaPhi = min( fabs( deltaPhi ), fabs( deltaPhiAlt ) ); |
910 | |
911 | float sigPhi = deltaPhi / |
912 | sqrt( clust.sigPhi() * clust.sigPhi() + cellSigPhi * cellSigPhi ); |
913 | |
914 | int channel_calib = 16*(hit->module-1)+4*(hit->layer-1)+hit->sector-1; // need to use cellID for objects in DBCALGeometry but the CCDB uses a different channel numbering scheme, so use channel_calib when accessing CCDB tables. |
915 | // given the location of the cluster, we need the best guess |
916 | // for z with respect to target at this radius |
917 | double z = clust.rho()*cos(clust.theta()) + m_z_target_center; |
918 | double d = ( (hit->end == 0) ? (z - m_BCALGeom->GetBCAL_center() + m_BCALGeom->GetBCAL_length()/2.0) : (m_BCALGeom->GetBCAL_center() + m_BCALGeom->GetBCAL_length()/2.0 - z)); // d gives the distance to upstream or downstream end of BCAL depending on where the hit was with respect to the cluster z position. |
919 | double time_corr = hit->t - d/effective_velocities[channel_calib]; // hit time corrected to the interaction point in the bar. |
920 | double time_diff = TMath::Abs(clust.t() - time_corr); // time cut between cluster time and hit time - 20 ns is a very loose time cut. |
921 | |
922 | return( sigPhi < m_mergeSig && time_diff < m_clust_hit_timecut ); |
923 | |
924 | } |