Bug Summary

File:alld2/home/sdobbs/Software/jana/jana_0.8.2/Linux_CentOS7.7-x86_64-gcc4.8.5/include/JANA/JEventLoop.h
Warning:line 398, column 7
Null pointer passed to 2nd parameter expecting 'nonnull'

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-unknown-linux-gnu -analyze -disable-free -main-file-name DEventWriterREST.cc -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -mrelocation-model pic -pic-level 2 -fhalf-no-semantic-interposition -mframe-pointer=none -fmath-errno -fno-rounding-math -mconstructor-aliases -munwind-tables -target-cpu x86-64 -tune-cpu generic -fno-split-dwarf-inlining -debugger-tuning=gdb -resource-dir /w/halld-scifs17exp/home/sdobbs/clang/llvm-project/install/lib/clang/12.0.0 -D HAVE_CCDB -D HAVE_RCDB -D HAVE_EVIO -D HAVE_TMVA=1 -D RCDB_MYSQL=1 -D RCDB_SQLITE=1 -D SQLITE_USE_LEGACY_STRUCT=ON -I .Linux_CentOS7.7-x86_64-gcc4.8.5/libraries/HDDM -I libraries/HDDM -I . -I libraries -I libraries/include -I /w/halld-scifs17exp/home/sdobbs/clang/halld_recon/Linux_CentOS7.7-x86_64-gcc4.8.5/include -I external/xstream/include -I /usr/include/tirpc -I /group/halld/Software/builds/Linux_CentOS7.7-x86_64-gcc4.8.5/root/root-6.08.06/include -I /w/halld-scifs17exp/halld2/home/sdobbs/Software/jana/jana_0.8.2/Linux_CentOS7.7-x86_64-gcc4.8.5/include -I /group/halld/Software/builds/Linux_CentOS7.7-x86_64-gcc4.8.5/ccdb/ccdb_1.06.06/include -I /group/halld/Software/builds/Linux_CentOS7.7-x86_64-gcc4.8.5/rcdb/rcdb_0.06.00/cpp/include -I /usr/include/mysql -I /group/halld/Software/builds/Linux_CentOS7.7-x86_64-gcc4.8.5/sqlitecpp/SQLiteCpp-2.2.0^bs130/include -I /group/halld/Software/builds/Linux_CentOS7.7-x86_64-gcc4.8.5/sqlite/sqlite-3.13.0^bs130/include -I /group/halld/Software/builds/Linux_CentOS7.7-x86_64-gcc4.8.5/hdds/hdds-4.9.0/Linux_CentOS7.7-x86_64-gcc4.8.5/src -I /group/halld/Software/builds/Linux_CentOS7.7-x86_64-gcc4.8.5/xerces-c/xerces-c-3.1.4/include -I /group/halld/Software/builds/Linux_CentOS7.7-x86_64-gcc4.8.5/evio/evio-4.4.6/Linux-x86_64/include -internal-isystem /usr/lib/gcc/x86_64-redhat-linux/4.8.5/../../../../include/c++/4.8.5 -internal-isystem /usr/lib/gcc/x86_64-redhat-linux/4.8.5/../../../../include/c++/4.8.5/x86_64-redhat-linux -internal-isystem /usr/lib/gcc/x86_64-redhat-linux/4.8.5/../../../../include/c++/4.8.5/backward -internal-isystem /usr/local/include -internal-isystem /w/halld-scifs17exp/home/sdobbs/clang/llvm-project/install/lib/clang/12.0.0/include -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -std=c++11 -fdeprecated-macro -fdebug-compilation-dir /home/sdobbs/work/clang/halld_recon/src -ferror-limit 19 -fgnuc-version=4.2.1 -fcxx-exceptions -fexceptions -vectorize-loops -vectorize-slp -analyzer-output=html -faddrsig -o /tmp/scan-build-2021-01-21-110224-160369-1 -x c++ libraries/HDDM/DEventWriterREST.cc

libraries/HDDM/DEventWriterREST.cc

1
2#include "DEventWriterREST.h"
3
4#include <DANA/DApplication.h>
5#include <JANA/JCalibration.h>
6#include <TRACKING/DTrackFitter.h>
7
8int& DEventWriterREST::Get_NumEventWriterThreads(void) const
9{
10 // must be read/used entirely in "RESTWriter" lock
11 static int locNumEventWriterThreads = 0;
12 return locNumEventWriterThreads;
13}
14
15map<string, pair<ofstream*, hddm_r::ostream*> >& DEventWriterREST::Get_RESTOutputFilePointers(void) const
16{
17 // must be read/used entirely in "RESTWriter" lock
18 // cannot do individual file locks, because the map itself can be modified
19 static map<string, pair<ofstream*, hddm_r::ostream*> > locRESTOutputFilePointers;
20 return locRESTOutputFilePointers;
21}
22
23DEventWriterREST::DEventWriterREST(JEventLoop* locEventLoop, string locOutputFileBaseName) : dOutputFileBaseName(locOutputFileBaseName)
24{
25 japp->WriteLock("RESTWriter");
26 {
27 ++Get_NumEventWriterThreads();
28 }
29 japp->Unlock("RESTWriter");
30
31 REST_WRITE_TRACK_EXIT_PARAMS=true;
32 gPARMS->SetDefaultParameter("REST:WRITE_TRACK_EXIT_PARAMS", REST_WRITE_TRACK_EXIT_PARAMS,"Add track parameters at exit to tracking volume");
33
34 HDDM_USE_COMPRESSION = true;
35 string locCompressionString = "Turn on/off compression of the output HDDM stream. Set to \"0\" to turn off (it's on by default)";
36 gPARMS->SetDefaultParameter("HDDM:USE_COMPRESSION", HDDM_USE_COMPRESSION, locCompressionString);
37
38 HDDM_USE_INTEGRITY_CHECKS = true;
39 string locIntegrityString = "Turn on/off automatic integrity checking on the output HDDM stream. Set to \"0\" to turn off (it's on by default)";
40 gPARMS->SetDefaultParameter("HDDM:USE_INTEGRITY_CHECKS", HDDM_USE_INTEGRITY_CHECKS, locIntegrityString);
41
42 HDDM_DATA_VERSION_STRING = "";
43 if(gPARMS->Exists("REST:DATAVERSIONSTRING"))
44 gPARMS->GetParameter("REST:DATAVERSIONSTRING", HDDM_DATA_VERSION_STRING);
45 else
46 gPARMS->SetDefaultParameter("REST:DATAVERSIONSTRING", HDDM_DATA_VERSION_STRING, "");
47
48 REST_WRITE_DIRC_HITS = true;
49 gPARMS->SetDefaultParameter("REST:WRITE_DIRC_HITS", REST_WRITE_DIRC_HITS);
50
51 REST_WRITE_CCAL_SHOWERS = true;
52 gPARMS->SetDefaultParameter("REST:WRITE_CCAL_SHOWERS", REST_WRITE_CCAL_SHOWERS);
53
54 CCDB_CONTEXT_STRING = "";
55 // if we can get the calibration context from the DANA interface, then save this as well
56 DApplication *dapp = dynamic_cast<DApplication*>(locEventLoop->GetJApplication());
57 if (dapp) {
58 JEvent& event = locEventLoop->GetJEvent();
59 JCalibration *jcalib = dapp->GetJCalibration(event.GetRunNumber());
60 if (jcalib) {
61 CCDB_CONTEXT_STRING = jcalib->GetContext();
62 }
63 }
64
65}
66
67bool DEventWriterREST::Write_RESTEvent(JEventLoop* locEventLoop, string locOutputFileNameSubString) const
68{
69 std::vector<const DMCReaction*> reactions;
70 locEventLoop->Get(reactions);
1
Calling 'JEventLoop::Get'
71
72 std::vector<const DRFTime*> rftimes;
73 locEventLoop->Get(rftimes);
74
75 std::vector<const DBeamPhoton*> locBeamPhotons;
76 locEventLoop->Get(locBeamPhotons);
77
78 std::vector<const DBeamPhoton*> locBeamPhotons_TAGGEDMCGEN;
79 locEventLoop->Get(locBeamPhotons_TAGGEDMCGEN, "TAGGEDMCGEN");
80
81 std::vector<const DFCALShower*> fcalshowers;
82 locEventLoop->Get(fcalshowers);
83
84 std::vector<const DBCALShower*> bcalshowers;
85 locEventLoop->Get(bcalshowers);
86
87 std::vector<const DCCALShower*> ccalshowers;
88 if(REST_WRITE_CCAL_SHOWERS) {
89 locEventLoop->Get(ccalshowers);
90 }
91
92 std::vector<const DTOFPoint*> tofpoints;
93 locEventLoop->Get(tofpoints);
94
95 std::vector<const DSCHit*> starthits;
96 locEventLoop->Get(starthits);
97
98 std::vector<const DTrackTimeBased*> tracks;
99 locEventLoop->Get(tracks);
100
101 std::vector<const DDetectorMatches*> locDetectorMatches;
102 locEventLoop->Get(locDetectorMatches);
103
104 std::vector<const DDIRCPmtHit*> locDIRCPmtHits;
105 locEventLoop->Get(locDIRCPmtHits);
106
107 std::vector<const DEventHitStatistics*> hitStats;
108 locEventLoop->Get(hitStats);
109
110 std::vector<const DTrigger*> locTriggers;
111 locEventLoop->Get(locTriggers);
112
113 //Check to see if there are any objects to write out. If so, don't write out an empty event
114 bool locOutputDataPresentFlag = false;
115 if((!reactions.empty()) || (!locBeamPhotons.empty()) || (!tracks.empty()))
116 locOutputDataPresentFlag = true;
117 else if((!fcalshowers.empty()) || (!bcalshowers.empty()) || (!tofpoints.empty()) || (!starthits.empty()))
118 locOutputDataPresentFlag = true;
119 //don't need to check detector matches: no matches if none of the above objects
120 if(!locOutputDataPresentFlag)
121 return true; //had correct response to data
122
123 string locOutputFileName = Get_OutputFileName(locOutputFileNameSubString);
124
125 hddm_r::HDDM locRecord;
126 hddm_r::ReconstructedPhysicsEventList res = locRecord.addReconstructedPhysicsEvents(1);
127
128 // load the run and event numbers
129 JEvent& event = locEventLoop->GetJEvent();
130 res().setRunNo(event.GetRunNumber());
131 //The REST type for this is int64_t, whereas the event type is uint64_t
132 //This copy is lazy: the last bit is lost. However, we should never need the last bit.
133 res().setEventNo(event.GetEventNumber());
134
135 // push any DMCReaction objects to the output record
136 for (size_t i=0; i < reactions.size(); i++)
137 {
138 hddm_r::ReactionList rea = res().addReactions(1);
139 rea().setType(reactions[i]->type);
140 rea().setWeight(reactions[i]->weight);
141 rea().setEbeam(reactions[i]->beam.energy());
142 rea().setTargetType(reactions[i]->target.PID());
143
144 if(i != 0)
145 break;
146
147 std::vector<const DMCThrown*> throwns;
148 locEventLoop->Get(throwns);
149 hddm_r::VertexList ver = rea().getVertices();
150 DLorentzVector locPreviousX4(-9.9E9, -9.9E9, -9.9E9, -9.9E9);
151 for(size_t it=0; it < throwns.size(); ++it)
152 {
153 DLorentzVector locThrownX4(throwns[it]->position(), throwns[it]->time());
154 if((locThrownX4.T() != locPreviousX4.T()) || (locThrownX4.Vect() != locPreviousX4.Vect()))
155 {
156 //new vertex
157 ver = rea().addVertices(1);
158 hddm_r::OriginList ori = ver().addOrigins(1);
159 ori().setT(locThrownX4.T());
160 ori().setVx(locThrownX4.X());
161 ori().setVy(locThrownX4.Y());
162 ori().setVz(locThrownX4.Z());
163 locPreviousX4 = locThrownX4;
164 }
165
166 hddm_r::ProductList pro = ver().addProducts(1);
167 pro().setId(throwns[it]->myid);
168 pro().setParentId(throwns[it]->parentid);
169 int pdgtype = throwns[it]->pdgtype;
170 if (pdgtype == 0)
171 pdgtype = PDGtype((Particle_t)throwns[it]->type);
172 pro().setPdgtype(pdgtype);
173 hddm_r::MomentumList mom = pro().addMomenta(1);
174 mom().setE(throwns[it]->energy());
175 mom().setPx(throwns[it]->px());
176 mom().setPy(throwns[it]->py());
177 mom().setPz(throwns[it]->pz());
178 }
179 }
180
181 // push any DRFTime objects to the output record
182 for (size_t i=0; i < rftimes.size(); i++)
183 {
184 hddm_r::RFtimeList rf = res().addRFtimes(1);
185 rf().setTsync(rftimes[i]->dTime);
186 }
187
188 // push any DBeamPhoton objects to the output record
189 for(size_t loc_i = 0; loc_i < locBeamPhotons.size(); ++loc_i)
190 {
191 if(locBeamPhotons[loc_i]->dSystem == SYS_TAGM)
192 {
193 hddm_r::TagmBeamPhotonList locTagmBeamPhotonList = res().addTagmBeamPhotons(1);
194 locTagmBeamPhotonList().setT(locBeamPhotons[loc_i]->time());
195 locTagmBeamPhotonList().setE(locBeamPhotons[loc_i]->energy());
196 }
197 else if(locBeamPhotons[loc_i]->dSystem == SYS_TAGH)
198 {
199 hddm_r::TaghBeamPhotonList locTaghBeamPhotonList = res().addTaghBeamPhotons(1);
200 locTaghBeamPhotonList().setT(locBeamPhotons[loc_i]->time());
201 locTaghBeamPhotonList().setE(locBeamPhotons[loc_i]->energy());
202 }
203 }
204 for(size_t loc_i = 0; loc_i < locBeamPhotons_TAGGEDMCGEN.size(); ++loc_i)
205 {
206 if(locBeamPhotons_TAGGEDMCGEN[loc_i]->dSystem == SYS_TAGM)
207 {
208 hddm_r::TagmBeamPhotonList locTagmBeamPhotonList = res().addTagmBeamPhotons(1);
209 locTagmBeamPhotonList().setJtag("TAGGEDMCGEN");
210 locTagmBeamPhotonList().setT(locBeamPhotons_TAGGEDMCGEN[loc_i]->time());
211 locTagmBeamPhotonList().setE(locBeamPhotons_TAGGEDMCGEN[loc_i]->energy());
212 }
213 else if(locBeamPhotons_TAGGEDMCGEN[loc_i]->dSystem == SYS_TAGH)
214 {
215 hddm_r::TaghBeamPhotonList locTaghBeamPhotonList = res().addTaghBeamPhotons(1);
216 locTaghBeamPhotonList().setJtag("TAGGEDMCGEN");
217 locTaghBeamPhotonList().setT(locBeamPhotons_TAGGEDMCGEN[loc_i]->time());
218 locTaghBeamPhotonList().setE(locBeamPhotons_TAGGEDMCGEN[loc_i]->energy());
219 }
220 }
221
222 // push any DFCALShower objects to the output record
223 for (size_t i=0; i < fcalshowers.size(); i++)
224 {
225 hddm_r::FcalShowerList fcal = res().addFcalShowers(1);
226 DVector3 pos = fcalshowers[i]->getPosition();
227 fcal().setX(pos(0));
228 fcal().setY(pos(1));
229 fcal().setZ(pos(2));
230 fcal().setT(fcalshowers[i]->getTime());
231 fcal().setE(fcalshowers[i]->getEnergy());
232 fcal().setXerr(fcalshowers[i]->xErr());
233 fcal().setYerr(fcalshowers[i]->yErr());
234 fcal().setZerr(fcalshowers[i]->zErr());
235 fcal().setTerr(fcalshowers[i]->tErr());
236 fcal().setEerr(fcalshowers[i]->EErr());
237 fcal().setXycorr(fcalshowers[i]->XYcorr());
238 fcal().setXzcorr(fcalshowers[i]->XZcorr());
239 fcal().setYzcorr(fcalshowers[i]->YZcorr());
240 fcal().setEzcorr(fcalshowers[i]->EZcorr());
241 fcal().setTzcorr(fcalshowers[i]->ZTcorr());
242
243 // further correlations (an extension of REST format so code is different.)
244 hddm_r::FcalCorrelationsList locFcalCorrelationsList = fcal().addFcalCorrelationses(1);
245 locFcalCorrelationsList().setEtcorr(fcalshowers[i]->ETcorr());
246 locFcalCorrelationsList().setExcorr(fcalshowers[i]->EXcorr());
247 locFcalCorrelationsList().setEycorr(fcalshowers[i]->EYcorr());
248 locFcalCorrelationsList().setTxcorr(fcalshowers[i]->XTcorr());
249 locFcalCorrelationsList().setTycorr(fcalshowers[i]->YTcorr());
250
251 // add in classification based on MVA
252 //hddm_r::FcalShowerClassificationList locFcalShowerClassificationList = fcal().addFcalShowerClassifications(1);
253 // locFcalShowerClassificationList().setClassifierOuput(fcalshowers[i]->getClassifierOutput());
254
255 // add in shower properties used for MVA algorithm, etc.
256
257 hddm_r::FcalShowerPropertiesList locFcalShowerPropertiesList = fcal().addFcalShowerPropertiesList(1);
258 locFcalShowerPropertiesList().setDocaTrack(fcalshowers[i]->getDocaTrack());
259 locFcalShowerPropertiesList().setTimeTrack(fcalshowers[i]->getTimeTrack());
260 locFcalShowerPropertiesList().setSumU(fcalshowers[i]->getSumU());
261 locFcalShowerPropertiesList().setSumV(fcalshowers[i]->getSumV());
262 locFcalShowerPropertiesList().setE1E9(fcalshowers[i]->getE1E9());
263 locFcalShowerPropertiesList().setE9E25(fcalshowers[i]->getE9E25());
264 hddm_r::FcalShowerNBlocksList locFcalShowerNBlocksList = fcal().addFcalShowerNBlockses(1);
265 locFcalShowerNBlocksList().setNumBlocks(fcalshowers[i]->getNumBlocks());
266
267 }
268
269
270 // push any DBCALShower objects to the output record
271 for (size_t i=0; i < bcalshowers.size(); i++)
272 {
273 hddm_r::BcalShowerList bcal = res().addBcalShowers(1);
274 DVector3 pos(bcalshowers[i]->x,bcalshowers[i]->y,bcalshowers[i]->z);
275 bcal().setX(bcalshowers[i]->x);
276 bcal().setY(bcalshowers[i]->y);
277 bcal().setZ(bcalshowers[i]->z);
278 bcal().setT(bcalshowers[i]->t);
279 bcal().setE(bcalshowers[i]->E);
280 bcal().setXerr(bcalshowers[i]->xErr());
281 bcal().setYerr(bcalshowers[i]->yErr());
282 bcal().setZerr(bcalshowers[i]->zErr());
283 bcal().setTerr(bcalshowers[i]->tErr());
284 bcal().setEerr(bcalshowers[i]->EErr());
285 bcal().setXycorr(bcalshowers[i]->XYcorr());
286 bcal().setXzcorr(bcalshowers[i]->XZcorr());
287 bcal().setYzcorr(bcalshowers[i]->YZcorr());
288 bcal().setEzcorr(bcalshowers[i]->EZcorr());
289 bcal().setTzcorr(bcalshowers[i]->ZTcorr());
290
291 // further correlations (an extension of REST format so code is different.)
292 hddm_r::BcalCorrelationsList locBcalCorrelationsList = bcal().addBcalCorrelationses(1);
293 locBcalCorrelationsList().setEtcorr(bcalshowers[i]->ETcorr());
294 locBcalCorrelationsList().setExcorr(bcalshowers[i]->EXcorr());
295 locBcalCorrelationsList().setEycorr(bcalshowers[i]->EYcorr());
296 locBcalCorrelationsList().setTxcorr(bcalshowers[i]->XTcorr());
297 locBcalCorrelationsList().setTycorr(bcalshowers[i]->YTcorr());
298
299 hddm_r::PreshowerList locPreShowerList = bcal().addPreshowers(1);
300 locPreShowerList().setPreshowerE(bcalshowers[i]->E_preshower);
301
302 hddm_r::WidthList locWidthList = bcal().addWidths(1);
303 locWidthList().setSigLong(bcalshowers[i]->sigLong);
304 locWidthList().setSigTrans(bcalshowers[i]->sigTrans);
305 locWidthList().setSigTheta(bcalshowers[i]->sigTheta);
306
307 //N_cell
308 hddm_r::BcalClusterList bcalcluster = bcal().addBcalClusters(1);
309 bcalcluster().setNcell(bcalshowers[i]->N_cell);
310
311 hddm_r::BcalLayersList bcallayerdata = bcal().addBcalLayerses(1);
312 bcallayerdata().setE_L2(bcalshowers[i]->E_L2);
313 bcallayerdata().setE_L3(bcalshowers[i]->E_L3);
314 bcallayerdata().setE_L4(bcalshowers[i]->E_L4);
315 bcallayerdata().setRmsTime(bcalshowers[i]->rmsTime);
316 }
317
318 // push any DCCALShower objects to the output record
319 for (size_t i=0; i < ccalshowers.size(); i++)
320 {
321 hddm_r::CcalShowerList ccal = res().addCcalShowers(1);
322 ccal().setX(ccalshowers[i]->x);
323 ccal().setY(ccalshowers[i]->y);
324 ccal().setZ(ccalshowers[i]->z);
325 ccal().setT(ccalshowers[i]->time);
326 ccal().setE(ccalshowers[i]->E);
327 ccal().setEmax(ccalshowers[i]->Emax);
328 ccal().setTerr(ccalshowers[i]->sigma_t);
329 ccal().setEerr(ccalshowers[i]->sigma_E);
330 ccal().setChi2(ccalshowers[i]->chi2);
331 ccal().setX1(ccalshowers[i]->x1);
332 ccal().setY1(ccalshowers[i]->y1);
333
334 ccal().setType(ccalshowers[i]->type);
335 ccal().setDime(ccalshowers[i]->dime);
336 ccal().setId(ccalshowers[i]->id);
337 ccal().setIdmax(ccalshowers[i]->idmax);
338 }
339
340 // push any DTOFPoint objects to the output record
341 for (size_t i=0; i < tofpoints.size(); i++)
342 {
343 hddm_r::TofPointList tof = res().addTofPoints(1);
344 tof().setX(tofpoints[i]->pos(0));
345 tof().setY(tofpoints[i]->pos(1));
346 tof().setZ(tofpoints[i]->pos(2));
347 tof().setT(tofpoints[i]->t);
348 tof().setDE(tofpoints[i]->dE);
349
350 //Status //Assume compiler optimizes multiplication
351 hddm_r::TofStatusList tofstatus = tof().addTofStatuses(1);
352 int locStatus = tofpoints[i]->dHorizontalBar + 45*tofpoints[i]->dVerticalBar;
353 locStatus += 45*45*tofpoints[i]->dHorizontalBarStatus + 45*45*4*tofpoints[i]->dVerticalBarStatus;
354 tofstatus().setStatus(locStatus);
355 // Energy deposition for each plane
356 hddm_r::TofEnergyDepositionList tofEnergyDeposition = tof().addTofEnergyDepositions(1);
357 tofEnergyDeposition().setDE1(tofpoints[i]->dE1);
358 tofEnergyDeposition().setDE2(tofpoints[i]->dE2);
359 }
360
361 // push any DSCHit objects to the output record
362 for (size_t i=0; i < starthits.size(); i++)
363 {
364 hddm_r::StartHitList hit = res().addStartHits(1);
365 hit().setSector(starthits[i]->sector);
366 hit().setT(starthits[i]->t);
367 hit().setDE(starthits[i]->dE);
368 }
369
370 if(REST_WRITE_DIRC_HITS) {
371 // push any DDIRCPmtHit objects to the output record
372 for (size_t i=0; i < locDIRCPmtHits.size(); i++)
373 {
374 hddm_r::DircHitList hit = res().addDircHits(1);
375 hit().setCh(locDIRCPmtHits[i]->ch);
376 hit().setT(locDIRCPmtHits[i]->t);
377 hit().setTot(locDIRCPmtHits[i]->tot);
378 }
379 }
380
381 // push any DTrackTimeBased objects to the output record
382 for (size_t i=0; i < tracks.size(); ++i)
383 {
384
385
386 hddm_r::ChargedTrackList tra = res().addChargedTracks(1);
387 tra().setCandidateId(tracks[i]->candidateid);
388 tra().setPtype(tracks[i]->PID());
389
390 hddm_r::TrackFitList fit = tra().addTrackFits(1);
391 fit().setNdof(tracks[i]->Ndof);
392 fit().setChisq(tracks[i]->chisq);
393 fit().setX0(tracks[i]->x());
394 fit().setY0(tracks[i]->y());
395 fit().setZ0(tracks[i]->z());
396 fit().setPx(tracks[i]->px());
397 fit().setPy(tracks[i]->py());
398 fit().setPz(tracks[i]->pz());
399 fit().setT0(tracks[i]->time());
400 fit().setT0err(0.0);
401 fit().setT0det(SYS_CDC);
402
403 const TMatrixFSym& errors = *(tracks[i]->TrackingErrorMatrix().get());
404 fit().setE11(errors(0,0));
405 fit().setE12(errors(0,1));
406 fit().setE13(errors(0,2));
407 fit().setE14(errors(0,3));
408 fit().setE15(errors(0,4));
409 fit().setE22(errors(1,1));
410 fit().setE23(errors(1,2));
411 fit().setE24(errors(1,3));
412 fit().setE25(errors(1,4));
413 fit().setE33(errors(2,2));
414 fit().setE34(errors(2,3));
415 fit().setE35(errors(2,4));
416 fit().setE44(errors(3,3));
417 fit().setE45(errors(3,4));
418 fit().setE55(errors(4,4));
419
420 hddm_r::TrackFlagsList myflags = tra().addTrackFlagses(1);
421 myflags().setFlags(tracks[i]->flags);
422
423 hddm_r::HitlayersList locHitLayers = tra().addHitlayerses(1);
424 locHitLayers().setCDCrings(tracks[i]->dCDCRings);
425 locHitLayers().setFDCplanes(tracks[i]->dFDCPlanes);
426
427 vector<const DCDCTrackHit*> locCDCHits;
428 tracks[i]->Get(locCDCHits);
429 vector<const DFDCPseudo*> locFDCHits;
430 tracks[i]->Get(locFDCHits);
431
432 hddm_r::ExpectedhitsList locExpectedHits = tra().addExpectedhitses(1);
433 //locExpectedHits().setMeasuredCDChits(locCDCHits.size());
434 //locExpectedHits().setMeasuredFDChits(locFDCHits.size());
435 locExpectedHits().setMeasuredCDChits(tracks[i]->measured_cdc_hits_on_track);
436 locExpectedHits().setMeasuredFDChits(tracks[i]->measured_fdc_hits_on_track);
437 //locExpectedHits().setMeasuredCDChits(tracks[i]->cdc_hit_usage.total_hits);
438 //locExpectedHits().setMeasuredFDChits(tracks[i]->fdc_hit_usage.total_hits);
439 locExpectedHits().setExpectedCDChits(tracks[i]->potential_cdc_hits_on_track);
440 locExpectedHits().setExpectedFDChits(tracks[i]->potential_fdc_hits_on_track);
441
442 hddm_r::McmatchList locMCMatches = tra().addMcmatchs(1);
443 locMCMatches().setIthrown(tracks[i]->dMCThrownMatchMyID);
444 locMCMatches().setNumhitsmatch(tracks[i]->dNumHitsMatchedToThrown);
445
446 if (tracks[i]->dNumHitsUsedFordEdx_FDC + tracks[i]->dNumHitsUsedFordEdx_CDC > 0)
447 {
448 hddm_r::DEdxDCList elo = tra().addDEdxDCs(1);
449 elo().setNsampleFDC(tracks[i]->dNumHitsUsedFordEdx_FDC);
450 elo().setNsampleCDC(tracks[i]->dNumHitsUsedFordEdx_CDC);
451 elo().setDxFDC(tracks[i]->ddx_FDC);
452 elo().setDxCDC(tracks[i]->ddx_CDC);
453 elo().setDEdxFDC(tracks[i]->ddEdx_FDC);
454 elo().setDEdxCDC(tracks[i]->ddEdx_CDC);
455 hddm_r::CDCAmpdEdxList elo2 = elo().addCDCAmpdEdxs(1);
456 elo2().setDxCDCAmp(tracks[i]->ddx_CDC_amp);
457 elo2().setDEdxCDCAmp(tracks[i]->ddEdx_CDC_amp);
458
459 }
460 if (REST_WRITE_TRACK_EXIT_PARAMS){
461 vector<DTrackFitter::Extrapolation_t>extraps=tracks[i]->extrapolations.at(SYS_NULL);
462 if (extraps.size()>0){
463 hddm_r::ExitParamsList locExitParams = tra().addExitParamses(1);
464 DVector3 pos=extraps[0].position;
465 DVector3 mom=extraps[0].momentum;
466 locExitParams().setX1(pos.X());
467 locExitParams().setY1(pos.Y());
468 locExitParams().setZ1(pos.Z());
469 locExitParams().setPx1(mom.X());
470 locExitParams().setPy1(mom.Y());
471 locExitParams().setPz1(mom.Z());
472 locExitParams().setT1(extraps[0].t);
473 }
474 }
475
476 }
477
478 // push any DEventHitStatistics objects to the output record
479 if (hitStats.size() > 0)
480 {
481 hddm_r::HitStatisticsList stats = res().addHitStatisticses(1);
482 hddm_r::StartCountersList starts = stats().addStartCounterses(1);
483 starts().setCount(hitStats[0]->start_counters);
484 hddm_r::CdcStrawsList straws = stats().addCdcStrawses(1);
485 straws().setCount(hitStats[0]->cdc_straws);
486 hddm_r::FdcPseudosList pseudos = stats().addFdcPseudoses(1);
487 pseudos().setCount(hitStats[0]->fdc_pseudos);
488 hddm_r::BcalCellsList cells = stats().addBcalCellses(1);
489 cells().setCount(hitStats[0]->bcal_cells);
490 hddm_r::FcalBlocksList blocks = stats().addFcalBlockses(1);
491 blocks().setCount(hitStats[0]->fcal_blocks);
492 hddm_r::CcalBlocksList bloccs = stats().addCcalBlockses(1);
493 bloccs().setCount(hitStats[0]->ccal_blocks);
494 hddm_r::DircPMTsList pmts = stats().addDircPMTses(1);
495 pmts().setCount(hitStats[0]->dirc_PMTs);
496 }
497
498 // push any DTrigger objects to the output record
499 for (size_t i=0; i < locTriggers.size(); ++i)
500 {
501 hddm_r::TriggerList trigger = res().addTriggers(1);
502 trigger().setL1_trig_bits(Convert_UnsignedIntToSigned(locTriggers[i]->Get_L1TriggerBits()));
503 trigger().setL1_fp_trig_bits(Convert_UnsignedIntToSigned(locTriggers[i]->Get_L1FrontPanelTriggerBits()));
504
505 // trigger energy sums
506 hddm_r::TriggerEnergySumsList triggerEnergySum = trigger().addTriggerEnergySumses(1);
507 triggerEnergySum().setBCALEnergySum(locTriggers[i]->Get_GTP_BCALEnergy());
508 triggerEnergySum().setFCALEnergySum(locTriggers[i]->Get_GTP_FCALEnergy());
509
510 }
511
512 // push any DDetectorMatches objects to the output record
513 for(size_t loc_i = 0; loc_i < locDetectorMatches.size(); ++loc_i)
514 {
515 hddm_r::DetectorMatchesList matches = res().addDetectorMatcheses(1);
516 for(size_t loc_j = 0; loc_j < tracks.size(); ++loc_j)
517 {
518 vector<shared_ptr<const DBCALShowerMatchParams>> locBCALShowerMatchParamsVector;
519 locDetectorMatches[loc_i]->Get_BCALMatchParams(tracks[loc_j], locBCALShowerMatchParamsVector);
520 for(size_t loc_k = 0; loc_k < locBCALShowerMatchParamsVector.size(); ++loc_k)
521 {
522 hddm_r::BcalMatchParamsList bcalList = matches().addBcalMatchParamses(1);
523 bcalList().setTrack(loc_j);
524
525 const DBCALShower* locBCALShower = locBCALShowerMatchParamsVector[loc_k]->dBCALShower;
526 size_t locBCALindex = 0;
527 for(; locBCALindex < bcalshowers.size(); ++locBCALindex)
528 {
529 if(bcalshowers[locBCALindex] == locBCALShower)
530 break;
531 }
532 bcalList().setShower(locBCALindex);
533
534 bcalList().setDeltaphi(locBCALShowerMatchParamsVector[loc_k]->dDeltaPhiToShower);
535 bcalList().setDeltaz(locBCALShowerMatchParamsVector[loc_k]->dDeltaZToShower);
536 bcalList().setDx(locBCALShowerMatchParamsVector[loc_k]->dx);
537 bcalList().setPathlength(locBCALShowerMatchParamsVector[loc_k]->dPathLength);
538 bcalList().setTflight(locBCALShowerMatchParamsVector[loc_k]->dFlightTime);
539 bcalList().setTflightvar(locBCALShowerMatchParamsVector[loc_k]->dFlightTimeVariance);
540 }
541
542 vector<shared_ptr<const DFCALShowerMatchParams>> locFCALShowerMatchParamsVector;
543 locDetectorMatches[loc_i]->Get_FCALMatchParams(tracks[loc_j], locFCALShowerMatchParamsVector);
544 for (size_t loc_k = 0; loc_k < locFCALShowerMatchParamsVector.size(); ++loc_k)
545 {
546 hddm_r::FcalMatchParamsList fcalList = matches().addFcalMatchParamses(1);
547 fcalList().setTrack(loc_j);
548
549 const DFCALShower* locFCALShower = locFCALShowerMatchParamsVector[loc_k]->dFCALShower;
550 size_t locFCALindex = 0;
551 for(; locFCALindex < fcalshowers.size(); ++locFCALindex)
552 {
553 if(fcalshowers[locFCALindex] == locFCALShower)
554 break;
555 }
556 fcalList().setShower(locFCALindex);
557
558 fcalList().setDoca(locFCALShowerMatchParamsVector[loc_k]->dDOCAToShower);
559 fcalList().setDx(locFCALShowerMatchParamsVector[loc_k]->dx);
560 fcalList().setPathlength(locFCALShowerMatchParamsVector[loc_k]->dPathLength);
561 fcalList().setTflight(locFCALShowerMatchParamsVector[loc_k]->dFlightTime);
562 fcalList().setTflightvar(locFCALShowerMatchParamsVector[loc_k]->dFlightTimeVariance);
563 }
564
565 vector<shared_ptr<const DTOFHitMatchParams>> locTOFHitMatchParamsVector;
566 locDetectorMatches[loc_i]->Get_TOFMatchParams(tracks[loc_j], locTOFHitMatchParamsVector);
567 for(size_t loc_k = 0; loc_k < locTOFHitMatchParamsVector.size(); ++loc_k)
568 {
569 hddm_r::TofMatchParamsList tofList = matches().addTofMatchParamses(1);
570 tofList().setTrack(loc_j);
571
572 size_t locTOFindex = 0;
573 for(; locTOFindex < tofpoints.size(); ++locTOFindex)
574 {
575 if(tofpoints[locTOFindex] == locTOFHitMatchParamsVector[loc_k]->dTOFPoint)
576 break;
577 }
578 tofList().setHit(locTOFindex);
579
580 tofList().setThit(locTOFHitMatchParamsVector[loc_k]->dHitTime);
581 tofList().setThitvar(locTOFHitMatchParamsVector[loc_k]->dHitTimeVariance);
582 tofList().setEhit(locTOFHitMatchParamsVector[loc_k]->dHitEnergy);
583
584 tofList().setDEdx(locTOFHitMatchParamsVector[loc_k]->dEdx);
585 tofList().setPathlength(locTOFHitMatchParamsVector[loc_k]->dPathLength);
586 tofList().setTflight(locTOFHitMatchParamsVector[loc_k]->dFlightTime);
587 tofList().setTflightvar(locTOFHitMatchParamsVector[loc_k]->dFlightTimeVariance);
588
589 tofList().setDeltax(locTOFHitMatchParamsVector[loc_k]->dDeltaXToHit);
590 tofList().setDeltay(locTOFHitMatchParamsVector[loc_k]->dDeltaYToHit);
591 // dEdx for each plane
592 hddm_r::TofDedxList tofDedx = tofList().addTofDedxs(1);
593 tofDedx().setDEdx1(locTOFHitMatchParamsVector[loc_k]->dEdx1);
594 tofDedx().setDEdx2(locTOFHitMatchParamsVector[loc_k]->dEdx2);
595
596 }
597
598 vector<shared_ptr<const DSCHitMatchParams>> locSCHitMatchParamsVector;
599 locDetectorMatches[loc_i]->Get_SCMatchParams(tracks[loc_j], locSCHitMatchParamsVector);
600 for(size_t loc_k = 0; loc_k < locSCHitMatchParamsVector.size(); ++loc_k)
601 {
602 hddm_r::ScMatchParamsList scList = matches().addScMatchParamses(1);
603 scList().setTrack(loc_j);
604
605 size_t locSCindex = 0;
606 for(; locSCindex < starthits.size(); ++locSCindex)
607 {
608 if(starthits[locSCindex] == locSCHitMatchParamsVector[loc_k]->dSCHit)
609 break;
610 }
611 scList().setHit(locSCindex);
612
613 scList().setDEdx(locSCHitMatchParamsVector[loc_k]->dEdx);
614 scList().setDeltaphi(locSCHitMatchParamsVector[loc_k]->dDeltaPhiToHit);
615 scList().setEhit(locSCHitMatchParamsVector[loc_k]->dHitEnergy);
616 scList().setPathlength(locSCHitMatchParamsVector[loc_k]->dPathLength);
617 scList().setTflight(locSCHitMatchParamsVector[loc_k]->dFlightTime);
618 scList().setTflightvar(locSCHitMatchParamsVector[loc_k]->dFlightTimeVariance);
619 scList().setThit(locSCHitMatchParamsVector[loc_k]->dHitTime);
620 scList().setThitvar(locSCHitMatchParamsVector[loc_k]->dHitTimeVariance);
621 }
622
623
624 shared_ptr<const DDIRCMatchParams> locDIRCMatchParams;
625 map<shared_ptr<const DDIRCMatchParams>, vector<const DDIRCPmtHit*> > locDIRCTrackMatchParamsMap;
626 DDetectorMatches *locDetectorMatch = (DDetectorMatches*)locDetectorMatches[loc_i];
627 locDetectorMatch->Get_DIRCMatchParams(tracks[loc_j], locDIRCMatchParams);
628 locDetectorMatch->Get_DIRCTrackMatchParamsMap(locDIRCTrackMatchParamsMap);
629
630 if(locDIRCMatchParams) {
631 hddm_r::DircMatchParamsList dircList = matches().addDircMatchParamses(1);
632 dircList().setTrack(loc_j);
633
634 vector<const DDIRCPmtHit*> locDIRCHitTrackMatch = (vector<const DDIRCPmtHit*>)locDIRCTrackMatchParamsMap[locDIRCMatchParams];
635 for(size_t loc_k = 0; loc_k < locDIRCPmtHits.size(); ++loc_k) {
636 const DDIRCPmtHit* locDIRCPmtHit = (DDIRCPmtHit*)locDIRCPmtHits[loc_k];
637 if(find(locDIRCHitTrackMatch.begin(), locDIRCHitTrackMatch.end(), locDIRCPmtHit) != locDIRCHitTrackMatch.end()) {
638 hddm_r::DircMatchHitList dircHitList = matches().addDircMatchHits(1);
639 dircHitList().setTrack(loc_j);
640 dircHitList().setHit(loc_k);
641 }
642 }
643
644 vector<DTrackFitter::Extrapolation_t> extrapolations=tracks[loc_j]->extrapolations.at(SYS_DIRC);
645 DVector3 locProjPos = locDIRCMatchParams->dExtrapolatedPos;
646 DVector3 locProjMom = locDIRCMatchParams->dExtrapolatedMom;
647 double locFlightTime = locDIRCMatchParams->dExtrapolatedTime;
648 dircList().setX(locProjPos.X());
649 dircList().setY(locProjPos.Y());
650 dircList().setZ(locProjPos.Z());
651 dircList().setT(locFlightTime);
652 dircList().setPx(locProjMom.X());
653 dircList().setPy(locProjMom.Y());
654 dircList().setPz(locProjMom.Z());
655 dircList().setExpectthetac(locDIRCMatchParams->dExpectedThetaC);
656 dircList().setThetac(locDIRCMatchParams->dThetaC);
657 dircList().setDeltat(locDIRCMatchParams->dDeltaT);
658 dircList().setLele(locDIRCMatchParams->dLikelihoodElectron);
659 dircList().setLpi(locDIRCMatchParams->dLikelihoodPion);
660 dircList().setLk(locDIRCMatchParams->dLikelihoodKaon);
661 dircList().setLp(locDIRCMatchParams->dLikelihoodProton);
662 dircList().setNphotons(locDIRCMatchParams->dNPhotons);
663 }
664
665 double locFlightTimePCorrelation = 0.0;
666 if(locDetectorMatches[loc_i]->Get_FlightTimePCorrelation(tracks[loc_j], SYS_BCAL, locFlightTimePCorrelation))
667 {
668 hddm_r::TflightPCorrelationList correlationList = matches().addTflightPCorrelations(1);
669 correlationList().setTrack(loc_j);
670 correlationList().setSystem(SYS_BCAL);
671 correlationList().setCorrelation(locFlightTimePCorrelation);
672 }
673 if(locDetectorMatches[loc_i]->Get_FlightTimePCorrelation(tracks[loc_j], SYS_FCAL, locFlightTimePCorrelation))
674 {
675 hddm_r::TflightPCorrelationList correlationList = matches().addTflightPCorrelations(1);
676 correlationList().setTrack(loc_j);
677 correlationList().setSystem(SYS_FCAL);
678 correlationList().setCorrelation(locFlightTimePCorrelation);
679 }
680 if(locDetectorMatches[loc_i]->Get_FlightTimePCorrelation(tracks[loc_j], SYS_TOF, locFlightTimePCorrelation))
681 {
682 hddm_r::TflightPCorrelationList correlationList = matches().addTflightPCorrelations(1);
683 correlationList().setTrack(loc_j);
684 correlationList().setSystem(SYS_TOF);
685 correlationList().setCorrelation(locFlightTimePCorrelation);
686 }
687 if(locDetectorMatches[loc_i]->Get_FlightTimePCorrelation(tracks[loc_j], SYS_START, locFlightTimePCorrelation))
688 {
689 hddm_r::TflightPCorrelationList correlationList = matches().addTflightPCorrelations(1);
690 correlationList().setTrack(loc_j);
691 correlationList().setSystem(SYS_START);
692 correlationList().setCorrelation(locFlightTimePCorrelation);
693 }
694 }
695
696 for(size_t loc_j = 0; loc_j < bcalshowers.size(); ++loc_j)
697 {
698 double locDeltaPhi = 0.0, locDeltaZ = 0.0;
699 if(!locDetectorMatches[loc_i]->Get_DistanceToNearestTrack(bcalshowers[loc_j], locDeltaPhi, locDeltaZ))
700 continue;
701
702 hddm_r::BcalDOCAtoTrackList bcalDocaList = matches().addBcalDOCAtoTracks(1);
703 bcalDocaList().setShower(loc_j);
704 bcalDocaList().setDeltaphi(locDeltaPhi);
705 bcalDocaList().setDeltaz(locDeltaZ);
706 }
707
708 for(size_t loc_j = 0; loc_j < fcalshowers.size(); ++loc_j)
709 {
710 double locDistance = 0.0;
711 if(!locDetectorMatches[loc_i]->Get_DistanceToNearestTrack(fcalshowers[loc_j], locDistance))
712 continue;
713
714 hddm_r::FcalDOCAtoTrackList fcalDocaList = matches().addFcalDOCAtoTracks(1);
715 fcalDocaList().setShower(loc_j);
716 fcalDocaList().setDoca(locDistance);
717 }
718 }
719
720 // write the resulting record to the output stream
721 bool locWriteStatus = Write_RESTEvent(locOutputFileName, locRecord);
722 locRecord.clear();
723 return locWriteStatus;
724}
725
726string DEventWriterREST::Get_OutputFileName(string locOutputFileNameSubString) const
727{
728 string locOutputFileName = dOutputFileBaseName;
729 if (locOutputFileNameSubString != "")
730 locOutputFileName += string("_") + locOutputFileNameSubString;
731 return (locOutputFileName + string(".hddm"));
732}
733
734bool DEventWriterREST::Write_RESTEvent(string locOutputFileName, hddm_r::HDDM& locRecord) const
735{
736 japp->WriteLock("RESTWriter");
737 {
738 //check to see if the REST file is open
739 if(Get_RESTOutputFilePointers().find(locOutputFileName) != Get_RESTOutputFilePointers().end())
740 {
741 //open: get pointer, write event
742 hddm_r::ostream* locOutputRESTFileStream = Get_RESTOutputFilePointers()[locOutputFileName].second;
743 japp->Unlock("RESTWriter");
744 *(locOutputRESTFileStream) << locRecord;
745 return true;
746 }
747
748 //not open: open it
749 pair<ofstream*, hddm_r::ostream*> locRESTFilePointers(NULL__null, NULL__null);
750 locRESTFilePointers.first = new ofstream(locOutputFileName.c_str());
751 if(!locRESTFilePointers.first->is_open())
752 {
753 //failed to open
754 delete locRESTFilePointers.first;
755 japp->Unlock("RESTWriter");
756 return false;
757 }
758 locRESTFilePointers.second = new hddm_r::ostream(*locRESTFilePointers.first);
759
760 // enable on-the-fly bzip2 compression on output stream
761 if(HDDM_USE_COMPRESSION)
762 {
763 jout << " Enabling bz2 compression of output HDDM file stream" << std::endl;
764 locRESTFilePointers.second->setCompression(hddm_r::k_bz2_compression);
765 }
766 else
767 jout << " HDDM compression disabled" << std::endl;
768
769 // enable a CRC data integrity check at the end of each event record
770 if(HDDM_USE_INTEGRITY_CHECKS)
771 {
772 jout << " Enabling CRC data integrity check in output HDDM file stream" << std::endl;
773 locRESTFilePointers.second->setIntegrityChecks(hddm_r::k_crc32_integrity);
774 }
775 else
776 jout << " HDDM integrity checks disabled" << std::endl;
777
778 // write a comment record at the head of the file
779 hddm_r::HDDM locCommentRecord;
780 hddm_r::ReconstructedPhysicsEventList res = locCommentRecord.addReconstructedPhysicsEvents(1);
781 hddm_r::CommentList comment = res().addComments();
782 comment().setText("This is a REST event stream...");
783 // write out any metadata if it's been set
784 if(HDDM_DATA_VERSION_STRING != "") {
785 hddm_r::DataVersionStringList dataVersionString = res().addDataVersionStrings();
786 dataVersionString().setText(HDDM_DATA_VERSION_STRING);
787 }
788 if(CCDB_CONTEXT_STRING != "") {
789 hddm_r::CcdbContextList ccdbContextString = res().addCcdbContexts();
790 ccdbContextString().setText(CCDB_CONTEXT_STRING);
791 }
792 *(locRESTFilePointers.second) << locCommentRecord;
793 locCommentRecord.clear();
794
795 //write the event
796 *(locRESTFilePointers.second) << locRecord;
797
798 //store the stream pointers
799 Get_RESTOutputFilePointers()[locOutputFileName] = locRESTFilePointers;
800 }
801 japp->Unlock("RESTWriter");
802
803 return true;
804}
805
806DEventWriterREST::~DEventWriterREST(void)
807{
808 japp->WriteLock("RESTWriter");
809 {
810 --Get_NumEventWriterThreads();
811 if(Get_NumEventWriterThreads() > 0)
812 {
813 japp->Unlock("RESTWriter");
814 return; //not the last thread writing to REST files
815 }
816
817 //last thread writing to REST files: close all files and free all memory
818 map<string, pair<ofstream*, hddm_r::ostream*> >::iterator locIterator;
819 for(locIterator = Get_RESTOutputFilePointers().begin(); locIterator != Get_RESTOutputFilePointers().end(); ++locIterator)
820 {
821 string locOutputFileName = locIterator->first;
822 if (locIterator->second.second != NULL__null)
823 delete locIterator->second.second;
824 if (locIterator->second.first != NULL__null)
825 delete locIterator->second.first;
826 std::cout << "Closed REST file " << locOutputFileName << std::endl;
827 }
828 Get_RESTOutputFilePointers().clear();
829 }
830 japp->Unlock("RESTWriter");
831}
832
833int32_t DEventWriterREST::Convert_UnsignedIntToSigned(uint32_t locUnsignedInt) const
834{
835 //Convert uint32_t to int32_t
836 //Scheme:
837 //If bit 32 is zero, then the int32_t is the same as the uint32_t: Positive or zero
838 //If bit 32 is one, and at least one other bit is 1, then the int32_t is -1 * uint32_t (after stripping the top bit)
839 //If bit 32 is one, and all other bits are zero, then the int32_t is the minimum int: -(2^31)
840 if((locUnsignedInt & 0x80000000) == 0)
841 return int32_t(locUnsignedInt); //bit 32 is zero: positive or zero
842
843 //bit 32 is 1. see if there is another bit set
844 int32_t locTopBitStripped = int32_t(locUnsignedInt & uint32_t(0x7FFFFFFF)); //strip the top bit
845 if(locTopBitStripped == 0)
846 return numeric_limits<int32_t>::min(); //no other bit is set: minimum int
847 return -1*locTopBitStripped; //return the negative
848}

/w/halld-scifs17exp/halld2/home/sdobbs/Software/jana/jana_0.8.2/Linux_CentOS7.7-x86_64-gcc4.8.5/include/JANA/JEventLoop.h

1// $Id: JEventLoop.h 1763 2006-05-10 14:29:25Z davidl $
2//
3// File: JEventLoop.h
4// Created: Wed Jun 8 12:30:51 EDT 2005
5// Creator: davidl (on Darwin wire129.jlab.org 7.8.0 powerpc)
6//
7
8#ifndef _JEventLoop_
9#define _JEventLoop_
10
11#include <sys/time.h>
12
13#include <vector>
14#include <list>
15#include <string>
16#include <utility>
17#include <typeinfo>
18#include <string.h>
19#include <map>
20#include <utility>
21using std::vector;
22using std::list;
23using std::string;
24using std::type_info;
25
26#include <JANA/jerror.h>
27#include <JANA/JObject.h>
28#include <JANA/JException.h>
29#include <JANA/JEvent.h>
30#include <JANA/JThread.h>
31#include <JANA/JFactory_base.h>
32#include <JANA/JCalibration.h>
33#include <JANA/JGeometry.h>
34#include <JANA/JResourceManager.h>
35#include <JANA/JStreamLog.h>
36
37// The following is here just so we can use ROOT's THtml class to generate documentation.
38#include "cint.h"
39
40
41// Place everything in JANA namespace
42namespace jana{
43
44
45template<class T> class JFactory;
46class JApplication;
47class JEventProcessor;
48
49
50class JEventLoop{
51 public:
52
53 friend class JApplication;
54
55 enum data_source_t{
56 DATA_NOT_AVAILABLE = 1,
57 DATA_FROM_CACHE,
58 DATA_FROM_SOURCE,
59 DATA_FROM_FACTORY
60 };
61
62 typedef struct{
63 string caller_name;
64 string caller_tag;
65 string callee_name;
66 string callee_tag;
67 double start_time;
68 double end_time;
69 data_source_t data_source;
70 }call_stack_t;
71
72 typedef struct{
73 const char* factory_name;
74 string tag;
75 const char* filename;
76 int line;
77 }error_call_stack_t;
78
79 JEventLoop(JApplication *app); ///< Constructor
80 virtual ~JEventLoop(); ////< Destructor
81 virtual const char* className(void){return static_className();}
82 static const char* static_className(void){return "JEventLoop";}
83
84 JApplication* GetJApplication(void) const {return app;} ///< Get pointer to the JApplication object
85 void RefreshProcessorListFromJApplication(void); ///< Re-copy the list of JEventProcessors from JApplication
86 virtual jerror_t AddFactory(JFactory_base* factory); ///< Add a factory
87 jerror_t RemoveFactory(JFactory_base* factory); ///< Remove a factory
88 JFactory_base* GetFactory(const string data_name, const char *tag="", bool allow_deftag=true); ///< Get a specific factory pointer
89 vector<JFactory_base*> GetFactories(void) const {return factories;} ///< Get all factory pointers
90 void GetFactoryNames(vector<string> &factorynames); ///< Get names of all factories in name:tag format
91 void GetFactoryNames(map<string,string> &factorynames); ///< Get names of all factories in map with key=name, value=tag
92 map<string,string> GetDefaultTags(void) const {return default_tags;}
93 jerror_t ClearFactories(void); ///< Reset all factories in preparation for next event.
94 jerror_t PrintFactories(int sparsify=0); ///< Print a list of all factories.
95 jerror_t Print(const string data_name, const char *tag=""); ///< Print the data of the given type
96
97 JCalibration* GetJCalibration();
98 template<class T> bool GetCalib(string namepath, map<string,T> &vals);
99 template<class T> bool GetCalib(string namepath, vector<T> &vals);
100 template<class T> bool GetCalib(string namepath, T &val);
101
102 JGeometry* GetJGeometry();
103 template<class T> bool GetGeom(string namepath, map<string,T> &vals);
104 template<class T> bool GetGeom(string namepath, T &val);
105
106 JResourceManager* GetJResourceManager(void);
107 string GetResource(string namepath);
108 template<class T> bool GetResource(string namepath, T vals, int event_number=0);
109
110 void Initialize(void); ///< Do initializations just before event processing starts
111 jerror_t Loop(void); ///< Loop over events
112 jerror_t OneEvent(uint64_t event_number); ///< Process a specific single event (if source supports it)
113 jerror_t OneEvent(void); ///< Process a single event
114 inline void Pause(void){pause = 1;} ///< Pause event processing
115 inline void Resume(void){pause = 0;} ///< Resume event processing
116 inline void Quit(void){quit = 1;} ///< Clean up and exit the event loop
117 inline bool GetQuit(void) const {return quit;}
118 void QuitProgram(void);
119
120 // Support for random access of events
121 bool HasRandomAccess(void);
122 void AddToEventQueue(uint64_t event_number){ next_events_to_process.push_back(event_number); }
123 void AddToEventQueue(list<uint64_t> &event_numbers) { next_events_to_process.insert(next_events_to_process.end(), event_numbers.begin(), event_numbers.end()); }
124 list<uint64_t> GetEventQueue(void){ return next_events_to_process; }
125 void ClearEventQueue(void){ next_events_to_process.clear(); }
126
127 template<class T> JFactory<T>* GetSingle(const T* &t, const char *tag="", bool exception_if_not_one=true); ///< Get pointer to first data object from (source or factory).
128 template<class T> JFactory<T>* Get(vector<const T*> &t, const char *tag="", bool allow_deftag=true); ///< Get data object pointers from (source or factory)
129 template<class T> JFactory<T>* GetFromFactory(vector<const T*> &t, const char *tag="", data_source_t &data_source=null_data_source, bool allow_deftag=true); ///< Get data object pointers from factory
130 template<class T> jerror_t GetFromSource(vector<const T*> &t, JFactory_base *factory=NULL__null); ///< Get data object pointers from source.
131 inline JEvent& GetJEvent(void){return event;} ///< Get pointer to the current JEvent object.
132 inline void SetJEvent(JEvent *event){this->event = *event;} ///< Set the JEvent pointer.
133 inline void SetAutoFree(int auto_free){this->auto_free = auto_free;} ///< Set the Auto-Free flag on/off
134 inline pthread_t GetPThreadID(void) const {return pthread_id;} ///< Get the pthread of the thread to which this JEventLoop belongs
135 double GetInstantaneousRate(void) const {return rate_instantaneous;} ///< Get the current event processing rate
136 double GetIntegratedRate(void) const {return rate_integrated;} ///< Get the current event processing rate
137 double GetLastEventProcessingTime(void) const {return delta_time_single;}
138 unsigned int GetNevents(void) const {return Nevents;}
139
140 inline bool CheckEventBoundary(uint64_t event_numberA, uint64_t event_numberB);
141
142 inline bool GetCallStackRecordingStatus(void){ return record_call_stack; }
143 inline void DisableCallStackRecording(void){ record_call_stack = false; }
144 inline void EnableCallStackRecording(void){ record_call_stack = true; }
145 inline void CallStackStart(JEventLoop::call_stack_t &cs, const string &caller_name, const string &caller_tag, const string callee_name, const string callee_tag);
146 inline void CallStackEnd(JEventLoop::call_stack_t &cs);
147 inline vector<call_stack_t> GetCallStack(void){return call_stack;} ///< Get the current factory call stack
148 inline void AddToCallStack(call_stack_t &cs){if(record_call_stack) call_stack.push_back(cs);} ///< Add specified item to call stack record but only if record_call_stack is true
149 inline void AddToErrorCallStack(error_call_stack_t &cs){error_call_stack.push_back(cs);} ///< Add layer to the factory call stack
150 inline vector<error_call_stack_t> GetErrorCallStack(void){return error_call_stack;} ///< Get the current factory error call stack
151 void PrintErrorCallStack(void); ///< Print the current factory call stack
152
153 const JObject* FindByID(JObject::oid_t id); ///< Find a data object by its identifier.
154 template<class T> const T* FindByID(JObject::oid_t id); ///< Find a data object by its type and identifier
155 JFactory_base* FindOwner(const JObject *t); ///< Find the factory that owns a data object by pointer
156 JFactory_base* FindOwner(JObject::oid_t id); ///< Find a factory that owns a data object by identifier
157
158 // User defined references
159 template<class T> void SetRef(T *t); ///< Add a user reference to this JEventLoop (must be a pointer)
160 template<class T> T* GetRef(void); ///< Get a user-defined reference of a specific type
161 template<class T> vector<T*> GetRefsT(void); ///< Get all user-defined refrences of a specicif type
162 vector<pair<const char*, void*> > GetRefs(void){ return user_refs; } ///< Get copy of full list of user-defined references
163 template<class T> void RemoveRef(T *t); ///< Remove user reference from list
164
165 // Convenience methods wrapping JEvent methods of same name
166 uint64_t GetStatus(void){return event.GetStatus();}
167 bool GetStatusBit(uint32_t bit){return event.GetStatusBit(bit);}
168 bool SetStatusBit(uint32_t bit, bool val=true){return event.SetStatusBit(bit, val);}
169 bool ClearStatusBit(uint32_t bit){return event.ClearStatusBit(bit);}
170 void ClearStatus(void){event.ClearStatus();}
171 void SetStatusBitDescription(uint32_t bit, string description){event.SetStatusBitDescription(bit, description);}
172 string GetStatusBitDescription(uint32_t bit){return event.GetStatusBitDescription(bit);}
173 void GetStatusBitDescriptions(map<uint32_t, string> &status_bit_descriptions){return event.GetStatusBitDescriptions(status_bit_descriptions);}
174 string StatusWordToString(void);
175
176 private:
177 JEvent event;
178 vector<JFactory_base*> factories;
179 vector<JEventProcessor*> processors;
180 vector<error_call_stack_t> error_call_stack;
181 vector<call_stack_t> call_stack;
182 JApplication *app;
183 JThread *jthread;
184 bool initialized;
185 bool print_parameters_called;
186 int pause;
187 int quit;
188 int auto_free;
189 pthread_t pthread_id;
190 map<string, string> default_tags;
191 vector<pair<string,string> > auto_activated_factories;
192 bool record_call_stack;
193 string caller_name;
194 string caller_tag;
195 vector<uint64_t> event_boundaries;
196 int32_t event_boundaries_run; ///< Run number boundaries were retrieved from (possbily 0)
197 list<uint64_t> next_events_to_process;
198
199 uint64_t Nevents; ///< Total events processed (this thread)
200 uint64_t Nevents_rate; ///< Num. events accumulated for "instantaneous" rate
201 double delta_time_single; ///< Time spent processing last event
202 double delta_time_rate; ///< Integrated time accumulated "instantaneous" rate (partial number of events)
203 double delta_time; ///< Total time spent processing events (this thread)
204 double rate_instantaneous; ///< Latest instantaneous rate
205 double rate_integrated; ///< Rate integrated over all events
206
207 static data_source_t null_data_source;
208
209 vector<pair<const char*, void*> > user_refs;
210};
211
212
213// The following is here just so we can use ROOT's THtml class to generate documentation.
214#ifdef G__DICTIONARY
215typedef JEventLoop::call_stack_t call_stack_t;
216typedef JEventLoop::error_call_stack_t error_call_stack_t;
217#endif
218
219#if !defined(__CINT__) && !defined(__CLING__)
220
221//-------------
222// GetSingle
223//-------------
224template<class T>
225JFactory<T>* JEventLoop::GetSingle(const T* &t, const char *tag, bool exception_if_not_one)
226{
227 /// This is a convenience method that can be used to get a pointer to the single
228 /// object of type T from the specified factory. It simply calls the Get(vector<...>) method
229 /// and copies the first pointer into "t" (or NULL if something other than 1 object is returned).
230 ///
231 /// This is intended to address the common situation in which there is an interest
232 /// in the event if and only if there is exactly 1 object of type T. If the event
233 /// has no objects of that type or more than 1 object of that type (for the specified
234 /// factory) then an exception of type "unsigned long" is thrown with the value
235 /// being the number of objects of type T. You can supress the exception by setting
236 /// exception_if_not_one to false. In that case, you will have to check if t==NULL to
237 /// know if the call succeeded.
238 vector<const T*> v;
239 JFactory<T> *fac = Get(v, tag);
240
241 if(v.size()!=1){
242 t = NULL__null;
243 if(exception_if_not_one) throw v.size();
244 }
245
246 t = v[0];
247
248 return fac;
249}
250
251//-------------
252// Get
253//-------------
254template<class T>
255JFactory<T>* JEventLoop::Get(vector<const T*> &t, const char *tag, bool allow_deftag)
256{
257 /// Retrieve or generate the array of objects of
258 /// type T for the curent event being processed
259 /// by this thread.
260 ///
261 /// By default, preference is given to reading the
262 /// objects from the data source(e.g. file) before generating
263 /// them in the factory. A flag exists in the factory
264 /// however to change this so that the factory is
265 /// given preference.
266 ///
267 /// Note that regardless of the setting of this flag,
268 /// the data are only either read in or generated once.
269 /// Ownership of the objects will always be with the
270 /// factory so subsequent calls will always return pointers to
271 /// the same data.
272 ///
273 /// If the factory is called on to generate the data,
274 /// it is done by calling the factory's Get() method
275 /// which, in turn, calls the evnt() method.
276 ///
277 /// First, we just call the GetFromFactory() method.
278 /// It will make the initial decision as to whether
279 /// it should look in the source first or not. If
280 /// it returns NULL, then the factory couldn't be
281 /// found so we automatically try the file.
282 ///
283 /// Note that if no factory exists to hold the objects
284 /// from the file, one can be created automatically
285 /// providing the <i>JANA:AUTOFACTORYCREATE</i>
286 /// configuration parameter is set.
287
288 // Check if a tag was specified for this data type to use for the
289 // default.
290 const char *mytag = tag
1.1
'tag' is not equal to NULL
1.1
'tag' is not equal to NULL
1.1
'tag' is not equal to NULL
==NULL__null ? "":tag; // protection against NULL tags
2
'?' condition is false
291 if(strlen(mytag)==0 && allow_deftag
2.1
'allow_deftag' is true
2.1
'allow_deftag' is true
2.1
'allow_deftag' is true
){
3
Taking true branch
292 map<string, string>::const_iterator iter = default_tags.find(T::static_className());
293 if(iter!=default_tags.end())tag = iter->second.c_str();
4
Assuming the condition is true
5
Taking true branch
6
Value assigned to 'tag'
294 }
295
296
297 // If we are trying to keep track of the call stack then we
298 // need to add a new call_stack_t object to the the list
299 // and initialize it with the start time and caller/callee
300 // info.
301 call_stack_t cs;
302
303 // Optionally record starting info of call stack entry
304 if(record_call_stack) CallStackStart(cs, caller_name, caller_tag, T::static_className(), tag);
7
Assuming field 'record_call_stack' is false
8
Taking false branch
305
306 // Get the data (or at least try to)
307 JFactory<T>* factory=NULL__null;
308 try{
309 factory = GetFromFactory(t, tag, cs.data_source, allow_deftag);
9
Passing value via 2nd parameter 'tag'
10
Calling 'JEventLoop::GetFromFactory'
310 if(!factory){
311 // No factory exists for this type and tag. It's possible
312 // that the source may be able to provide the objects
313 // but it will need a place to put them. We can create a
314 // dumb JFactory just to hold the data in case the source
315 // can provide the objects. Before we do though, make sure
316 // the user condones this via the presence of the
317 // "JANA:AUTOFACTORYCREATE" config parameter.
318 string p;
319 try{
320 gPARMS->GetParameter("JANA:AUTOFACTORYCREATE", p);
321 }catch(...){}
322 if(p.size()==0){
323 jout<<std::endl;
324 _DBG__std::cerr<<"/w/halld-scifs17exp/halld2/home/sdobbs/Software/jana/jana_0.8.2/Linux_CentOS7.7-x86_64-gcc4.8.5/include/JANA/JEventLoop.h"
<<":"<<324<<std::endl
;
325 jout<<"No factory of type \""<<T::static_className()<<"\" with tag \""<<tag<<"\" exists."<<std::endl;
326 jout<<"If you are reading objects from a file, I can auto-create a factory"<<std::endl;
327 jout<<"of the appropriate type to hold the objects, but this feature is turned"<<std::endl;
328 jout<<"off by default. To turn it on, set the \"JANA:AUTOFACTORYCREATE\""<<std::endl;
329 jout<<"configuration parameter. This can usually be done by passing the"<<std::endl;
330 jout<<"following argument to the program from the command line:"<<std::endl;
331 jout<<std::endl;
332 jout<<" -PJANA:AUTOFACTORYCREATE=1"<<std::endl;
333 jout<<std::endl;
334 jout<<"Note that since the most commonly expected occurance of this situation."<<std::endl;
335 jout<<"is an error, the program will now throw an exception so that the factory."<<std::endl;
336 jout<<"call stack can be printed."<<std::endl;
337 jout<<std::endl;
338 throw exception();
339 }else{
340 AddFactory(new JFactory<T>(tag));
341 jout<<__FILE__"/w/halld-scifs17exp/halld2/home/sdobbs/Software/jana/jana_0.8.2/Linux_CentOS7.7-x86_64-gcc4.8.5/include/JANA/JEventLoop.h"<<":"<<__LINE__341<<" Auto-created "<<T::static_className()<<":"<<tag<<" factory"<<std::endl;
342
343 // Now try once more. The GetFromFactory method will call
344 // GetFromSource since it's empty.
345 factory = GetFromFactory(t, tag, cs.data_source, allow_deftag);
346 }
347 }
348 }catch(exception &e){
349 // Uh-oh, an exception was thrown. Add us to the call stack
350 // and re-throw the exception
351 error_call_stack_t ecs;
352 ecs.factory_name = T::static_className();
353 ecs.tag = tag;
354 ecs.filename = NULL__null;
355 error_call_stack.push_back(ecs);
356 throw e;
357 }
358
359 // If recording the call stack, update the end_time field and add to stack
360 if(record_call_stack) CallStackEnd(cs);
361
362 return factory;
363}
364
365//-------------
366// GetFromFactory
367//-------------
368template<class T>
369JFactory<T>* JEventLoop::GetFromFactory(vector<const T*> &t, const char *tag, data_source_t &data_source, bool allow_deftag)
370{
371 // We need to find the factory providing data type T with
372 // tag given by "tag".
373 vector<JFactory_base*>::iterator iter=factories.begin();
374 JFactory<T> *factory = NULL__null;
375 string className(T::static_className());
376
377 // Check if a tag was specified for this data type to use for the
378 // default.
379 const char *mytag = tag==NULL__null ? "":tag; // protection against NULL tags
11
Assuming 'tag' is equal to NULL
12
Assuming pointer value is null
13
'?' condition is true
380 if(strlen(mytag)==0 && allow_deftag
13.1
'allow_deftag' is true
13.1
'allow_deftag' is true
13.1
'allow_deftag' is true
){
14
Taking true branch
381 map<string, string>::const_iterator iter = default_tags.find(className);
382 if(iter!=default_tags.end())tag = iter->second.c_str();
15
Assuming the condition is false
16
Taking false branch
383 }
384
385 for(; iter!=factories.end(); iter++){
17
Calling 'operator!=<jana::JFactory_base **, std::vector<jana::JFactory_base *>>'
20
Returning from 'operator!=<jana::JFactory_base **, std::vector<jana::JFactory_base *>>'
21
Loop condition is true. Entering loop body
386 // It turns out a long standing bug in g++ makes dynamic_cast return
387 // zero improperly when used on objects created on one side of
388 // a dynamically shared object (DSO) and the cast occurs on the
389 // other side. I saw bug reports ranging from 2001 to 2004. I saw
390 // saw it first-hand on LinuxEL4 using g++ 3.4.5. This is too bad
391 // since it is much more elegant (and safe) to use dynamic_cast.
392 // To avoid this problem which can occur with plugins, we check
393 // the name of the data classes are the same. (sigh)
394 //factory = dynamic_cast<JFactory<T> *>(*iter);
395 if(className == (*iter)->GetDataClassName())factory = (JFactory<T>*)(*iter);
22
Taking true branch
396 if(factory == NULL__null)continue;
23
Assuming 'factory' is not equal to NULL
24
Taking false branch
397 const char *factag = factory->Tag()==NULL__null ? "":factory->Tag();
25
Assuming the condition is true
26
'?' condition is true
398 if(!strcmp(factag, tag)){
27
Null pointer passed to 2nd parameter expecting 'nonnull'
399 break;
400 }else{
401 factory=NULL__null;
402 }
403 }
404
405 // If factory not found, just return now
406 if(!factory){
407 data_source = DATA_NOT_AVAILABLE;
408 return NULL__null;
409 }
410
411 // OK, we found the factory. If the evnt() routine has already
412 // been called, then just call the factory's Get() routine
413 // to return a copy of the existing data
414 if(factory->evnt_was_called()){
415 factory->CopyFrom(t);
416 data_source = DATA_FROM_CACHE;
417 return factory;
418 }
419
420 // Next option is to get the objects from the data source
421 if(factory->GetCheckSourceFirst()){
422 // If the object type/tag is found in the source, it
423 // will return NOERROR, even if there are zero instances
424 // of it. If it is not available in the source then it
425 // will return OBJECT_NOT_AVAILABLE.
426
427 jerror_t err = GetFromSource(t, factory);
428 if(err == NOERROR){
429 // A return value of NOERROR means the source had the objects
430 // even if there were zero of them.(If the source had no
431 // information about the objects OBJECT_NOT_AVAILABLE would
432 // have been returned.)
433 // The GetFromSource() call will eventually lead to a call to
434 // the GetObjects() method of the concrete class derived
435 // from JEventSource. That routine should copy the object
436 // pointers into the factory using the factory's CopyTo()
437 // method which also sets the evnt_called flag for the factory.
438 // Note also that the "t" vector is then filled with a call
439 // to the factory's CopyFrom() method in JEvent::GetObjects().
440 // All we need to do now is just set the factory pointers in
441 // the newly generated JObjects and return the factory pointer.
442
443 factory->SetFactoryPointers();
444 data_source = DATA_FROM_SOURCE;
445
446 return factory;
447 }
448 }
449
450 // OK. It looks like we have to have the factory make this.
451 // Get pointers to data from the factory.
452 factory->Get(t);
453 factory->SetFactoryPointers();
454 data_source = DATA_FROM_FACTORY;
455
456 return factory;
457}
458
459//-------------
460// GetFromSource
461//-------------
462template<class T>
463jerror_t JEventLoop::GetFromSource(vector<const T*> &t, JFactory_base *factory)
464{
465 /// This tries to get objects from the event source.
466 /// "factory" must be a valid pointer to a JFactory
467 /// object since that will take ownership of the objects
468 /// created by the source.
469 /// This should usually be called from JEventLoop::GetFromFactory
470 /// which is called from JEventLoop::Get. The latter will
471 /// create a dummy JFactory of the proper flavor and tag if
472 /// one does not already exist so if objects exist in the
473 /// file without a corresponding factory to create them, they
474 /// can still be used.
475 if(!factory)throw OBJECT_NOT_AVAILABLE;
476
477 return event.GetObjects(t, factory);
478}
479
480//-------------
481// CallStackStart
482//-------------
483inline void JEventLoop::CallStackStart(JEventLoop::call_stack_t &cs, const string &caller_name, const string &caller_tag, const string callee_name, const string callee_tag)
484{
485 /// This is used to fill initial info into a call_stack_t stucture
486 /// for recording the call stack. It should be matched with a call
487 /// to CallStackEnd. It is normally called from the Get() method
488 /// above, but may also be used by external actors to manipulate
489 /// the call stack (presumably for good and not evil).
490
491 struct itimerval tmr;
492 getitimer(ITIMER_PROFITIMER_PROF, &tmr);
493
494 cs.caller_name = this->caller_name;
495 cs.caller_tag = this->caller_tag;
496 this->caller_name = cs.callee_name = callee_name;
497 this->caller_tag = cs.callee_tag = callee_tag;
498 cs.start_time = tmr.it_value.tv_sec + tmr.it_value.tv_usec/1.0E6;
499}
500
501//-------------
502// CallStackEnd
503//-------------
504inline void JEventLoop::CallStackEnd(JEventLoop::call_stack_t &cs)
505{
506 /// Complete a call stack entry. This should be matched
507 /// with a previous call to CallStackStart which was
508 /// used to fill the cs structure.
509
510 struct itimerval tmr;
511 getitimer(ITIMER_PROFITIMER_PROF, &tmr);
512 cs.end_time = tmr.it_value.tv_sec + tmr.it_value.tv_usec/1.0E6;
513 caller_name = cs.caller_name;
514 caller_tag = cs.caller_tag;
515 call_stack.push_back(cs);
516}
517
518//-------------
519// CheckEventBoundary
520//-------------
521inline bool JEventLoop::CheckEventBoundary(uint64_t event_numberA, uint64_t event_numberB)
522{
523 /// Check whether the two event numbers span one or more boundaries
524 /// in the calibration/conditions database for the current run number.
525 /// Return true if they do and false if they don't. The first parameter
526 /// "event_numberA" is also checked if it lands on a boundary in which
527 /// case true is also returned. If event_numberB lands on a boundary,
528 /// but event_numberA does not, then false is returned.
529 ///
530 /// This method is not expected to be called by a user. It is, however called,
531 /// everytime a JFactory's Get() method is called.
532
533 // Make sure our copy of the boundaries is up to date
534 if(event.GetRunNumber()!=event_boundaries_run){
535 event_boundaries.clear(); // in case we can't get the JCalibration pointer
536 JCalibration *jcalib = GetJCalibration();
537 if(jcalib)jcalib->GetEventBoundaries(event_boundaries);
538 event_boundaries_run = event.GetRunNumber();
539 }
540
541 // Loop over boundaries
542 for(unsigned int i=0; i<event_boundaries.size(); i++){
543 uint64_t eb = event_boundaries[i];
544 if((eb - event_numberA)*(eb - event_numberB) < 0.0 || eb==event_numberA){ // think about it ....
545 // events span a boundary or is on a boundary. Return true
546 return true;
547 }
548 }
549
550 return false;
551}
552
553//-------------
554// FindByID
555//-------------
556template<class T>
557const T* JEventLoop::FindByID(JObject::oid_t id)
558{
559 /// This is a templated method that can be used in place
560 /// of the non-templated FindByID(oid_t) method if one knows
561 /// the class of the object with the specified id.
562 /// This method is faster than calling the non-templated
563 /// FindByID and dynamic_cast-ing the JObject since
564 /// this will only search the objects of factories that
565 /// produce the desired data type.
566 /// This method will cast the JObject pointer to one
567 /// of the specified type. To use this method,
568 /// a type is specified in the call as follows:
569 ///
570 /// const DMyType *t = loop->FindByID<DMyType>(id);
571
572 // Loop over factories looking for ones that provide
573 // specified data type.
574 for(unsigned int i=0; i<factories.size(); i++){
575 if(factories[i]->GetDataClassName() != T::static_className())continue;
576
577 // This factory provides data of type T. Search it for
578 // the object with the specified id.
579 const JObject *my_obj = factories[i]->GetByID(id);
580 if(my_obj)return dynamic_cast<const T*>(my_obj);
581 }
582
583 return NULL__null;
584}
585
586//-------------
587// GetCalib (map)
588//-------------
589template<class T>
590bool JEventLoop::GetCalib(string namepath, map<string,T> &vals)
591{
592 /// Get the JCalibration object from JApplication for the run number of
593 /// the current event and call its Get() method to get the constants.
594
595 // Note that we could do this by making "vals" a generic type T thus, combining
596 // this with the vector version below. However, doing this explicitly will make
597 // it easier for the user to understand how to call us.
598
599 vals.clear();
600
601 JCalibration *calib = GetJCalibration();
602 if(!calib){
603 _DBG_std::cerr<<"/w/halld-scifs17exp/halld2/home/sdobbs/Software/jana/jana_0.8.2/Linux_CentOS7.7-x86_64-gcc4.8.5/include/JANA/JEventLoop.h"
<<":"<<603<<" "
<<"Unable to get JCalibration object for run "<<event.GetRunNumber()<<std::endl;
604 return true;
605 }
606
607 return calib->Get(namepath, vals, event.GetEventNumber());
608}
609
610//-------------
611// GetCalib (vector)
612//-------------
613template<class T> bool JEventLoop::GetCalib(string namepath, vector<T> &vals)
614{
615 /// Get the JCalibration object from JApplication for the run number of
616 /// the current event and call its Get() method to get the constants.
617
618 vals.clear();
619
620 JCalibration *calib = GetJCalibration();
621 if(!calib){
622 _DBG_std::cerr<<"/w/halld-scifs17exp/halld2/home/sdobbs/Software/jana/jana_0.8.2/Linux_CentOS7.7-x86_64-gcc4.8.5/include/JANA/JEventLoop.h"
<<":"<<622<<" "
<<"Unable to get JCalibration object for run "<<event.GetRunNumber()<<std::endl;
623 return true;
624 }
625
626 return calib->Get(namepath, vals, event.GetEventNumber());
627}
628
629//-------------
630// GetCalib (single)
631//-------------
632template<class T> bool JEventLoop::GetCalib(string namepath, T &val)
633{
634 /// This is a convenience method for getting a single entry. It
635 /// simply calls the vector version and returns the first entry.
636 /// It returns true if the vector version returns true AND there
637 /// is at least one entry in the vector. No check is made for there
638 /// there being more than one entry in the vector.
639
640 vector<T> vals;
641 bool ret = GetCalib(namepath, vals);
642 if(vals.empty()) return true;
643 val = vals[0];
644
645 return ret;
646}
647
648//-------------
649// GetGeom (map)
650//-------------
651template<class T>
652bool JEventLoop::GetGeom(string namepath, map<string,T> &vals)
653{
654 /// Get the JGeometry object from JApplication for the run number of
655 /// the current event and call its Get() method to get the constants.
656
657 // Note that we could do this by making "vals" a generic type T thus, combining
658 // this with the vector version below. However, doing this explicitly will make
659 // it easier for the user to understand how to call us.
660
661 vals.clear();
662
663 JGeometry *geom = GetJGeometry();
664 if(!geom){
665 _DBG_std::cerr<<"/w/halld-scifs17exp/halld2/home/sdobbs/Software/jana/jana_0.8.2/Linux_CentOS7.7-x86_64-gcc4.8.5/include/JANA/JEventLoop.h"
<<":"<<665<<" "
<<"Unable to get JGeometry object for run "<<event.GetRunNumber()<<std::endl;
666 return true;
667 }
668
669 return geom->Get(namepath, vals);
670}
671
672//-------------
673// GetGeom (atomic)
674//-------------
675template<class T> bool JEventLoop::GetGeom(string namepath, T &val)
676{
677 /// Get the JCalibration object from JApplication for the run number of
678 /// the current event and call its Get() method to get the constants.
679
680 JGeometry *geom = GetJGeometry();
681 if(!geom){
682 _DBG_std::cerr<<"/w/halld-scifs17exp/halld2/home/sdobbs/Software/jana/jana_0.8.2/Linux_CentOS7.7-x86_64-gcc4.8.5/include/JANA/JEventLoop.h"
<<":"<<682<<" "
<<"Unable to get JGeometry object for run "<<event.GetRunNumber()<<std::endl;
683 return true;
684 }
685
686 return geom->Get(namepath, val);
687}
688
689//-------------
690// SetRef
691//-------------
692template<class T>
693void JEventLoop::SetRef(T *t)
694{
695 pair<const char*, void*> p(typeid(T).name(), (void*)t);
696 user_refs.push_back(p);
697}
698
699//-------------
700// GetResource
701//-------------
702template<class T> bool JEventLoop::GetResource(string namepath, T vals, int event_number)
703{
704 JResourceManager *resource_manager = GetJResourceManager();
705 if(!resource_manager){
706 string mess = string("Unable to get the JResourceManager object (namepath=\"")+namepath+"\")";
707 throw JException(mess);
708 }
709
710 return resource_manager->Get(namepath, vals, event_number);
711}
712
713//-------------
714// GetRef
715//-------------
716template<class T>
717T* JEventLoop::GetRef(void)
718{
719 /// Get a user-defined reference (a pointer)
720 for(unsigned int i=0; i<user_refs.size(); i++){
721 if(user_refs[i].first == typeid(T).name()) return (T*)user_refs[i].second;
722 }
723
724 return NULL__null;
725}
726
727//-------------
728// GetRefsT
729//-------------
730template<class T>
731vector<T*> JEventLoop::GetRefsT(void)
732{
733 vector<T*> refs;
734 for(unsigned int i=0; i<user_refs.size(); i++){
735 if(user_refs[i].first == typeid(T).name()){
736 refs.push_back((T*)user_refs[i].second);
737 }
738 }
739
740 return refs;
741}
742
743//-------------
744// RemoveRef
745//-------------
746template<class T>
747void JEventLoop::RemoveRef(T *t)
748{
749 vector<pair<const char*, void*> >::iterator iter;
750 for(iter=user_refs.begin(); iter!= user_refs.end(); iter++){
751 if(iter->second == (void*)t){
752 user_refs.erase(iter);
753 return;
754 }
755 }
756 _DBG_std::cerr<<"/w/halld-scifs17exp/halld2/home/sdobbs/Software/jana/jana_0.8.2/Linux_CentOS7.7-x86_64-gcc4.8.5/include/JANA/JEventLoop.h"
<<":"<<756<<" "
<<" Attempt to remove user reference not in event loop!" << std::endl;
757}
758
759
760#endif //__CINT__ __CLING__
761
762} // Close JANA namespace
763
764
765
766#endif // _JEventLoop_
767

/usr/lib/gcc/x86_64-redhat-linux/4.8.5/../../../../include/c++/4.8.5/bits/stl_iterator.h

1// Iterators -*- C++ -*-
2
3// Copyright (C) 2001-2013 Free Software Foundation, Inc.
4//
5// This file is part of the GNU ISO C++ Library. This library is free
6// software; you can redistribute it and/or modify it under the
7// terms of the GNU General Public License as published by the
8// Free Software Foundation; either version 3, or (at your option)
9// any later version.
10
11// This library is distributed in the hope that it will be useful,
12// but WITHOUT ANY WARRANTY; without even the implied warranty of
13// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14// GNU General Public License for more details.
15
16// Under Section 7 of GPL version 3, you are granted additional
17// permissions described in the GCC Runtime Library Exception, version
18// 3.1, as published by the Free Software Foundation.
19
20// You should have received a copy of the GNU General Public License and
21// a copy of the GCC Runtime Library Exception along with this program;
22// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
23// <http://www.gnu.org/licenses/>.
24
25/*
26 *
27 * Copyright (c) 1994
28 * Hewlett-Packard Company
29 *
30 * Permission to use, copy, modify, distribute and sell this software
31 * and its documentation for any purpose is hereby granted without fee,
32 * provided that the above copyright notice appear in all copies and
33 * that both that copyright notice and this permission notice appear
34 * in supporting documentation. Hewlett-Packard Company makes no
35 * representations about the suitability of this software for any
36 * purpose. It is provided "as is" without express or implied warranty.
37 *
38 *
39 * Copyright (c) 1996-1998
40 * Silicon Graphics Computer Systems, Inc.
41 *
42 * Permission to use, copy, modify, distribute and sell this software
43 * and its documentation for any purpose is hereby granted without fee,
44 * provided that the above copyright notice appear in all copies and
45 * that both that copyright notice and this permission notice appear
46 * in supporting documentation. Silicon Graphics makes no
47 * representations about the suitability of this software for any
48 * purpose. It is provided "as is" without express or implied warranty.
49 */
50
51/** @file bits/stl_iterator.h
52 * This is an internal header file, included by other library headers.
53 * Do not attempt to use it directly. @headername{iterator}
54 *
55 * This file implements reverse_iterator, back_insert_iterator,
56 * front_insert_iterator, insert_iterator, __normal_iterator, and their
57 * supporting functions and overloaded operators.
58 */
59
60#ifndef _STL_ITERATOR_H1
61#define _STL_ITERATOR_H1 1
62
63#include <bits/cpp_type_traits.h>
64#include <ext/type_traits.h>
65#include <bits/move.h>
66
67namespace std _GLIBCXX_VISIBILITY(default)__attribute__ ((__visibility__ ("default")))
68{
69_GLIBCXX_BEGIN_NAMESPACE_VERSION
70
71 /**
72 * @addtogroup iterators
73 * @{
74 */
75
76 // 24.4.1 Reverse iterators
77 /**
78 * Bidirectional and random access iterators have corresponding reverse
79 * %iterator adaptors that iterate through the data structure in the
80 * opposite direction. They have the same signatures as the corresponding
81 * iterators. The fundamental relation between a reverse %iterator and its
82 * corresponding %iterator @c i is established by the identity:
83 * @code
84 * &*(reverse_iterator(i)) == &*(i - 1)
85 * @endcode
86 *
87 * <em>This mapping is dictated by the fact that while there is always a
88 * pointer past the end of an array, there might not be a valid pointer
89 * before the beginning of an array.</em> [24.4.1]/1,2
90 *
91 * Reverse iterators can be tricky and surprising at first. Their
92 * semantics make sense, however, and the trickiness is a side effect of
93 * the requirement that the iterators must be safe.
94 */
95 template<typename _Iterator>
96 class reverse_iterator
97 : public iterator<typename iterator_traits<_Iterator>::iterator_category,
98 typename iterator_traits<_Iterator>::value_type,
99 typename iterator_traits<_Iterator>::difference_type,
100 typename iterator_traits<_Iterator>::pointer,
101 typename iterator_traits<_Iterator>::reference>
102 {
103 protected:
104 _Iterator current;
105
106 typedef iterator_traits<_Iterator> __traits_type;
107
108 public:
109 typedef _Iterator iterator_type;
110 typedef typename __traits_type::difference_type difference_type;
111 typedef typename __traits_type::pointer pointer;
112 typedef typename __traits_type::reference reference;
113
114 /**
115 * The default constructor value-initializes member @p current.
116 * If it is a pointer, that means it is zero-initialized.
117 */
118 // _GLIBCXX_RESOLVE_LIB_DEFECTS
119 // 235 No specification of default ctor for reverse_iterator
120 reverse_iterator() : current() { }
121
122 /**
123 * This %iterator will move in the opposite direction that @p x does.
124 */
125 explicit
126 reverse_iterator(iterator_type __x) : current(__x) { }
127
128 /**
129 * The copy constructor is normal.
130 */
131 reverse_iterator(const reverse_iterator& __x)
132 : current(__x.current) { }
133
134 /**
135 * A %reverse_iterator across other types can be copied if the
136 * underlying %iterator can be converted to the type of @c current.
137 */
138 template<typename _Iter>
139 reverse_iterator(const reverse_iterator<_Iter>& __x)
140 : current(__x.base()) { }
141
142 /**
143 * @return @c current, the %iterator used for underlying work.
144 */
145 iterator_type
146 base() const
147 { return current; }
148
149 /**
150 * @return A reference to the value at @c --current
151 *
152 * This requires that @c --current is dereferenceable.
153 *
154 * @warning This implementation requires that for an iterator of the
155 * underlying iterator type, @c x, a reference obtained by
156 * @c *x remains valid after @c x has been modified or
157 * destroyed. This is a bug: http://gcc.gnu.org/PR51823
158 */
159 reference
160 operator*() const
161 {
162 _Iterator __tmp = current;
163 return *--__tmp;
164 }
165
166 /**
167 * @return A pointer to the value at @c --current
168 *
169 * This requires that @c --current is dereferenceable.
170 */
171 pointer
172 operator->() const
173 { return &(operator*()); }
174
175 /**
176 * @return @c *this
177 *
178 * Decrements the underlying iterator.
179 */
180 reverse_iterator&
181 operator++()
182 {
183 --current;
184 return *this;
185 }
186
187 /**
188 * @return The original value of @c *this
189 *
190 * Decrements the underlying iterator.
191 */
192 reverse_iterator
193 operator++(int)
194 {
195 reverse_iterator __tmp = *this;
196 --current;
197 return __tmp;
198 }
199
200 /**
201 * @return @c *this
202 *
203 * Increments the underlying iterator.
204 */
205 reverse_iterator&
206 operator--()
207 {
208 ++current;
209 return *this;
210 }
211
212 /**
213 * @return A reverse_iterator with the previous value of @c *this
214 *
215 * Increments the underlying iterator.
216 */
217 reverse_iterator
218 operator--(int)
219 {
220 reverse_iterator __tmp = *this;
221 ++current;
222 return __tmp;
223 }
224
225 /**
226 * @return A reverse_iterator that refers to @c current - @a __n
227 *
228 * The underlying iterator must be a Random Access Iterator.
229 */
230 reverse_iterator
231 operator+(difference_type __n) const
232 { return reverse_iterator(current - __n); }
233
234 /**
235 * @return *this
236 *
237 * Moves the underlying iterator backwards @a __n steps.
238 * The underlying iterator must be a Random Access Iterator.
239 */
240 reverse_iterator&
241 operator+=(difference_type __n)
242 {
243 current -= __n;
244 return *this;
245 }
246
247 /**
248 * @return A reverse_iterator that refers to @c current - @a __n
249 *
250 * The underlying iterator must be a Random Access Iterator.
251 */
252 reverse_iterator
253 operator-(difference_type __n) const
254 { return reverse_iterator(current + __n); }
255
256 /**
257 * @return *this
258 *
259 * Moves the underlying iterator forwards @a __n steps.
260 * The underlying iterator must be a Random Access Iterator.
261 */
262 reverse_iterator&
263 operator-=(difference_type __n)
264 {
265 current += __n;
266 return *this;
267 }
268
269 /**
270 * @return The value at @c current - @a __n - 1
271 *
272 * The underlying iterator must be a Random Access Iterator.
273 */
274 reference
275 operator[](difference_type __n) const
276 { return *(*this + __n); }
277 };
278
279 //@{
280 /**
281 * @param __x A %reverse_iterator.
282 * @param __y A %reverse_iterator.
283 * @return A simple bool.
284 *
285 * Reverse iterators forward many operations to their underlying base()
286 * iterators. Others are implemented in terms of one another.
287 *
288 */
289 template<typename _Iterator>
290 inline bool
291 operator==(const reverse_iterator<_Iterator>& __x,
292 const reverse_iterator<_Iterator>& __y)
293 { return __x.base() == __y.base(); }
294
295 template<typename _Iterator>
296 inline bool
297 operator<(const reverse_iterator<_Iterator>& __x,
298 const reverse_iterator<_Iterator>& __y)
299 { return __y.base() < __x.base(); }
300
301 template<typename _Iterator>
302 inline bool
303 operator!=(const reverse_iterator<_Iterator>& __x,
304 const reverse_iterator<_Iterator>& __y)
305 { return !(__x == __y); }
306
307 template<typename _Iterator>
308 inline bool
309 operator>(const reverse_iterator<_Iterator>& __x,
310 const reverse_iterator<_Iterator>& __y)
311 { return __y < __x; }
312
313 template<typename _Iterator>
314 inline bool
315 operator<=(const reverse_iterator<_Iterator>& __x,
316 const reverse_iterator<_Iterator>& __y)
317 { return !(__y < __x); }
318
319 template<typename _Iterator>
320 inline bool
321 operator>=(const reverse_iterator<_Iterator>& __x,
322 const reverse_iterator<_Iterator>& __y)
323 { return !(__x < __y); }
324
325 template<typename _Iterator>
326 inline typename reverse_iterator<_Iterator>::difference_type
327 operator-(const reverse_iterator<_Iterator>& __x,
328 const reverse_iterator<_Iterator>& __y)
329 { return __y.base() - __x.base(); }
330
331 template<typename _Iterator>
332 inline reverse_iterator<_Iterator>
333 operator+(typename reverse_iterator<_Iterator>::difference_type __n,
334 const reverse_iterator<_Iterator>& __x)
335 { return reverse_iterator<_Iterator>(__x.base() - __n); }
336
337 // _GLIBCXX_RESOLVE_LIB_DEFECTS
338 // DR 280. Comparison of reverse_iterator to const reverse_iterator.
339 template<typename _IteratorL, typename _IteratorR>
340 inline bool
341 operator==(const reverse_iterator<_IteratorL>& __x,
342 const reverse_iterator<_IteratorR>& __y)
343 { return __x.base() == __y.base(); }
344
345 template<typename _IteratorL, typename _IteratorR>
346 inline bool
347 operator<(const reverse_iterator<_IteratorL>& __x,
348 const reverse_iterator<_IteratorR>& __y)
349 { return __y.base() < __x.base(); }
350
351 template<typename _IteratorL, typename _IteratorR>
352 inline bool
353 operator!=(const reverse_iterator<_IteratorL>& __x,
354 const reverse_iterator<_IteratorR>& __y)
355 { return !(__x == __y); }
356
357 template<typename _IteratorL, typename _IteratorR>
358 inline bool
359 operator>(const reverse_iterator<_IteratorL>& __x,
360 const reverse_iterator<_IteratorR>& __y)
361 { return __y < __x; }
362
363 template<typename _IteratorL, typename _IteratorR>
364 inline bool
365 operator<=(const reverse_iterator<_IteratorL>& __x,
366 const reverse_iterator<_IteratorR>& __y)
367 { return !(__y < __x); }
368
369 template<typename _IteratorL, typename _IteratorR>
370 inline bool
371 operator>=(const reverse_iterator<_IteratorL>& __x,
372 const reverse_iterator<_IteratorR>& __y)
373 { return !(__x < __y); }
374
375 template<typename _IteratorL, typename _IteratorR>
376#if __cplusplus201103L >= 201103L
377 // DR 685.
378 inline auto
379 operator-(const reverse_iterator<_IteratorL>& __x,
380 const reverse_iterator<_IteratorR>& __y)
381 -> decltype(__y.base() - __x.base())
382#else
383 inline typename reverse_iterator<_IteratorL>::difference_type
384 operator-(const reverse_iterator<_IteratorL>& __x,
385 const reverse_iterator<_IteratorR>& __y)
386#endif
387 { return __y.base() - __x.base(); }
388 //@}
389
390 // 24.4.2.2.1 back_insert_iterator
391 /**
392 * @brief Turns assignment into insertion.
393 *
394 * These are output iterators, constructed from a container-of-T.
395 * Assigning a T to the iterator appends it to the container using
396 * push_back.
397 *
398 * Tip: Using the back_inserter function to create these iterators can
399 * save typing.
400 */
401 template<typename _Container>
402 class back_insert_iterator
403 : public iterator<output_iterator_tag, void, void, void, void>
404 {
405 protected:
406 _Container* container;
407
408 public:
409 /// A nested typedef for the type of whatever container you used.
410 typedef _Container container_type;
411
412 /// The only way to create this %iterator is with a container.
413 explicit
414 back_insert_iterator(_Container& __x) : container(&__x) { }
415
416 /**
417 * @param __value An instance of whatever type
418 * container_type::const_reference is; presumably a
419 * reference-to-const T for container<T>.
420 * @return This %iterator, for chained operations.
421 *
422 * This kind of %iterator doesn't really have a @a position in the
423 * container (you can think of the position as being permanently at
424 * the end, if you like). Assigning a value to the %iterator will
425 * always append the value to the end of the container.
426 */
427#if __cplusplus201103L < 201103L
428 back_insert_iterator&
429 operator=(typename _Container::const_reference __value)
430 {
431 container->push_back(__value);
432 return *this;
433 }
434#else
435 back_insert_iterator&
436 operator=(const typename _Container::value_type& __value)
437 {
438 container->push_back(__value);
439 return *this;
440 }
441
442 back_insert_iterator&
443 operator=(typename _Container::value_type&& __value)
444 {
445 container->push_back(std::move(__value));
446 return *this;
447 }
448#endif
449
450 /// Simply returns *this.
451 back_insert_iterator&
452 operator*()
453 { return *this; }
454
455 /// Simply returns *this. (This %iterator does not @a move.)
456 back_insert_iterator&
457 operator++()
458 { return *this; }
459
460 /// Simply returns *this. (This %iterator does not @a move.)
461 back_insert_iterator
462 operator++(int)
463 { return *this; }
464 };
465
466 /**
467 * @param __x A container of arbitrary type.
468 * @return An instance of back_insert_iterator working on @p __x.
469 *
470 * This wrapper function helps in creating back_insert_iterator instances.
471 * Typing the name of the %iterator requires knowing the precise full
472 * type of the container, which can be tedious and impedes generic
473 * programming. Using this function lets you take advantage of automatic
474 * template parameter deduction, making the compiler match the correct
475 * types for you.
476 */
477 template<typename _Container>
478 inline back_insert_iterator<_Container>
479 back_inserter(_Container& __x)
480 { return back_insert_iterator<_Container>(__x); }
481
482 /**
483 * @brief Turns assignment into insertion.
484 *
485 * These are output iterators, constructed from a container-of-T.
486 * Assigning a T to the iterator prepends it to the container using
487 * push_front.
488 *
489 * Tip: Using the front_inserter function to create these iterators can
490 * save typing.
491 */
492 template<typename _Container>
493 class front_insert_iterator
494 : public iterator<output_iterator_tag, void, void, void, void>
495 {
496 protected:
497 _Container* container;
498
499 public:
500 /// A nested typedef for the type of whatever container you used.
501 typedef _Container container_type;
502
503 /// The only way to create this %iterator is with a container.
504 explicit front_insert_iterator(_Container& __x) : container(&__x) { }
505
506 /**
507 * @param __value An instance of whatever type
508 * container_type::const_reference is; presumably a
509 * reference-to-const T for container<T>.
510 * @return This %iterator, for chained operations.
511 *
512 * This kind of %iterator doesn't really have a @a position in the
513 * container (you can think of the position as being permanently at
514 * the front, if you like). Assigning a value to the %iterator will
515 * always prepend the value to the front of the container.
516 */
517#if __cplusplus201103L < 201103L
518 front_insert_iterator&
519 operator=(typename _Container::const_reference __value)
520 {
521 container->push_front(__value);
522 return *this;
523 }
524#else
525 front_insert_iterator&
526 operator=(const typename _Container::value_type& __value)
527 {
528 container->push_front(__value);
529 return *this;
530 }
531
532 front_insert_iterator&
533 operator=(typename _Container::value_type&& __value)
534 {
535 container->push_front(std::move(__value));
536 return *this;
537 }
538#endif
539
540 /// Simply returns *this.
541 front_insert_iterator&
542 operator*()
543 { return *this; }
544
545 /// Simply returns *this. (This %iterator does not @a move.)
546 front_insert_iterator&
547 operator++()
548 { return *this; }
549
550 /// Simply returns *this. (This %iterator does not @a move.)
551 front_insert_iterator
552 operator++(int)
553 { return *this; }
554 };
555
556 /**
557 * @param __x A container of arbitrary type.
558 * @return An instance of front_insert_iterator working on @p x.
559 *
560 * This wrapper function helps in creating front_insert_iterator instances.
561 * Typing the name of the %iterator requires knowing the precise full
562 * type of the container, which can be tedious and impedes generic
563 * programming. Using this function lets you take advantage of automatic
564 * template parameter deduction, making the compiler match the correct
565 * types for you.
566 */
567 template<typename _Container>
568 inline front_insert_iterator<_Container>
569 front_inserter(_Container& __x)
570 { return front_insert_iterator<_Container>(__x); }
571
572 /**
573 * @brief Turns assignment into insertion.
574 *
575 * These are output iterators, constructed from a container-of-T.
576 * Assigning a T to the iterator inserts it in the container at the
577 * %iterator's position, rather than overwriting the value at that
578 * position.
579 *
580 * (Sequences will actually insert a @e copy of the value before the
581 * %iterator's position.)
582 *
583 * Tip: Using the inserter function to create these iterators can
584 * save typing.
585 */
586 template<typename _Container>
587 class insert_iterator
588 : public iterator<output_iterator_tag, void, void, void, void>
589 {
590 protected:
591 _Container* container;
592 typename _Container::iterator iter;
593
594 public:
595 /// A nested typedef for the type of whatever container you used.
596 typedef _Container container_type;
597
598 /**
599 * The only way to create this %iterator is with a container and an
600 * initial position (a normal %iterator into the container).
601 */
602 insert_iterator(_Container& __x, typename _Container::iterator __i)
603 : container(&__x), iter(__i) {}
604
605 /**
606 * @param __value An instance of whatever type
607 * container_type::const_reference is; presumably a
608 * reference-to-const T for container<T>.
609 * @return This %iterator, for chained operations.
610 *
611 * This kind of %iterator maintains its own position in the
612 * container. Assigning a value to the %iterator will insert the
613 * value into the container at the place before the %iterator.
614 *
615 * The position is maintained such that subsequent assignments will
616 * insert values immediately after one another. For example,
617 * @code
618 * // vector v contains A and Z
619 *
620 * insert_iterator i (v, ++v.begin());
621 * i = 1;
622 * i = 2;
623 * i = 3;
624 *
625 * // vector v contains A, 1, 2, 3, and Z
626 * @endcode
627 */
628#if __cplusplus201103L < 201103L
629 insert_iterator&
630 operator=(typename _Container::const_reference __value)
631 {
632 iter = container->insert(iter, __value);
633 ++iter;
634 return *this;
635 }
636#else
637 insert_iterator&
638 operator=(const typename _Container::value_type& __value)
639 {
640 iter = container->insert(iter, __value);
641 ++iter;
642 return *this;
643 }
644
645 insert_iterator&
646 operator=(typename _Container::value_type&& __value)
647 {
648 iter = container->insert(iter, std::move(__value));
649 ++iter;
650 return *this;
651 }
652#endif
653
654 /// Simply returns *this.
655 insert_iterator&
656 operator*()
657 { return *this; }
658
659 /// Simply returns *this. (This %iterator does not @a move.)
660 insert_iterator&
661 operator++()
662 { return *this; }
663
664 /// Simply returns *this. (This %iterator does not @a move.)
665 insert_iterator&
666 operator++(int)
667 { return *this; }
668 };
669
670 /**
671 * @param __x A container of arbitrary type.
672 * @return An instance of insert_iterator working on @p __x.
673 *
674 * This wrapper function helps in creating insert_iterator instances.
675 * Typing the name of the %iterator requires knowing the precise full
676 * type of the container, which can be tedious and impedes generic
677 * programming. Using this function lets you take advantage of automatic
678 * template parameter deduction, making the compiler match the correct
679 * types for you.
680 */
681 template<typename _Container, typename _Iterator>
682 inline insert_iterator<_Container>
683 inserter(_Container& __x, _Iterator __i)
684 {
685 return insert_iterator<_Container>(__x,
686 typename _Container::iterator(__i));
687 }
688
689 // @} group iterators
690
691_GLIBCXX_END_NAMESPACE_VERSION
692} // namespace
693
694namespace __gnu_cxx _GLIBCXX_VISIBILITY(default)__attribute__ ((__visibility__ ("default")))
695{
696_GLIBCXX_BEGIN_NAMESPACE_VERSION
697
698 // This iterator adapter is @a normal in the sense that it does not
699 // change the semantics of any of the operators of its iterator
700 // parameter. Its primary purpose is to convert an iterator that is
701 // not a class, e.g. a pointer, into an iterator that is a class.
702 // The _Container parameter exists solely so that different containers
703 // using this template can instantiate different types, even if the
704 // _Iterator parameter is the same.
705 using std::iterator_traits;
706 using std::iterator;
707 template<typename _Iterator, typename _Container>
708 class __normal_iterator
709 {
710 protected:
711 _Iterator _M_current;
712
713 typedef iterator_traits<_Iterator> __traits_type;
714
715 public:
716 typedef _Iterator iterator_type;
717 typedef typename __traits_type::iterator_category iterator_category;
718 typedef typename __traits_type::value_type value_type;
719 typedef typename __traits_type::difference_type difference_type;
720 typedef typename __traits_type::reference reference;
721 typedef typename __traits_type::pointer pointer;
722
723 _GLIBCXX_CONSTEXPRconstexpr __normal_iterator() : _M_current(_Iterator()) { }
724
725 explicit
726 __normal_iterator(const _Iterator& __i) : _M_current(__i) { }
727
728 // Allow iterator to const_iterator conversion
729 template<typename _Iter>
730 __normal_iterator(const __normal_iterator<_Iter,
731 typename __enable_if<
732 (std::__are_same<_Iter, typename _Container::pointer>::__value),
733 _Container>::__type>& __i)
734 : _M_current(__i.base()) { }
735
736 // Forward iterator requirements
737 reference
738 operator*() const
739 { return *_M_current; }
740
741 pointer
742 operator->() const
743 { return _M_current; }
744
745 __normal_iterator&
746 operator++()
747 {
748 ++_M_current;
749 return *this;
750 }
751
752 __normal_iterator
753 operator++(int)
754 { return __normal_iterator(_M_current++); }
755
756 // Bidirectional iterator requirements
757 __normal_iterator&
758 operator--()
759 {
760 --_M_current;
761 return *this;
762 }
763
764 __normal_iterator
765 operator--(int)
766 { return __normal_iterator(_M_current--); }
767
768 // Random access iterator requirements
769 reference
770 operator[](const difference_type& __n) const
771 { return _M_current[__n]; }
772
773 __normal_iterator&
774 operator+=(const difference_type& __n)
775 { _M_current += __n; return *this; }
776
777 __normal_iterator
778 operator+(const difference_type& __n) const
779 { return __normal_iterator(_M_current + __n); }
780
781 __normal_iterator&
782 operator-=(const difference_type& __n)
783 { _M_current -= __n; return *this; }
784
785 __normal_iterator
786 operator-(const difference_type& __n) const
787 { return __normal_iterator(_M_current - __n); }
788
789 const _Iterator&
790 base() const
791 { return _M_current; }
792 };
793
794 // Note: In what follows, the left- and right-hand-side iterators are
795 // allowed to vary in types (conceptually in cv-qualification) so that
796 // comparison between cv-qualified and non-cv-qualified iterators be
797 // valid. However, the greedy and unfriendly operators in std::rel_ops
798 // will make overload resolution ambiguous (when in scope) if we don't
799 // provide overloads whose operands are of the same type. Can someone
800 // remind me what generic programming is about? -- Gaby
801
802 // Forward iterator requirements
803 template<typename _IteratorL, typename _IteratorR, typename _Container>
804 inline bool
805 operator==(const __normal_iterator<_IteratorL, _Container>& __lhs,
806 const __normal_iterator<_IteratorR, _Container>& __rhs)
807 { return __lhs.base() == __rhs.base(); }
808
809 template<typename _Iterator, typename _Container>
810 inline bool
811 operator==(const __normal_iterator<_Iterator, _Container>& __lhs,
812 const __normal_iterator<_Iterator, _Container>& __rhs)
813 { return __lhs.base() == __rhs.base(); }
814
815 template<typename _IteratorL, typename _IteratorR, typename _Container>
816 inline bool
817 operator!=(const __normal_iterator<_IteratorL, _Container>& __lhs,
818 const __normal_iterator<_IteratorR, _Container>& __rhs)
819 { return __lhs.base() != __rhs.base(); }
820
821 template<typename _Iterator, typename _Container>
822 inline bool
823 operator!=(const __normal_iterator<_Iterator, _Container>& __lhs,
824 const __normal_iterator<_Iterator, _Container>& __rhs)
825 { return __lhs.base() != __rhs.base(); }
18
Assuming the condition is true
19
Returning the value 1, which participates in a condition later
826
827 // Random access iterator requirements
828 template<typename _IteratorL, typename _IteratorR, typename _Container>
829 inline bool
830 operator<(const __normal_iterator<_IteratorL, _Container>& __lhs,
831 const __normal_iterator<_IteratorR, _Container>& __rhs)
832 { return __lhs.base() < __rhs.base(); }
833
834 template<typename _Iterator, typename _Container>
835 inline bool
836 operator<(const __normal_iterator<_Iterator, _Container>& __lhs,
837 const __normal_iterator<_Iterator, _Container>& __rhs)
838 { return __lhs.base() < __rhs.base(); }
839
840 template<typename _IteratorL, typename _IteratorR, typename _Container>
841 inline bool
842 operator>(const __normal_iterator<_IteratorL, _Container>& __lhs,
843 const __normal_iterator<_IteratorR, _Container>& __rhs)
844 { return __lhs.base() > __rhs.base(); }
845
846 template<typename _Iterator, typename _Container>
847 inline bool
848 operator>(const __normal_iterator<_Iterator, _Container>& __lhs,
849 const __normal_iterator<_Iterator, _Container>& __rhs)
850 { return __lhs.base() > __rhs.base(); }
851
852 template<typename _IteratorL, typename _IteratorR, typename _Container>
853 inline bool
854 operator<=(const __normal_iterator<_IteratorL, _Container>& __lhs,
855 const __normal_iterator<_IteratorR, _Container>& __rhs)
856 { return __lhs.base() <= __rhs.base(); }
857
858 template<typename _Iterator, typename _Container>
859 inline bool
860 operator<=(const __normal_iterator<_Iterator, _Container>& __lhs,
861 const __normal_iterator<_Iterator, _Container>& __rhs)
862 { return __lhs.base() <= __rhs.base(); }
863
864 template<typename _IteratorL, typename _IteratorR, typename _Container>
865 inline bool
866 operator>=(const __normal_iterator<_IteratorL, _Container>& __lhs,
867 const __normal_iterator<_IteratorR, _Container>& __rhs)
868 { return __lhs.base() >= __rhs.base(); }
869
870 template<typename _Iterator, typename _Container>
871 inline bool
872 operator>=(const __normal_iterator<_Iterator, _Container>& __lhs,
873 const __normal_iterator<_Iterator, _Container>& __rhs)
874 { return __lhs.base() >= __rhs.base(); }
875
876 // _GLIBCXX_RESOLVE_LIB_DEFECTS
877 // According to the resolution of DR179 not only the various comparison
878 // operators but also operator- must accept mixed iterator/const_iterator
879 // parameters.
880 template<typename _IteratorL, typename _IteratorR, typename _Container>
881#if __cplusplus201103L >= 201103L
882 // DR 685.
883 inline auto
884 operator-(const __normal_iterator<_IteratorL, _Container>& __lhs,
885 const __normal_iterator<_IteratorR, _Container>& __rhs)
886 -> decltype(__lhs.base() - __rhs.base())
887#else
888 inline typename __normal_iterator<_IteratorL, _Container>::difference_type
889 operator-(const __normal_iterator<_IteratorL, _Container>& __lhs,
890 const __normal_iterator<_IteratorR, _Container>& __rhs)
891#endif
892 { return __lhs.base() - __rhs.base(); }
893
894 template<typename _Iterator, typename _Container>
895 inline typename __normal_iterator<_Iterator, _Container>::difference_type
896 operator-(const __normal_iterator<_Iterator, _Container>& __lhs,
897 const __normal_iterator<_Iterator, _Container>& __rhs)
898 { return __lhs.base() - __rhs.base(); }
899
900 template<typename _Iterator, typename _Container>
901 inline __normal_iterator<_Iterator, _Container>
902 operator+(typename __normal_iterator<_Iterator, _Container>::difference_type
903 __n, const __normal_iterator<_Iterator, _Container>& __i)
904 { return __normal_iterator<_Iterator, _Container>(__i.base() + __n); }
905
906_GLIBCXX_END_NAMESPACE_VERSION
907} // namespace
908
909#if __cplusplus201103L >= 201103L
910
911namespace std _GLIBCXX_VISIBILITY(default)__attribute__ ((__visibility__ ("default")))
912{
913_GLIBCXX_BEGIN_NAMESPACE_VERSION
914
915 /**
916 * @addtogroup iterators
917 * @{
918 */
919
920 // 24.4.3 Move iterators
921 /**
922 * Class template move_iterator is an iterator adapter with the same
923 * behavior as the underlying iterator except that its dereference
924 * operator implicitly converts the value returned by the underlying
925 * iterator's dereference operator to an rvalue reference. Some
926 * generic algorithms can be called with move iterators to replace
927 * copying with moving.
928 */
929 template<typename _Iterator>
930 class move_iterator
931 {
932 protected:
933 _Iterator _M_current;
934
935 typedef iterator_traits<_Iterator> __traits_type;
936
937 public:
938 typedef _Iterator iterator_type;
939 typedef typename __traits_type::iterator_category iterator_category;
940 typedef typename __traits_type::value_type value_type;
941 typedef typename __traits_type::difference_type difference_type;
942 // NB: DR 680.
943 typedef _Iterator pointer;
944 typedef value_type&& reference;
945
946 move_iterator()
947 : _M_current() { }
948
949 explicit
950 move_iterator(iterator_type __i)
951 : _M_current(__i) { }
952
953 template<typename _Iter>
954 move_iterator(const move_iterator<_Iter>& __i)
955 : _M_current(__i.base()) { }
956
957 iterator_type
958 base() const
959 { return _M_current; }
960
961 reference
962 operator*() const
963 { return std::move(*_M_current); }
964
965 pointer
966 operator->() const
967 { return _M_current; }
968
969 move_iterator&
970 operator++()
971 {
972 ++_M_current;
973 return *this;
974 }
975
976 move_iterator
977 operator++(int)
978 {
979 move_iterator __tmp = *this;
980 ++_M_current;
981 return __tmp;
982 }
983
984 move_iterator&
985 operator--()
986 {
987 --_M_current;
988 return *this;
989 }
990
991 move_iterator
992 operator--(int)
993 {
994 move_iterator __tmp = *this;
995 --_M_current;
996 return __tmp;
997 }
998
999 move_iterator
1000 operator+(difference_type __n) const
1001 { return move_iterator(_M_current + __n); }
1002
1003 move_iterator&
1004 operator+=(difference_type __n)
1005 {
1006 _M_current += __n;
1007 return *this;
1008 }
1009
1010 move_iterator
1011 operator-(difference_type __n) const
1012 { return move_iterator(_M_current - __n); }
1013
1014 move_iterator&
1015 operator-=(difference_type __n)
1016 {
1017 _M_current -= __n;
1018 return *this;
1019 }
1020
1021 reference
1022 operator[](difference_type __n) const
1023 { return std::move(_M_current[__n]); }
1024 };
1025
1026 // Note: See __normal_iterator operators note from Gaby to understand
1027 // why there are always 2 versions for most of the move_iterator
1028 // operators.
1029 template<typename _IteratorL, typename _IteratorR>
1030 inline bool
1031 operator==(const move_iterator<_IteratorL>& __x,
1032 const move_iterator<_IteratorR>& __y)
1033 { return __x.base() == __y.base(); }
1034
1035 template<typename _Iterator>
1036 inline bool
1037 operator==(const move_iterator<_Iterator>& __x,
1038 const move_iterator<_Iterator>& __y)
1039 { return __x.base() == __y.base(); }
1040
1041 template<typename _IteratorL, typename _IteratorR>
1042 inline bool
1043 operator!=(const move_iterator<_IteratorL>& __x,
1044 const move_iterator<_IteratorR>& __y)
1045 { return !(__x == __y); }
1046
1047 template<typename _Iterator>
1048 inline bool
1049 operator!=(const move_iterator<_Iterator>& __x,
1050 const move_iterator<_Iterator>& __y)
1051 { return !(__x == __y); }
1052
1053 template<typename _IteratorL, typename _IteratorR>
1054 inline bool
1055 operator<(const move_iterator<_IteratorL>& __x,
1056 const move_iterator<_IteratorR>& __y)
1057 { return __x.base() < __y.base(); }
1058
1059 template<typename _Iterator>
1060 inline bool
1061 operator<(const move_iterator<_Iterator>& __x,
1062 const move_iterator<_Iterator>& __y)
1063 { return __x.base() < __y.base(); }
1064
1065 template<typename _IteratorL, typename _IteratorR>
1066 inline bool
1067 operator<=(const move_iterator<_IteratorL>& __x,
1068 const move_iterator<_IteratorR>& __y)
1069 { return !(__y < __x); }
1070
1071 template<typename _Iterator>
1072 inline bool
1073 operator<=(const move_iterator<_Iterator>& __x,
1074 const move_iterator<_Iterator>& __y)
1075 { return !(__y < __x); }
1076
1077 template<typename _IteratorL, typename _IteratorR>
1078 inline bool
1079 operator>(const move_iterator<_IteratorL>& __x,
1080 const move_iterator<_IteratorR>& __y)
1081 { return __y < __x; }
1082
1083 template<typename _Iterator>
1084 inline bool
1085 operator>(const move_iterator<_Iterator>& __x,
1086 const move_iterator<_Iterator>& __y)
1087 { return __y < __x; }
1088
1089 template<typename _IteratorL, typename _IteratorR>
1090 inline bool
1091 operator>=(const move_iterator<_IteratorL>& __x,
1092 const move_iterator<_IteratorR>& __y)
1093 { return !(__x < __y); }
1094
1095 template<typename _Iterator>
1096 inline bool
1097 operator>=(const move_iterator<_Iterator>& __x,
1098 const move_iterator<_Iterator>& __y)
1099 { return !(__x < __y); }
1100
1101 // DR 685.
1102 template<typename _IteratorL, typename _IteratorR>
1103 inline auto
1104 operator-(const move_iterator<_IteratorL>& __x,
1105 const move_iterator<_IteratorR>& __y)
1106 -> decltype(__x.base() - __y.base())
1107 { return __x.base() - __y.base(); }
1108
1109 template<typename _Iterator>
1110 inline auto
1111 operator-(const move_iterator<_Iterator>& __x,
1112 const move_iterator<_Iterator>& __y)
1113 -> decltype(__x.base() - __y.base())
1114 { return __x.base() - __y.base(); }
1115
1116 template<typename _Iterator>
1117 inline move_iterator<_Iterator>
1118 operator+(typename move_iterator<_Iterator>::difference_type __n,
1119 const move_iterator<_Iterator>& __x)
1120 { return __x + __n; }
1121
1122 template<typename _Iterator>
1123 inline move_iterator<_Iterator>
1124 make_move_iterator(_Iterator __i)
1125 { return move_iterator<_Iterator>(__i); }
1126
1127 template<typename _Iterator, typename _ReturnType
1128 = typename conditional<__move_if_noexcept_cond
1129 <typename iterator_traits<_Iterator>::value_type>::value,
1130 _Iterator, move_iterator<_Iterator>>::type>
1131 inline _ReturnType
1132 __make_move_if_noexcept_iterator(_Iterator __i)
1133 { return _ReturnType(__i); }
1134
1135 // @} group iterators
1136
1137_GLIBCXX_END_NAMESPACE_VERSION
1138} // namespace
1139
1140#define _GLIBCXX_MAKE_MOVE_ITERATOR(_Iter)std::make_move_iterator(_Iter) std::make_move_iterator(_Iter)
1141#define _GLIBCXX_MAKE_MOVE_IF_NOEXCEPT_ITERATOR(_Iter)std::__make_move_if_noexcept_iterator(_Iter) \
1142 std::__make_move_if_noexcept_iterator(_Iter)
1143#else
1144#define _GLIBCXX_MAKE_MOVE_ITERATOR(_Iter)std::make_move_iterator(_Iter) (_Iter)
1145#define _GLIBCXX_MAKE_MOVE_IF_NOEXCEPT_ITERATOR(_Iter)std::__make_move_if_noexcept_iterator(_Iter) (_Iter)
1146#endif // C++11
1147
1148#endif