Bug Summary

File:alld2/home/sdobbs/Software/jana/jana_0.8.2/Linux_CentOS7.7-x86_64-gcc4.8.5/include/JANA/JEventLoop.h
Warning:line 398, column 7
Null pointer passed to 2nd parameter expecting 'nonnull'

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-unknown-linux-gnu -analyze -disable-free -main-file-name DSourceComboVertexer.cc -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -mrelocation-model pic -pic-level 2 -fhalf-no-semantic-interposition -mframe-pointer=none -fmath-errno -fno-rounding-math -mconstructor-aliases -munwind-tables -target-cpu x86-64 -tune-cpu generic -fno-split-dwarf-inlining -debugger-tuning=gdb -resource-dir /w/halld-scifs17exp/home/sdobbs/clang/llvm-project/install/lib/clang/12.0.0 -D HAVE_CCDB -D HAVE_RCDB -D HAVE_EVIO -D HAVE_TMVA=1 -D RCDB_MYSQL=1 -D RCDB_SQLITE=1 -D SQLITE_USE_LEGACY_STRUCT=ON -I .Linux_CentOS7.7-x86_64-gcc4.8.5/libraries/ANALYSIS -I libraries/ANALYSIS -I . -I libraries -I libraries/include -I /w/halld-scifs17exp/home/sdobbs/clang/halld_recon/Linux_CentOS7.7-x86_64-gcc4.8.5/include -I external/xstream/include -I /usr/include/tirpc -I /group/halld/Software/builds/Linux_CentOS7.7-x86_64-gcc4.8.5/root/root-6.08.06/include -I /w/halld-scifs17exp/halld2/home/sdobbs/Software/jana/jana_0.8.2/Linux_CentOS7.7-x86_64-gcc4.8.5/include -I /group/halld/Software/builds/Linux_CentOS7.7-x86_64-gcc4.8.5/ccdb/ccdb_1.06.06/include -I /group/halld/Software/builds/Linux_CentOS7.7-x86_64-gcc4.8.5/rcdb/rcdb_0.06.00/cpp/include -I /usr/include/mysql -I /group/halld/Software/builds/Linux_CentOS7.7-x86_64-gcc4.8.5/sqlitecpp/SQLiteCpp-2.2.0^bs130/include -I /group/halld/Software/builds/Linux_CentOS7.7-x86_64-gcc4.8.5/sqlite/sqlite-3.13.0^bs130/include -I /group/halld/Software/builds/Linux_CentOS7.7-x86_64-gcc4.8.5/hdds/hdds-4.9.0/Linux_CentOS7.7-x86_64-gcc4.8.5/src -I /group/halld/Software/builds/Linux_CentOS7.7-x86_64-gcc4.8.5/xerces-c/xerces-c-3.1.4/include -I /group/halld/Software/builds/Linux_CentOS7.7-x86_64-gcc4.8.5/evio/evio-4.4.6/Linux-x86_64/include -internal-isystem /usr/lib/gcc/x86_64-redhat-linux/4.8.5/../../../../include/c++/4.8.5 -internal-isystem /usr/lib/gcc/x86_64-redhat-linux/4.8.5/../../../../include/c++/4.8.5/x86_64-redhat-linux -internal-isystem /usr/lib/gcc/x86_64-redhat-linux/4.8.5/../../../../include/c++/4.8.5/backward -internal-isystem /usr/local/include -internal-isystem /w/halld-scifs17exp/home/sdobbs/clang/llvm-project/install/lib/clang/12.0.0/include -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -std=c++11 -fdeprecated-macro -fdebug-compilation-dir /home/sdobbs/work/clang/halld_recon/src -ferror-limit 19 -fgnuc-version=4.2.1 -fcxx-exceptions -fexceptions -vectorize-loops -vectorize-slp -analyzer-output=html -faddrsig -o /tmp/scan-build-2021-01-21-110224-160369-1 -x c++ libraries/ANALYSIS/DSourceComboVertexer.cc

libraries/ANALYSIS/DSourceComboVertexer.cc

1#include "ANALYSIS/DSourceComboVertexer.h"
2#include "ANALYSIS/DSourceComboer.h"
3#include "ANALYSIS/DSourceComboP4Handler.h"
4#include "ANALYSIS/DSourceComboTimeHandler.h"
5
6namespace DAnalysis
7{
8
9DSourceComboVertexer::DSourceComboVertexer(JEventLoop* locEventLoop, DSourceComboer* locSourceComboer, DSourceComboP4Handler* locSourceComboP4Handler) :
10dSourceComboer(locSourceComboer), dSourceComboP4Handler(locSourceComboP4Handler)
11{
12 Set_RunDependent_Data(locEventLoop);
1
Calling 'DSourceComboVertexer::Set_RunDependent_Data'
13
14 gPARMS->SetDefaultParameter("COMBO:DEBUG_LEVEL", dDebugLevel);
15}
16
17void DSourceComboVertexer::Set_RunDependent_Data(JEventLoop *locEventLoop)
18{
19 locEventLoop->GetSingle(dAnalysisUtilities);
2
Calling 'JEventLoop::GetSingle'
20
21 //GET THE GEOMETRY
22 DApplication* locApplication = dynamic_cast<DApplication*>(locEventLoop->GetJApplication());
23 DGeometry* locGeometry = locApplication->GetDGeometry(locEventLoop->GetJEvent().GetRunNumber());
24
25 //TARGET INFORMATION
26 double locTargetCenterZ = 65.0;
27 locGeometry->GetTargetZ(locTargetCenterZ);
28 dTargetCenter.SetXYZ(0.0, 0.0, locTargetCenterZ);
29}
30
31vector<signed char> DSourceComboVertexer::Get_VertexZBins(const DReactionVertexInfo* locReactionVertexInfo, const DSourceCombo* locReactionCombo, const DKinematicData* locBeamParticle, bool locComboIsFullyCharged) const
32{
33 if(locReactionCombo == nullptr)
34 return {};
35
36 vector<signed char> locVertexZBins;
37 for(auto locStepInfo : locReactionVertexInfo->Get_StepVertexInfos())
38 locVertexZBins.emplace_back(Get_VertexZBin(locStepInfo, locReactionCombo, locBeamParticle, locComboIsFullyCharged));
39
40 return locVertexZBins;
41}
42
43signed char DSourceComboVertexer::Get_VertexZBin(const DReactionStepVertexInfo* locStepVertexInfo, const DSourceCombo* locReactionCombo, const DKinematicData* locBeamParticle, bool locComboIsFullyCharged) const
44{
45 if(locStepVertexInfo->Get_DanglingVertexFlag())
46 {
47 auto locParentVertexInfo = locStepVertexInfo->Get_ParentVertexInfo();
48 return (locParentVertexInfo != nullptr) ? Get_VertexZBin(locParentVertexInfo, locReactionCombo, locBeamParticle, locComboIsFullyCharged) : dSourceComboTimeHandler->Get_VertexZBin_TargetCenter();
49 }
50
51 auto locVertexPrimaryCombo = dSourceComboer->Get_VertexPrimaryCombo(locReactionCombo, locStepVertexInfo);
52 auto locIsCombo2ndVertex = (locComboIsFullyCharged && locStepVertexInfo->Get_FullConstrainParticles(false, d_FinalState, d_Charged, false).empty());
53 return Get_VertexZBin(locStepVertexInfo->Get_ProductionVertexFlag(), locReactionCombo, locVertexPrimaryCombo, locBeamParticle, locIsCombo2ndVertex);
54}
55
56DVector3 DSourceComboVertexer::Get_Vertex(const DReactionStepVertexInfo* locStepVertexInfo, const DSourceCombo* locReactionCombo, const DKinematicData* locBeamParticle, bool locComboIsFullyCharged) const
57{
58 if(locStepVertexInfo->Get_DanglingVertexFlag())
59 {
60 auto locParentVertexInfo = locStepVertexInfo->Get_ParentVertexInfo();
61 return (locParentVertexInfo != nullptr) ? Get_Vertex(locParentVertexInfo, locReactionCombo, locBeamParticle, locComboIsFullyCharged) : dTargetCenter;
62 }
63
64 auto locVertexPrimaryCombo = dSourceComboer->Get_VertexPrimaryCombo(locReactionCombo, locStepVertexInfo);
65 auto locIsCombo2ndVertex = (locComboIsFullyCharged && locStepVertexInfo->Get_FullConstrainParticles(false, d_FinalState, d_Charged, false).empty());
66 return Get_Vertex(locStepVertexInfo->Get_ProductionVertexFlag(), locReactionCombo, locVertexPrimaryCombo, locBeamParticle, locIsCombo2ndVertex);
67}
68
69double DSourceComboVertexer::Get_TimeOffset(const DReactionVertexInfo* locReactionVertexInfo, const DReactionStepVertexInfo* locStepVertexInfo, const DSourceCombo* locReactionCombo, const DKinematicData* locBeamParticle) const
70{
71 if(locStepVertexInfo->Get_DanglingVertexFlag())
72 {
73 auto locParentVertexInfo = locStepVertexInfo->Get_ParentVertexInfo();
74 return (locParentVertexInfo != nullptr) ? Get_TimeOffset(locReactionVertexInfo, locParentVertexInfo, locReactionCombo, locBeamParticle) : 0.0;
75 }
76
77 auto locVertexPrimaryCombo = dSourceComboer->Get_VertexPrimaryCombo(locReactionCombo, locStepVertexInfo);
78 auto locIsPrimaryProductionVertex = locReactionVertexInfo->Get_StepVertexInfo(0)->Get_ProductionVertexFlag();
79 return Get_TimeOffset(locIsPrimaryProductionVertex, locReactionCombo, locVertexPrimaryCombo, locBeamParticle);
80}
81
82signed char DSourceComboVertexer::Get_VertexZBin(bool locIsProductionVertex, const DSourceCombo* locReactionCombo, const DSourceCombo* locPrimaryVertexCombo, const DKinematicData* locBeamParticle, bool locIsCombo2ndVertex) const
83{
84 if(locPrimaryVertexCombo == nullptr)
85 return DSourceComboInfo::Get_VertexZIndex_Unknown();
86
87 auto locConstrainingParticles = Get_ConstrainingParticles(locIsProductionVertex, locReactionCombo, locPrimaryVertexCombo, locBeamParticle, locIsCombo2ndVertex);
88 if(locConstrainingParticles.empty())
89 return DSourceComboInfo::Get_VertexZIndex_Unknown();
90 auto locVertexZ = Get_Vertex(locIsProductionVertex, locConstrainingParticles).Z();
91 return dSourceComboTimeHandler->Get_PhotonVertexZBin(locVertexZ);
92}
93
94void DSourceComboVertexer::Calc_VertexTimeOffsets_WithCharged(const DReactionVertexInfo* locReactionVertexInfo, const DSourceCombo* locReactionChargedCombo)
95{
96 if(dDebugLevel >= 10)
97 cout << "DSourceComboVertexer::Calc_VertexTimeOffsets_WithCharged()" << endl;
98
99 auto locIsPrimaryProductionVertex = locReactionVertexInfo->Get_StepVertexInfo(0)->Get_ProductionVertexFlag();
100 //even if below is true, we still need to register step vertex infos
101 auto locEverythingFoundFlag = (dTimeOffsets.find(std::make_tuple(locIsPrimaryProductionVertex, locReactionChargedCombo, (const DKinematicData*)nullptr)) != dTimeOffsets.end());
102
103 //loop through vertices
104 map<pair<int, int>, const DKinematicData*> locReconDecayParticleMap; //decaying particle indices -> kinematic data //indices: when the decaying particle is in the INITIAL state
105 unordered_map<const DReactionStepVertexInfo*, const DSourceCombo*> locVertexPrimaryComboMap;
106 for(const auto& locStepVertexInfo : locReactionVertexInfo->Get_StepVertexInfos())
107 {
108 if(dDebugLevel >= 10)
109 cout << "Step: " << locStepVertexInfo->Get_StepIndices().front() << endl;
110
111 /***************************************** CHECK IF VERTEX POSITION IS INDETERMINATE AT THIS STAGE ********************************************/
112
113 auto locVertexPrimaryCombo = dSourceComboer->Get_VertexPrimaryCombo(locReactionChargedCombo, locStepVertexInfo);
114 auto locIsCombo2ndVertex = locStepVertexInfo->Get_FullConstrainParticles(false, d_FinalState, d_Charged, false).empty();
115 auto locIsProductionVertexFlag = locStepVertexInfo->Get_ProductionVertexFlag();
116 auto locComboProductionTuple = std::make_tuple(locIsProductionVertexFlag, (const DSourceCombo*)nullptr, locVertexPrimaryCombo, (const DKinematicData*)nullptr, locIsCombo2ndVertex);
117
118 if(locStepVertexInfo->Get_DanglingVertexFlag())
119 continue; //is forever indeterminate, even with neutrals and beam energy
120
121 //get combo & info
122 locVertexPrimaryComboMap.emplace(locStepVertexInfo, locVertexPrimaryCombo);
123
124 //get particles
125 auto locChargedSourceParticles = !locIsCombo2ndVertex ? DAnalysis::Get_SourceParticles_ThisVertex(locVertexPrimaryCombo) : vector<pair<Particle_t, const JObject*>>();
126 auto locDecayingParticles = Get_FullConstrainDecayingParticles(locStepVertexInfo, locReconDecayParticleMap);
127 if(dDebugLevel >= 10)
128 cout << "# charged/decaying particles at vertex = " << locChargedSourceParticles.size() << ", " << locDecayingParticles.size() << endl;
129
130 //now, just because it isn't dangling, it doesn't mean we have enough information to actually determine the vertex
131 //e.g. we may need neutrals or beam energy to define constraining decay particle p4/trajectory
132 auto locDeterminableIterator = dVertexDeterminableWithChargedMap.find(locStepVertexInfo);
133 if(locDeterminableIterator == dVertexDeterminableWithChargedMap.end())
134 {
135 //we don't know yet if it is determinable or not. figure it out
136 auto locNumConstrainingParticles = locChargedSourceParticles.size() + locDecayingParticles.size();
137
138 //determine it, save result, and continue if can't
139 bool locVertexDeterminableFlag = locIsProductionVertexFlag ? (locNumConstrainingParticles > 0) : (locNumConstrainingParticles > 1);
140 if(dDebugLevel >= 10)
141 cout << "vertex determinable flag = " << locVertexDeterminableFlag << endl;
142 dVertexDeterminableWithChargedMap.emplace(locStepVertexInfo, locVertexDeterminableFlag);
143 if(!locVertexDeterminableFlag)
144 continue; //can't determine yet, but will be able to in the future
145 }
146 else if(!locDeterminableIterator->second)
147 continue;
148 if(locEverythingFoundFlag)
149 continue; //already done
150
151 vector<const DKinematicData*> locVertexParticles;
152 auto locVertex = Calc_Vertex(locIsProductionVertexFlag, locChargedSourceParticles, locDecayingParticles, locVertexParticles);
153 dConstrainingParticlesByCombo.emplace(locComboProductionTuple, locVertexParticles);
154
155 //set the vertices (really, the vertex particles) for the other combos for faster lookup during neutral comboing
156 auto locVertexCombos = DAnalysis::Get_SourceCombos_ThisVertex(locVertexPrimaryCombo);
157 for(const auto& locVertexCombo : locVertexCombos)
158 dConstrainingParticlesByCombo.emplace(std::make_tuple(locIsProductionVertexFlag, (const DSourceCombo*)nullptr, locVertexCombo, (const DKinematicData*)nullptr, locIsCombo2ndVertex), locVertexParticles);
159 Construct_DecayingParticle_InvariantMass(locStepVertexInfo, locVertexPrimaryCombo, locVertex, locReconDecayParticleMap);
160 }
161 if(locEverythingFoundFlag)
162 return; //already done
163
164 //do time offsets once all the vertices have been found
165 Calc_TimeOffsets(locReactionVertexInfo, locReactionChargedCombo, nullptr);
166}
167
168void DSourceComboVertexer::Calc_VertexTimeOffsets_WithPhotons(const DReactionVertexInfo* locReactionVertexInfo, const DSourceCombo* locReactionChargedCombo, const DSourceCombo* locReactionFullCombo)
169{
170 //Calculate vertex positions & time offsets using photons
171 //not likely to have any effect, but it's necessary sometimes (but rarely)
172 //E.g. g, p -> K0, Sigma+ K0 -> 3pi: The selected pi0 photons could help define the production vertex
173 if(dDebugLevel > 0)
174 cout << "Calc_VertexTimeOffsets_WithPhotons()" << endl;
175
176 auto locIsPrimaryProductionVertex = locReactionVertexInfo->Get_StepVertexInfo(0)->Get_ProductionVertexFlag();
177 //even if below is true, we still need to register step vertex infos
178 auto locEverythingFoundFlag = (dTimeOffsets.find(std::make_tuple(locIsPrimaryProductionVertex, locReactionFullCombo, (const DKinematicData*)nullptr)) != dTimeOffsets.end());
179
180 //loop over vertices in dependency order
181 map<pair<int, int>, const DKinematicData*> locReconDecayParticleMap; //decaying particle indices -> kinematic data //indices: when the decaying particle is in the INITIAL state
182 for(const auto& locStepVertexInfo : locReactionVertexInfo->Get_StepVertexInfos())
183 {
184 if(locStepVertexInfo->Get_DanglingVertexFlag())
185 continue; //is forever indeterminate, even with neutrals and beam energy
186
187 auto locIsProductionVertexFlag = locStepVertexInfo->Get_ProductionVertexFlag();
188 auto locVertexPrimaryChargedCombo = dSourceComboer->Get_VertexPrimaryCombo(locReactionChargedCombo, locStepVertexInfo);
189 auto locIsChargedCombo2ndVertex = locStepVertexInfo->Get_FullConstrainParticles(false, d_EitherState, d_AllCharges, false).empty();
190 auto locVertexPrimaryFullCombo = dSourceComboer->Get_VertexPrimaryCombo(locReactionFullCombo, locStepVertexInfo);
191
192 //see if vertex has already been found
193 auto locFullComboProductionTuple = std::make_tuple(locIsProductionVertexFlag, (const DSourceCombo*)nullptr, locVertexPrimaryFullCombo, (const DKinematicData*)nullptr, false);
194 auto locChargedComboProductionTuple = std::make_tuple(locIsProductionVertexFlag, (const DSourceCombo*)nullptr, locVertexPrimaryChargedCombo, (const DKinematicData*)nullptr, locIsChargedCombo2ndVertex);
195 if(dConstrainingParticlesByCombo.find(locChargedComboProductionTuple) != dConstrainingParticlesByCombo.end())
196 {
197 //already done! get/construct any recon decaying particles
198 auto locVertex = Get_Vertex_NoBeam(locIsProductionVertexFlag, locVertexPrimaryChargedCombo, locIsChargedCombo2ndVertex);
199 auto locVertexParticles = dConstrainingParticlesByCombo[locChargedComboProductionTuple];
200 dConstrainingParticlesByCombo.emplace(locFullComboProductionTuple, locVertexParticles); //so that the vertex can be retrieved by either the charged or full combo
201 Construct_DecayingParticle_InvariantMass(locStepVertexInfo, locVertexPrimaryFullCombo, locVertex, locReconDecayParticleMap);
202 continue;
203 }
204
205 //get particles
206 auto locChargedSourceParticles = DAnalysis::Get_SourceParticles_ThisVertex(locVertexPrimaryChargedCombo);
207 auto locDecayingParticles = Get_FullConstrainDecayingParticles(locStepVertexInfo, locReconDecayParticleMap);
208
209 //now, just because it isn't dangling, it doesn't mean we have enough information to actually determine the vertex
210 //e.g. we may need beam energy to define constraining decay particle p4/trajectory
211 auto locDeterminableIterator = dVertexDeterminableWithPhotonsMap.find(locStepVertexInfo);
212 if(locDeterminableIterator == dVertexDeterminableWithPhotonsMap.end())
213 {
214 //we don't know yet if it is determinable or not. figure it out
215 auto locNumConstrainingParticles = locChargedSourceParticles.size() + locDecayingParticles.size();
216
217 //determine it, save result, and continue if can't
218 bool locVertexDeterminableFlag = locIsProductionVertexFlag ? (locNumConstrainingParticles > 0) : (locNumConstrainingParticles > 1);
219 dVertexDeterminableWithPhotonsMap.emplace(locStepVertexInfo, locVertexDeterminableFlag);
220 if(!locVertexDeterminableFlag)
221 continue; //can't determine yet, but will be able to in the future
222 }
223 else if(!locDeterminableIterator->second)
224 continue;
225 if(locEverythingFoundFlag)
226 return; //already done
227
228 //find the vertex, save the results
229 DVector3 locVertex;
230 if(dConstrainingParticlesByCombo.find(locFullComboProductionTuple) == dConstrainingParticlesByCombo.end())
231 {
232 vector<const DKinematicData*> locVertexParticles;
233 locVertex = Calc_Vertex(locIsProductionVertexFlag, locChargedSourceParticles, locDecayingParticles, locVertexParticles);
234 dConstrainingParticlesByCombo.emplace(locFullComboProductionTuple, locVertexParticles);
235 }
236 else //vertex found previously //we didn't check this earlier because we may need the decaying particle reconstructed below
237 locVertex = Get_Vertex(locIsProductionVertexFlag, dConstrainingParticlesByCombo[locFullComboProductionTuple]);
238
239 Construct_DecayingParticle_InvariantMass(locStepVertexInfo, locVertexPrimaryFullCombo, locVertex, locReconDecayParticleMap);
240 }
241 if(locEverythingFoundFlag)
242 return; //already done
243
244 //CALC TIME OFFSETS
245 Calc_TimeOffsets(locReactionVertexInfo, locReactionChargedCombo, locReactionFullCombo);
246}
247
248void DSourceComboVertexer::Calc_VertexTimeOffsets_WithBeam(const DReactionVertexInfo* locReactionVertexInfo, const DSourceComboUse& locReactionFullComboUse, const DSourceCombo* locReactionFullCombo, const DKinematicData* locBeamParticle)
249{
250 if(dDebugLevel >= 10)
251 cout << "DSourceComboVertexer::Calc_VertexTimeOffsets_WithBeam()" << endl;
252
253 //IF PRIMARY VERTEX IS UNKNOWN THEN DO NOTHING!
254 if(!Get_IsVertexKnown_NoBeam(true, locReactionFullCombo, false))
255 {
256 if(dDebugLevel >= 10)
257 cout << "primary vertex unknown, nothing we can do." << endl;
258 return;
259 }
260
261 auto locPrimaryVertexZ = Get_PrimaryVertex(locReactionVertexInfo, locReactionFullCombo, locBeamParticle).Z();
262 int locRFBunch = dSourceComboTimeHandler->Calc_RFBunchShift(locBeamParticle->time());
263 if(dDebugLevel >= 10)
264 cout << "primary vertex-z, rf bunch: " << locPrimaryVertexZ << ", " << locRFBunch << endl;
265
266 //uses the beam to define remaining vertices
267 //loop over vertices in dependency order
268 map<pair<int, int>, const DKinematicData*> locReconDecayParticleMap; //decaying particle indices -> kinematic data //indices: when the decaying particle is in the INITIAL state
269 for(const auto& locStepVertexInfo : locReactionVertexInfo->Get_StepVertexInfos())
270 {
271 if(dDebugLevel >= 10)
272 cout << "Step: " << locStepVertexInfo->Get_StepIndices().front() << ", dangling-flag = " << locStepVertexInfo->Get_DanglingVertexFlag() << endl;
273 if(locStepVertexInfo->Get_DanglingVertexFlag())
274 continue; //is forever indeterminate, even with beam energy
275
276 auto locIsProductionVertexFlag = locStepVertexInfo->Get_ProductionVertexFlag();
277 auto locVertexPrimaryFullCombo = dSourceComboer->Get_VertexPrimaryCombo(locReactionFullCombo, locStepVertexInfo);
278 if(dDebugLevel >= 10)
279 {
280 cout << "Vertex primary combo:" << endl;
281 DAnalysis::Print_SourceCombo(locVertexPrimaryFullCombo);
282 }
283
284 //see if vertex has already been found //can search with either charged or full
285 auto locFullComboProductionTuple = std::make_tuple(true, locReactionFullCombo, locVertexPrimaryFullCombo, locBeamParticle, false);
286 if(dDebugLevel >= 20)
287 cout << "is determinable by charge/neutral: " << Get_VertexDeterminableWithCharged(locStepVertexInfo) << ", " << Get_VertexDeterminableWithPhotons(locStepVertexInfo) << endl;
288 if(Get_VertexDeterminableWithCharged(locStepVertexInfo) || Get_VertexDeterminableWithPhotons(locStepVertexInfo))
289 {
290 if(dDebugLevel >= 10)
291 cout << "vertex already found" << endl;
292
293 //already done! get/construct any recon decaying particles
294 auto locVertex = Get_Vertex(locIsProductionVertexFlag, locReactionFullCombo, locVertexPrimaryFullCombo, locBeamParticle, false);
295 Construct_DecayingParticle_InvariantMass(locStepVertexInfo, locVertexPrimaryFullCombo, locVertex, locReconDecayParticleMap);
296 if(locIsProductionVertexFlag) //do missing if needed
297 {
298 auto locRFVertexTime = dSourceComboTimeHandler->Calc_PropagatedRFTime(locPrimaryVertexZ, locRFBunch, 0.0);
299 Construct_DecayingParticle_MissingMass(locStepVertexInfo, locReactionFullComboUse, locReactionFullCombo, locVertexPrimaryFullCombo, locBeamParticle, locVertex, locRFBunch, locRFVertexTime, locReconDecayParticleMap);
300 }
301 continue;
302 }
303
304 if(dDebugLevel >= 10)
305 cout << "vertex not found yet" << endl;
306
307 //get particles
308 auto locChargedSourceParticles = DAnalysis::Get_SourceParticles_ThisVertex(locVertexPrimaryFullCombo, d_Charged);
309 auto locDecayingParticles = Get_FullConstrainDecayingParticles(locStepVertexInfo, locReconDecayParticleMap);
310 if(dDebugLevel >= 10)
311 cout << "# charged/decaying particles at vertex = " << locChargedSourceParticles.size() << ", " << locDecayingParticles.size() << endl;
312
313 //find the vertex, save the results
314 vector<const DKinematicData*> locVertexParticles;
315 auto locVertex = Calc_Vertex(locIsProductionVertexFlag, locChargedSourceParticles, locDecayingParticles, locVertexParticles);
316 dConstrainingParticlesByCombo.emplace(locFullComboProductionTuple, locVertexParticles);
317
318 //CALC AND STORE TIME OFFSET
319 auto locFullReactionTuple_TimeOffset = std::make_tuple(true, locReactionFullCombo, locBeamParticle);
320
321 //get parent
322 auto locParentVertexInfo = locStepVertexInfo->Get_ParentVertexInfo();
323 auto locParentVertexFullCombo = dSourceComboer->Get_VertexPrimaryCombo(locReactionFullCombo, locParentVertexInfo);
324 auto locParentTimeOffset = dTimeOffsets[locFullReactionTuple_TimeOffset][locParentVertexFullCombo];
325
326 //get vertices & path length
327 auto locParentProductionVertex = Get_Vertex(locParentVertexInfo->Get_ProductionVertexFlag(), locReactionFullCombo, locParentVertexFullCombo, locBeamParticle, false);
328 auto locPathLength = (locVertex - locParentProductionVertex).Mag();
329
330 //compute and save result
331 auto locP4 = locDecayingParticles.back()->lorentzMomentum(); //when locDecayingParticles retrieved, this particle was saved to the back!
332 auto locTimeOffset = locPathLength/(locP4.Beta()*SPEED_OF_LIGHT29.9792458) + locParentTimeOffset;
333 dTimeOffsets[locFullReactionTuple_TimeOffset].emplace(locVertexPrimaryFullCombo, locTimeOffset);
334
335 //construct decaying particles by missing mass
336 auto locRFVertexTime = dSourceComboTimeHandler->Calc_PropagatedRFTime(locPrimaryVertexZ, locRFBunch, locTimeOffset);
337 if(dDebugLevel >= 10)
338 cout << "parent time offset, beta, path length, time offset, prop rf time: " << locParentTimeOffset << ", " << locP4.Beta() << ", " << locPathLength << ", " << locTimeOffset << ", " << locRFVertexTime << endl;
339 Construct_DecayingParticle_MissingMass(locStepVertexInfo, locReactionFullComboUse, locReactionFullCombo, locVertexPrimaryFullCombo, locBeamParticle, locVertex, locRFBunch, locRFVertexTime, locReconDecayParticleMap);
340 }
341}
342
343DVector3 DSourceComboVertexer::Calc_Vertex(bool locIsProductionVertexFlag, const vector<pair<Particle_t, const JObject*>>& locChargedSourceParticles, const vector<const DKinematicData*>& locDecayingParticles, vector<const DKinematicData*>& locVertexParticles)
344{
345 if(dDebugLevel >= 10)
346 cout << "DSourceComboVertexer::Calc_Vertex()" << endl;
347
348 /************************************************** CALCULATING VERTEX POSITIONS ***********************************************
349 *
350 * Production vertex:
351 * 1) If there is at least one charged track at the production vertex with a theta > 30 degrees:
352 * The production vertex is the POCA to the beamline of the track with the largest theta.
353 * 2) If not, then for each detached vertex:
354 * a) If there are any neutral or missing particles, or there are < 2 detected charged tracks at the detached vertex: ignore it
355 * b) Otherwise:
356 * i) The detached vertex is at the center of the lines between the POCAs of the two closest tracks.
357 * ii) Calculate the p3 of the decaying particles at this point and then find the POCA of the decaying particle to the beamline.
358 * 3) Now, the production vertex is the POCA to the beamline of the track/decaying-particle with the largest theta.
359 * 4) Otherwise, the production vertex is the center of the target.
360 *
361 * Detached vertices:
362 * 1) If at least 2 decay products have defined trajectories (detected & charged or decaying & reconstructed):
363 * The detached vertex is at the center of the lines between the POCAs of the two closest particles.
364 * 2) If one decay product is detected & charged, and the decaying particle production vertex was well defined (i.e. not forced to be center of target):
365 * a) Determine the decaying particle trajectory from the missing mass of the system (must be done after beam photon selection!!)
366 * b) The detached vertex is at the POCA of the charged decay product and the decaying particle
367 * 3) Otherwise use the decaying particle production vertex for its position.
368 *
369 *******************************************************************************************************************************/
370
371 //Get detected charged track hypotheses at this vertex
372 locVertexParticles.clear();
373 locVertexParticles.reserve(locChargedSourceParticles.size());
374 auto Get_Hypothesis = [](const pair<Particle_t, const JObject*>& locPair) -> const DChargedTrackHypothesis*
375 {return static_cast<const DChargedTrack*>(locPair.second)->Get_Hypothesis(locPair.first);};
376 std::transform(locChargedSourceParticles.begin(), locChargedSourceParticles.end(), std::back_inserter(locVertexParticles), Get_Hypothesis);
377 locVertexParticles.insert(locVertexParticles.end(), locDecayingParticles.begin(), locDecayingParticles.end());
378
379 if(dDebugLevel >= 10)
380 cout << "locIsProductionVertexFlag = " << locIsProductionVertexFlag << endl;
381 if(locIsProductionVertexFlag)
382 {
383 //use track with theta nearest 90 degrees
384 auto locThetaNearest90Iterator = Get_ThetaNearest90Iterator(locVertexParticles);
385 double locThetaNearest90 = (locThetaNearest90Iterator != locVertexParticles.end()) ? (*locThetaNearest90Iterator)->momentum().Theta()*180.0/TMath::Pi() : 0.0;
386 if(locThetaNearest90 < dMinThetaForVertex)
387 {
388 //try decaying particles instead
389 auto locThetaNearest90Iterator_Decaying = Get_ThetaNearest90Iterator(locDecayingParticles);
390 double locLargestTheta_Decaying = (locThetaNearest90Iterator_Decaying != locDecayingParticles.end()) ? (*locThetaNearest90Iterator_Decaying)->momentum().Theta()*180.0/TMath::Pi() : 0.0;
391 if(locLargestTheta_Decaying > locThetaNearest90)
392 locThetaNearest90Iterator = locThetaNearest90Iterator_Decaying;
393 }
394 locVertexParticles = {*locThetaNearest90Iterator};
395 auto locPOCAToBeamline = locVertexParticles[0]->position(); //not true if decaying
396
397 //see if is a decaying particle
398 if(std::find(locDecayingParticles.begin(), locDecayingParticles.end(), locVertexParticles[0]) != locDecayingParticles.end())
399 {
400 //it is decaying: find POCA to beamline
401 DVector3 locInterDOCA1, locInterDOCA2;
402 dAnalysisUtilities->Calc_DOCA(locVertexParticles[0]->momentum().Unit(), DVector3(0.0, 0.0, 1.0), locPOCAToBeamline, DVector3(), locInterDOCA1, locInterDOCA2);
403 locPOCAToBeamline = locInterDOCA1;
404 }
405
406 //vertex is 1/2-way between track POCA to beamline and the beamline itself: if POCA not on beamline, likely due to resolution issues,
407 auto locTrackPosition = locVertexParticles[0]->position();
408 auto locVertex = DVector3(0.5*locTrackPosition.X(), 0.5*locTrackPosition.Y(), locTrackPosition.Z());
409 if(false) //COMPARE: Comparison-to-old mode
410 locVertex = dVertex->dSpacetimeVertex.Vect();
411 dVertexMap.emplace(std::make_pair(locIsProductionVertexFlag, locVertexParticles), locVertex);
412 if(dDebugLevel >= 10)
413 cout << "pointer, particle PID, theta, production vertex = " << locVertexParticles[0] << ", " << locVertexParticles[0]->PID() << ", " << locVertexParticles[0]->momentum().Theta()*180.0/TMath::Pi() << ", " << locVertex.X() << ", " << locVertex.Y() << ", " << locVertex.Z() << endl;
414 return locVertex;
415 }
416
417 //detached vertex
418 if(locVertexParticles.size() < 2)
419 locVertexParticles.insert(locVertexParticles.end(), locDecayingParticles.begin(), locDecayingParticles.end());
420 std::sort(locVertexParticles.begin(), locVertexParticles.end());
421
422 //if vertex already computed, don't bother
423 auto locVertexIterator = dVertexMap.find(std::make_pair(locIsProductionVertexFlag, locVertexParticles));
424 if(locVertexIterator == dVertexMap.end())
425 {
426 auto locVertex = dAnalysisUtilities->Calc_CrudeVertex(locVertexParticles);
427 if(dDebugLevel >= 10)
428 cout << "crude vertex = " << locVertex.X() << ", " << locVertex.Y() << ", " << locVertex.Z() << endl;
429 dVertexMap.emplace(std::make_pair(locIsProductionVertexFlag, locVertexParticles), locVertex);
430 return locVertex;
431 }
432 else if(dDebugLevel >= 10)
433 cout << "crude vertex saved previously = " << locVertexIterator->second.X() << ", " << locVertexIterator->second.Y() << ", " << locVertexIterator->second.Z() << endl;
434
435 return locVertexIterator->second;
436}
437
438vector<const DKinematicData*> DSourceComboVertexer::Get_FullConstrainDecayingParticles(const DReactionStepVertexInfo* locStepVertexInfo, const map<pair<int, int>, const DKinematicData*>& locReconDecayParticleMap)
439{
440 auto locConstrainingDecayingParticles = locStepVertexInfo->Get_DecayingParticles_FullConstrain(false);
441 vector<const DKinematicData*> locDecayingParticles;
442 pair<int, int> locDecayMissingMassReconPair(-99, -99); //if there is one (and there will be at most one), save for last (easy to retrieve)
443 for(const auto& locDecayPair : locConstrainingDecayingParticles)
444 {
445 //the particle pair in the map is where the decaying particle was when it was created (in the initial/final state for invariant/missing mass)
446 //however, the pairs in locConstrainingDecayingParticles are when then the decaying particles are USED (the other state)
447 //so, we have to convert from final state to initial state (or vice versa) to do the map lookup
448 pair<int, int> locParticlePair(-99, -99);
449 if(locDecayPair.first.second >= 0) //need it in the final state, was created in the initial state: convert from final to initial for map lookup
450 {
451 int locDecayStepIndex = DAnalysis::Get_DecayStepIndex(locStepVertexInfo->Get_Reaction(), locDecayPair.first.first, locDecayPair.first.second);
452 locParticlePair = std::make_pair(locDecayStepIndex, DReactionStep::Get_ParticleIndex_Initial());
453 }
454 else //need it in the initial state, was created in the final state: convert: convert from initial to final for map lookup
455 {
456 locDecayMissingMassReconPair = DAnalysis::Get_InitialParticleDecayFromIndices(locStepVertexInfo->Get_Reaction(), locDecayPair.first.first);
457 continue;
458 }
459
460 auto locReconIterator = locReconDecayParticleMap.find(locParticlePair);
461 if(locReconIterator != locReconDecayParticleMap.end())
462 locDecayingParticles.push_back(locReconIterator->second);
463 }
464
465 //retrieve the decay missing-mass recon particle, if there was one
466 auto locReconIterator = locReconDecayParticleMap.find(locDecayMissingMassReconPair);
467 if(locReconIterator != locReconDecayParticleMap.end())
468 locDecayingParticles.push_back(locReconIterator->second);
469
470 return locDecayingParticles;
471}
472
473void DSourceComboVertexer::Construct_DecayingParticle_InvariantMass(const DReactionStepVertexInfo* locStepVertexInfo, const DSourceCombo* locVertexCombo, DVector3 locVertex, map<pair<int, int>, const DKinematicData*>& locReconDecayParticleMap)
474{
475 if(dDebugLevel >= 10)
476 cout << "DSourceComboVertexer::Construct_DecayingParticle_InvariantMass()" << endl;
477 //we also can't compute the p4 yet if the decay products contain neutrals: this is done before comboing them!
478 auto locSourceComboUse = dSourceComboer->Get_SourceComboUse(locStepVertexInfo);
479 if(dSourceComboer->Get_HasMassiveNeutrals(std::get<2>(locSourceComboUse)))
480 {
481 //can't compute the p4 yet if the decay products contain massive neutrals: time offset is needed for massive neutral p4, but isn't known yet because decay p4 unknown!
482 //will have to be computed via missing mass instead (although it technically isn't needed for it)
483 return;
484 }
485
486 auto locIsProductionVertexFlag = locStepVertexInfo->Get_ProductionVertexFlag();
487 if(dDebugLevel >= 10)
488 cout << "locIsProductionVertexFlag = " << locIsProductionVertexFlag << endl;
489
490 //loop over decaying no-constrain decaying particles
491 map<pair<int, int>, const DReactionStepVertexInfo*> locNoConstrainDecayingParticles = locStepVertexInfo->Get_DecayingParticles_NoConstrain(false);
492 for(const auto& locNoConstrainPair : locNoConstrainDecayingParticles)
493 {
494 //we cannot define decaying p4 via missing mass, because the beam is not chosen yet
495 //therefore, if the no-constrain decaying particle is a final-state particle at this vertex, we cannot define its p4
496 const auto& locParticlePair = locNoConstrainPair.first;
497 if(locParticlePair.second >= 0)
498 continue; //momentum must be determined by missing mass, cannot do yet! (or isn't detached, for which we don't care)
499
500 //only create kinematic data for detached PIDs
501 auto locDecayPID = std::get<0>(locSourceComboUse);
502 if(!IsDetachedVertex(locDecayPID))
503 continue; //either not detached (we don't care!), or is Unknown (missing decay product: can't compute)
504
505 if(dDebugLevel >= 10)
506 cout << "detached decaying pid = " << locDecayPID << endl;
507
508 //if the particle has already been created, reuse it!
509 auto locDecayParticleTuple = std::make_tuple(locDecayPID, locIsProductionVertexFlag, locVertexCombo, (const DKinematicData*)nullptr);
510 auto locIterator = dReconDecayParticles_FromProducts.find(locDecayParticleTuple);
511 if(locIterator != dReconDecayParticles_FromProducts.end())
512 {
513 locReconDecayParticleMap.emplace(locParticlePair, locIterator->second);
514 continue;
515 }
516
517 //create a new one
518 auto locP4 = dSourceComboP4Handler->Calc_P4_NoMassiveNeutrals(nullptr, locVertexCombo, locVertex, std::get<1>(locSourceComboUse), nullptr, DSourceComboUse(Unknown, 0, nullptr, false, Unknown), 1, false);
519 auto locKinematicData = dResourcePool_KinematicData.Get_Resource();
520 locKinematicData->Reset();
521 locKinematicData->Set_Members(locDecayPID, locP4.Vect(), locVertex, 0.0);
522
523 if(dDebugLevel >= 10)
524 cout << "decaying particle created, pxyzE = " << locP4.X() << ", " << locP4.Y() << ", " << locP4.Z() << ", " << locP4.E() << endl;
525
526 //register it
527 locReconDecayParticleMap.emplace(locParticlePair, locKinematicData);
528 dReconDecayParticles_FromProducts.emplace(locDecayParticleTuple, locKinematicData);
529 }
530}
531
532void DSourceComboVertexer::Construct_DecayingParticle_MissingMass(const DReactionStepVertexInfo* locStepVertexInfo, const DSourceComboUse& locReactionFullComboUse, const DSourceCombo* locReactionFullCombo, const DSourceCombo* locFullVertexCombo, const DKinematicData* locBeamParticle, DVector3 locVertex, int locRFBunch, double locRFVertexTime, map<pair<int, int>, const DKinematicData*>& locReconDecayParticleMap)
533{
534 if(dDebugLevel >= 10)
535 cout << "DSourceComboVertexer::Construct_DecayingParticle_MissingMass()" << endl;
536
537 if(locStepVertexInfo->Get_IsInclusiveVertexFlag() || !locStepVertexInfo->Get_MissingParticles().empty())
538 return; //decaying particles are not defined!
539
540 //we can only calculate up to 1 at a time
541 //the input full combo contains the decaying particle for which the missing mass is to be computed
542 //if there is more than one, then this is impossible
543
544 auto locSourceComboUse = dSourceComboer->Get_SourceComboUse(locStepVertexInfo);
545 auto locReaction = locStepVertexInfo->Get_Reaction();
546 auto locIsProductionVertexFlag = locStepVertexInfo->Get_ProductionVertexFlag();
547
548 //loop over decaying no-constrain decaying particles, figure out how many we have to do this for (can't do more than 1!)
549 map<pair<int, int>, const DReactionStepVertexInfo*> locNoConstrainDecayingParticles = locStepVertexInfo->Get_DecayingParticles_NoConstrain(false);
550 pair<int, int> locToReconParticleIndices(-99, -99);
551 for(const auto& locNoConstrainPair : locNoConstrainDecayingParticles)
552 {
553 //we are defining p4 through missing mass. therefore, the decaying particle must be in the final state at this vertex
554 //therefore, if the no-constrain decaying particle is a final-state particle at this vertex, we cannot define its p4
555 const auto& locParticlePair = locNoConstrainPair.first;
556 if(locParticlePair.second < 0)
557 continue; //momentum already determined by invariant mass!
558
559 //the particle must be a constraining particle at another vertex, or else we aren't interested (i.e. detached)
560 auto locReactionStep = locReaction->Get_ReactionStep(locParticlePair.first);
561 auto locDecayPID = locReactionStep->Get_PID(locParticlePair.second);
562 if(!IsDetachedVertex(locDecayPID))
563 continue; //not detached: we don't care!
564
565 if(locToReconParticleIndices.first >= 0)
566 return; //can't recon more than 1 decaying particle via missing mass!
567 locToReconParticleIndices = locParticlePair;
568 }
569
570 if(dDebugLevel >= 10)
571 cout << "to-recon decay particle indices: " << locToReconParticleIndices.first << ", " << locToReconParticleIndices.second << endl;
572 if(locToReconParticleIndices.first < 0)
573 return;
574
575 auto locDecayStepIndex = Get_DecayStepIndex(locReaction, locToReconParticleIndices.first, locToReconParticleIndices.second);
576 auto locDecayUsePair = dSourceComboer->Get_StepSourceComboUse(locReaction, locDecayStepIndex, locReactionFullComboUse, 0);
577
578 auto locReactionStep = locReaction->Get_ReactionStep(locToReconParticleIndices.first);
579 auto locDecayPID = locReactionStep->Get_PID(locToReconParticleIndices.second);
580
581 //if the particle has already been created, reuse it!
582 auto locDecayParticleTuple = std::make_tuple(locDecayPID, locReactionFullCombo, locIsProductionVertexFlag, locFullVertexCombo, locBeamParticle);
583 auto locIterator = dReconDecayParticles_FromMissing.find(locDecayParticleTuple);
584 if(locIterator != dReconDecayParticles_FromMissing.end())
585 {
586 locReconDecayParticleMap.emplace(locToReconParticleIndices, locIterator->second);
587 return;
588 }
589
590 //make sure there isn't another missing particle
591 for(const auto& locStepIndex : locStepVertexInfo->Get_StepIndices())
592 {
593 if(int(locStepIndex) == locDecayStepIndex)
594 continue;
595 if(DAnalysis::Get_HasMissingParticle_FinalState(locReaction->Get_ReactionStep(locStepIndex)))
596 return; //missing decay product! can't compute 2 missing p4's at once!
597 }
598
599 //create a new one
600 //calc final state p4, excluding the decay use for the decay that we are trying to reconstruct via missing mass
601 DLorentzVector locFinalStateP4;
602 if(dDebugLevel >= 10)
603 {
604 cout << "Calc final-state p4, decay use to exclude: " << endl;
605 DAnalysis::Print_SourceComboUse(locDecayUsePair.first);
606 }
607
608 auto locTimeOffset = Get_TimeOffset(true, locReactionFullCombo, locFullVertexCombo, locBeamParticle);
609 if(!dSourceComboP4Handler->Calc_P4_HasMassiveNeutrals(locIsProductionVertexFlag, true, locReactionFullCombo, locFullVertexCombo, locVertex, locTimeOffset, locRFBunch, locRFVertexTime, locDecayUsePair.first, locDecayUsePair.second, locFinalStateP4, locBeamParticle, true))
610 return; //invalid somehow
611
612 //ASSUMES FIXED TARGET EXPERIMENT!
613 DLorentzVector locInitialStateP4; //lookup or is beam + target
614 if(locIsProductionVertexFlag)
615 {
616 Particle_t locPID = locReaction->Get_ReactionStep(0)->Get_TargetPID();
617 locInitialStateP4 = locBeamParticle->lorentzMomentum() + DLorentzVector(0.0, 0.0, 0.0, ParticleMass(locPID));
618 }
619 else //already computed, look it up!
620 {
621 auto locPreviousVertexInfo = (locStepVertexInfo->Get_ParentVertexInfo() == nullptr) ? locStepVertexInfo : locStepVertexInfo->Get_ParentVertexInfo();
622 auto locPreviousIsProdVertexFlag = locPreviousVertexInfo->Get_ProductionVertexFlag();
623 auto locPreviousFullVertexCombo = dSourceComboer->Get_VertexPrimaryCombo(locReactionFullCombo, locPreviousVertexInfo);
624 auto locPreviousDecayPID = std::get<0>(locSourceComboUse);
625 auto locPreviousDecayParticleTuple = std::make_tuple(locPreviousDecayPID, locReactionFullCombo, locPreviousIsProdVertexFlag, locPreviousFullVertexCombo, locBeamParticle);
626 auto locPreviousIterator = dReconDecayParticles_FromMissing.find(locPreviousDecayParticleTuple);
627 if(locPreviousIterator != dReconDecayParticles_FromMissing.end())
628 locInitialStateP4 = dReconDecayParticles_FromMissing[locPreviousDecayParticleTuple]->lorentzMomentum();
629 else //if the previous vertex only had additional photons, it might not be computed yet
630 return;
631 if(dDebugLevel >= 10)
632 cout << "retrieved decaying pid, p4: " << locPreviousDecayPID << ", " << locInitialStateP4.Px() << ", " << locInitialStateP4.Py() << ", " << locInitialStateP4.Pz() << ", " << locInitialStateP4.E() << endl;
633 }
634
635 auto locP4 = locInitialStateP4 - locFinalStateP4;
636 if(dDebugLevel >= 10)
637 cout << "pid, missing p4: " << locDecayPID << ", " << locP4.Px() << ", " << locP4.Py() << ", " << locP4.Pz() << ", " << locP4.E() << endl;
638 auto locKinematicData = dResourcePool_KinematicData.Get_Resource();
639 locKinematicData->Reset();
640 locKinematicData->Set_Members(locDecayPID, locP4.Vect(), locVertex, 0.0);
641
642 //register it
643 locReconDecayParticleMap.emplace(locToReconParticleIndices, locKinematicData);
644 dReconDecayParticles_FromMissing.emplace(locDecayParticleTuple, locKinematicData);
645}
646
647void DSourceComboVertexer::Calc_TimeOffsets(const DReactionVertexInfo* locReactionVertexInfo, const DSourceCombo* locChargedReactionCombo, const DSourceCombo* locFullReactionCombo)
648{
649 if(dDebugLevel >= 10)
650 cout << "DSourceComboVertexer::Calc_TimeOffsets()" << endl;
651
652 //only for calculating from invariant mass, not missing mass vertices
653 auto locIsPrimaryProductionVertex = locReactionVertexInfo->Get_StepVertexInfo(0)->Get_ProductionVertexFlag();
654 auto locActiveReactionCombo = (locFullReactionCombo != nullptr) ? locFullReactionCombo : locChargedReactionCombo;
655
656 auto locChargedReactionTuple = std::make_tuple(locIsPrimaryProductionVertex, locChargedReactionCombo, (const DKinematicData*)nullptr);
657 auto locNeutralReactionTuple = std::make_tuple(locIsPrimaryProductionVertex, locFullReactionCombo, (const DKinematicData*)nullptr);
658
659 auto& locChargedTimeOffsetMap = dTimeOffsets[locChargedReactionTuple];
660 auto& locFullTimeOffsetMap = dTimeOffsets[locNeutralReactionTuple];
661 auto& locActiveTimeOffsetMap = (locFullReactionCombo != nullptr) ? locFullTimeOffsetMap : locChargedTimeOffsetMap;
662
663 //loop over vertices
664 //MUST GO IN STEP ORDER!!
665 for(const auto& locStepVertexInfo : DAnalysis::Get_StepVertexInfos_OrderByStep(locReactionVertexInfo))
666 {
667 if(dDebugLevel >= 10)
668 cout << "Step: " << locStepVertexInfo->Get_StepIndices().front() << endl;
669 if(locStepVertexInfo->Get_DanglingVertexFlag())
670 continue; //is forever indeterminate, even with beam energy
671
672 auto locChargedVertexCombo = dSourceComboer->Get_VertexPrimaryCombo(locChargedReactionCombo, locStepVertexInfo);
673 auto locFullVertexCombo = (locFullReactionCombo != nullptr) ? dSourceComboer->Get_VertexPrimaryCombo(locFullReactionCombo, locStepVertexInfo) : nullptr;
674 auto locActiveVertexCombo = (locFullReactionCombo != nullptr) ? locFullVertexCombo : locChargedVertexCombo;
675
676 //see if already determined
677 auto locActiveIterator = locActiveTimeOffsetMap.find(locFullVertexCombo);
678 if(locActiveIterator != locActiveTimeOffsetMap.end())
679 continue; //previously determined!
680
681 //see if at full-combo stage (not charged only). If so, and offset already found at charged stage, just copy the result
682 if(locFullReactionCombo != nullptr) //full stage
683 {
684 auto locChargedIterator = locChargedTimeOffsetMap.find(locChargedVertexCombo);
685 if(locChargedIterator != locChargedTimeOffsetMap.end())
686 {
687 //save in full map
688 locFullTimeOffsetMap.emplace(locFullVertexCombo, locChargedIterator->second);
689 continue; //previously determined!
690 }
691 }
692
693 auto locParentVertexInfo = locStepVertexInfo->Get_ParentVertexInfo();
694 if(locStepVertexInfo->Get_ProductionVertexFlag() || (locParentVertexInfo == nullptr))
695 {
696 if(dDebugLevel >= 10)
697 cout << "Primary vertex: time offset = 0" << endl;
698 locChargedTimeOffsetMap.emplace(locChargedReactionCombo, 0.0);
699 continue;
700 }
701
702 //if this vertex has not been determined yet: save calcing of time offset for later
703 if((locFullReactionCombo == nullptr) && !Get_VertexDeterminableWithCharged(locStepVertexInfo))
704 continue; //don't know the vertex yet, try the next vertex
705 if((locFullReactionCombo != nullptr) && !Get_VertexDeterminableWithCharged(locStepVertexInfo) && !Get_VertexDeterminableWithPhotons(locStepVertexInfo))
706 continue; //don't know the vertex yet, try the next vertex
707
708 //the time offset cannot yet be determined if the momentum of the decaying particle in question is not yet known
709 //this can happen if there's a missing decay product, or if we're on the charged stage and some of the decay products are neutrals
710 //we also can't calculate by missing mass yet because we haven't yet selected a beam photon
711 auto locVertexComboUse = dSourceComboer->Get_SourceComboUse(locStepVertexInfo);
712 if(std::get<3>(locVertexComboUse) || ((locFullReactionCombo == nullptr) && (Get_ChargeContent(std::get<2>(locVertexComboUse)) != d_Charged)))
713 continue; //1st condition: has a missing decay product //2nd condition: on charged stage, has neutral decay products (not comboed yet)
714
715 //get parent information
716 auto locParentCombo = dSourceComboer->Get_VertexPrimaryCombo(locActiveReactionCombo, locParentVertexInfo);
717 auto locParentOffsetIterator = locActiveTimeOffsetMap.find(locParentCombo);
718 if(locParentOffsetIterator == locActiveTimeOffsetMap.end())
719 continue; //parent offset unknown
720 auto locParentTimeOffset = locParentOffsetIterator->second;
721
722 if(dDebugLevel >= 10)
723 cout << "Parent time offset = " << locParentTimeOffset << endl;
724
725 //get vertices & path length
726 auto locVertex = Get_Vertex_NoBeam(false, locActiveVertexCombo, false); //2nd false: if true, then we're on the charged stage and we can't calc the time offset: wouldn't be here anyway
727 auto locParentProductionVertex = Get_Vertex_NoBeam(locParentVertexInfo->Get_ProductionVertexFlag(), locParentCombo, false);
728 auto locPathLength = (locVertex - locParentProductionVertex).Mag();
729 if(dDebugLevel >= 10)
730 cout << "Vertex, parent vertex, path length: " << locVertex.X() << ", " << locVertex.Y() << ", " << locVertex.Z() << ", " << locParentProductionVertex.X() << ", " << locParentProductionVertex.Y() << ", " << locParentProductionVertex.Z() << ", " << locPathLength << endl;
731
732 //compute and save result
733 auto locVertexZBin = Get_VertexZBin_NoBeam(false, locActiveVertexCombo, false); //2nd false: if true, then we're on the charged stage and we can't calc the time offset: wouldn't be here anyway
734 auto locP4 = dSourceComboP4Handler->Calc_P4_NoMassiveNeutrals(nullptr, locActiveVertexCombo, locVertex, locVertexZBin, nullptr, DSourceComboUse(Unknown, 0, nullptr, false, Unknown), 1, false);
735 auto locTimeOffset = locPathLength/(locP4.Beta()*SPEED_OF_LIGHT29.9792458) + locParentTimeOffset;
736
737 if(dDebugLevel >= 10)
738 cout << "Time offset = " << locTimeOffset << endl;
739
740 locActiveTimeOffsetMap.emplace(locActiveVertexCombo, locTimeOffset);
741 }
742}
743
744} //end DAnalysis namespace
745

/w/halld-scifs17exp/halld2/home/sdobbs/Software/jana/jana_0.8.2/Linux_CentOS7.7-x86_64-gcc4.8.5/include/JANA/JEventLoop.h

1// $Id: JEventLoop.h 1763 2006-05-10 14:29:25Z davidl $
2//
3// File: JEventLoop.h
4// Created: Wed Jun 8 12:30:51 EDT 2005
5// Creator: davidl (on Darwin wire129.jlab.org 7.8.0 powerpc)
6//
7
8#ifndef _JEventLoop_
9#define _JEventLoop_
10
11#include <sys/time.h>
12
13#include <vector>
14#include <list>
15#include <string>
16#include <utility>
17#include <typeinfo>
18#include <string.h>
19#include <map>
20#include <utility>
21using std::vector;
22using std::list;
23using std::string;
24using std::type_info;
25
26#include <JANA/jerror.h>
27#include <JANA/JObject.h>
28#include <JANA/JException.h>
29#include <JANA/JEvent.h>
30#include <JANA/JThread.h>
31#include <JANA/JFactory_base.h>
32#include <JANA/JCalibration.h>
33#include <JANA/JGeometry.h>
34#include <JANA/JResourceManager.h>
35#include <JANA/JStreamLog.h>
36
37// The following is here just so we can use ROOT's THtml class to generate documentation.
38#include "cint.h"
39
40
41// Place everything in JANA namespace
42namespace jana{
43
44
45template<class T> class JFactory;
46class JApplication;
47class JEventProcessor;
48
49
50class JEventLoop{
51 public:
52
53 friend class JApplication;
54
55 enum data_source_t{
56 DATA_NOT_AVAILABLE = 1,
57 DATA_FROM_CACHE,
58 DATA_FROM_SOURCE,
59 DATA_FROM_FACTORY
60 };
61
62 typedef struct{
63 string caller_name;
64 string caller_tag;
65 string callee_name;
66 string callee_tag;
67 double start_time;
68 double end_time;
69 data_source_t data_source;
70 }call_stack_t;
71
72 typedef struct{
73 const char* factory_name;
74 string tag;
75 const char* filename;
76 int line;
77 }error_call_stack_t;
78
79 JEventLoop(JApplication *app); ///< Constructor
80 virtual ~JEventLoop(); ////< Destructor
81 virtual const char* className(void){return static_className();}
82 static const char* static_className(void){return "JEventLoop";}
83
84 JApplication* GetJApplication(void) const {return app;} ///< Get pointer to the JApplication object
85 void RefreshProcessorListFromJApplication(void); ///< Re-copy the list of JEventProcessors from JApplication
86 virtual jerror_t AddFactory(JFactory_base* factory); ///< Add a factory
87 jerror_t RemoveFactory(JFactory_base* factory); ///< Remove a factory
88 JFactory_base* GetFactory(const string data_name, const char *tag="", bool allow_deftag=true); ///< Get a specific factory pointer
89 vector<JFactory_base*> GetFactories(void) const {return factories;} ///< Get all factory pointers
90 void GetFactoryNames(vector<string> &factorynames); ///< Get names of all factories in name:tag format
91 void GetFactoryNames(map<string,string> &factorynames); ///< Get names of all factories in map with key=name, value=tag
92 map<string,string> GetDefaultTags(void) const {return default_tags;}
93 jerror_t ClearFactories(void); ///< Reset all factories in preparation for next event.
94 jerror_t PrintFactories(int sparsify=0); ///< Print a list of all factories.
95 jerror_t Print(const string data_name, const char *tag=""); ///< Print the data of the given type
96
97 JCalibration* GetJCalibration();
98 template<class T> bool GetCalib(string namepath, map<string,T> &vals);
99 template<class T> bool GetCalib(string namepath, vector<T> &vals);
100 template<class T> bool GetCalib(string namepath, T &val);
101
102 JGeometry* GetJGeometry();
103 template<class T> bool GetGeom(string namepath, map<string,T> &vals);
104 template<class T> bool GetGeom(string namepath, T &val);
105
106 JResourceManager* GetJResourceManager(void);
107 string GetResource(string namepath);
108 template<class T> bool GetResource(string namepath, T vals, int event_number=0);
109
110 void Initialize(void); ///< Do initializations just before event processing starts
111 jerror_t Loop(void); ///< Loop over events
112 jerror_t OneEvent(uint64_t event_number); ///< Process a specific single event (if source supports it)
113 jerror_t OneEvent(void); ///< Process a single event
114 inline void Pause(void){pause = 1;} ///< Pause event processing
115 inline void Resume(void){pause = 0;} ///< Resume event processing
116 inline void Quit(void){quit = 1;} ///< Clean up and exit the event loop
117 inline bool GetQuit(void) const {return quit;}
118 void QuitProgram(void);
119
120 // Support for random access of events
121 bool HasRandomAccess(void);
122 void AddToEventQueue(uint64_t event_number){ next_events_to_process.push_back(event_number); }
123 void AddToEventQueue(list<uint64_t> &event_numbers) { next_events_to_process.insert(next_events_to_process.end(), event_numbers.begin(), event_numbers.end()); }
124 list<uint64_t> GetEventQueue(void){ return next_events_to_process; }
125 void ClearEventQueue(void){ next_events_to_process.clear(); }
126
127 template<class T> JFactory<T>* GetSingle(const T* &t, const char *tag="", bool exception_if_not_one=true); ///< Get pointer to first data object from (source or factory).
128 template<class T> JFactory<T>* Get(vector<const T*> &t, const char *tag="", bool allow_deftag=true); ///< Get data object pointers from (source or factory)
129 template<class T> JFactory<T>* GetFromFactory(vector<const T*> &t, const char *tag="", data_source_t &data_source=null_data_source, bool allow_deftag=true); ///< Get data object pointers from factory
130 template<class T> jerror_t GetFromSource(vector<const T*> &t, JFactory_base *factory=NULL__null); ///< Get data object pointers from source.
131 inline JEvent& GetJEvent(void){return event;} ///< Get pointer to the current JEvent object.
132 inline void SetJEvent(JEvent *event){this->event = *event;} ///< Set the JEvent pointer.
133 inline void SetAutoFree(int auto_free){this->auto_free = auto_free;} ///< Set the Auto-Free flag on/off
134 inline pthread_t GetPThreadID(void) const {return pthread_id;} ///< Get the pthread of the thread to which this JEventLoop belongs
135 double GetInstantaneousRate(void) const {return rate_instantaneous;} ///< Get the current event processing rate
136 double GetIntegratedRate(void) const {return rate_integrated;} ///< Get the current event processing rate
137 double GetLastEventProcessingTime(void) const {return delta_time_single;}
138 unsigned int GetNevents(void) const {return Nevents;}
139
140 inline bool CheckEventBoundary(uint64_t event_numberA, uint64_t event_numberB);
141
142 inline bool GetCallStackRecordingStatus(void){ return record_call_stack; }
143 inline void DisableCallStackRecording(void){ record_call_stack = false; }
144 inline void EnableCallStackRecording(void){ record_call_stack = true; }
145 inline void CallStackStart(JEventLoop::call_stack_t &cs, const string &caller_name, const string &caller_tag, const string callee_name, const string callee_tag);
146 inline void CallStackEnd(JEventLoop::call_stack_t &cs);
147 inline vector<call_stack_t> GetCallStack(void){return call_stack;} ///< Get the current factory call stack
148 inline void AddToCallStack(call_stack_t &cs){if(record_call_stack) call_stack.push_back(cs);} ///< Add specified item to call stack record but only if record_call_stack is true
149 inline void AddToErrorCallStack(error_call_stack_t &cs){error_call_stack.push_back(cs);} ///< Add layer to the factory call stack
150 inline vector<error_call_stack_t> GetErrorCallStack(void){return error_call_stack;} ///< Get the current factory error call stack
151 void PrintErrorCallStack(void); ///< Print the current factory call stack
152
153 const JObject* FindByID(JObject::oid_t id); ///< Find a data object by its identifier.
154 template<class T> const T* FindByID(JObject::oid_t id); ///< Find a data object by its type and identifier
155 JFactory_base* FindOwner(const JObject *t); ///< Find the factory that owns a data object by pointer
156 JFactory_base* FindOwner(JObject::oid_t id); ///< Find a factory that owns a data object by identifier
157
158 // User defined references
159 template<class T> void SetRef(T *t); ///< Add a user reference to this JEventLoop (must be a pointer)
160 template<class T> T* GetRef(void); ///< Get a user-defined reference of a specific type
161 template<class T> vector<T*> GetRefsT(void); ///< Get all user-defined refrences of a specicif type
162 vector<pair<const char*, void*> > GetRefs(void){ return user_refs; } ///< Get copy of full list of user-defined references
163 template<class T> void RemoveRef(T *t); ///< Remove user reference from list
164
165 // Convenience methods wrapping JEvent methods of same name
166 uint64_t GetStatus(void){return event.GetStatus();}
167 bool GetStatusBit(uint32_t bit){return event.GetStatusBit(bit);}
168 bool SetStatusBit(uint32_t bit, bool val=true){return event.SetStatusBit(bit, val);}
169 bool ClearStatusBit(uint32_t bit){return event.ClearStatusBit(bit);}
170 void ClearStatus(void){event.ClearStatus();}
171 void SetStatusBitDescription(uint32_t bit, string description){event.SetStatusBitDescription(bit, description);}
172 string GetStatusBitDescription(uint32_t bit){return event.GetStatusBitDescription(bit);}
173 void GetStatusBitDescriptions(map<uint32_t, string> &status_bit_descriptions){return event.GetStatusBitDescriptions(status_bit_descriptions);}
174 string StatusWordToString(void);
175
176 private:
177 JEvent event;
178 vector<JFactory_base*> factories;
179 vector<JEventProcessor*> processors;
180 vector<error_call_stack_t> error_call_stack;
181 vector<call_stack_t> call_stack;
182 JApplication *app;
183 JThread *jthread;
184 bool initialized;
185 bool print_parameters_called;
186 int pause;
187 int quit;
188 int auto_free;
189 pthread_t pthread_id;
190 map<string, string> default_tags;
191 vector<pair<string,string> > auto_activated_factories;
192 bool record_call_stack;
193 string caller_name;
194 string caller_tag;
195 vector<uint64_t> event_boundaries;
196 int32_t event_boundaries_run; ///< Run number boundaries were retrieved from (possbily 0)
197 list<uint64_t> next_events_to_process;
198
199 uint64_t Nevents; ///< Total events processed (this thread)
200 uint64_t Nevents_rate; ///< Num. events accumulated for "instantaneous" rate
201 double delta_time_single; ///< Time spent processing last event
202 double delta_time_rate; ///< Integrated time accumulated "instantaneous" rate (partial number of events)
203 double delta_time; ///< Total time spent processing events (this thread)
204 double rate_instantaneous; ///< Latest instantaneous rate
205 double rate_integrated; ///< Rate integrated over all events
206
207 static data_source_t null_data_source;
208
209 vector<pair<const char*, void*> > user_refs;
210};
211
212
213// The following is here just so we can use ROOT's THtml class to generate documentation.
214#ifdef G__DICTIONARY
215typedef JEventLoop::call_stack_t call_stack_t;
216typedef JEventLoop::error_call_stack_t error_call_stack_t;
217#endif
218
219#if !defined(__CINT__) && !defined(__CLING__)
220
221//-------------
222// GetSingle
223//-------------
224template<class T>
225JFactory<T>* JEventLoop::GetSingle(const T* &t, const char *tag, bool exception_if_not_one)
226{
227 /// This is a convenience method that can be used to get a pointer to the single
228 /// object of type T from the specified factory. It simply calls the Get(vector<...>) method
229 /// and copies the first pointer into "t" (or NULL if something other than 1 object is returned).
230 ///
231 /// This is intended to address the common situation in which there is an interest
232 /// in the event if and only if there is exactly 1 object of type T. If the event
233 /// has no objects of that type or more than 1 object of that type (for the specified
234 /// factory) then an exception of type "unsigned long" is thrown with the value
235 /// being the number of objects of type T. You can supress the exception by setting
236 /// exception_if_not_one to false. In that case, you will have to check if t==NULL to
237 /// know if the call succeeded.
238 vector<const T*> v;
239 JFactory<T> *fac = Get(v, tag);
3
Calling 'JEventLoop::Get'
240
241 if(v.size()!=1){
242 t = NULL__null;
243 if(exception_if_not_one) throw v.size();
244 }
245
246 t = v[0];
247
248 return fac;
249}
250
251//-------------
252// Get
253//-------------
254template<class T>
255JFactory<T>* JEventLoop::Get(vector<const T*> &t, const char *tag, bool allow_deftag)
256{
257 /// Retrieve or generate the array of objects of
258 /// type T for the curent event being processed
259 /// by this thread.
260 ///
261 /// By default, preference is given to reading the
262 /// objects from the data source(e.g. file) before generating
263 /// them in the factory. A flag exists in the factory
264 /// however to change this so that the factory is
265 /// given preference.
266 ///
267 /// Note that regardless of the setting of this flag,
268 /// the data are only either read in or generated once.
269 /// Ownership of the objects will always be with the
270 /// factory so subsequent calls will always return pointers to
271 /// the same data.
272 ///
273 /// If the factory is called on to generate the data,
274 /// it is done by calling the factory's Get() method
275 /// which, in turn, calls the evnt() method.
276 ///
277 /// First, we just call the GetFromFactory() method.
278 /// It will make the initial decision as to whether
279 /// it should look in the source first or not. If
280 /// it returns NULL, then the factory couldn't be
281 /// found so we automatically try the file.
282 ///
283 /// Note that if no factory exists to hold the objects
284 /// from the file, one can be created automatically
285 /// providing the <i>JANA:AUTOFACTORYCREATE</i>
286 /// configuration parameter is set.
287
288 // Check if a tag was specified for this data type to use for the
289 // default.
290 const char *mytag = tag
3.1
'tag' is not equal to NULL
3.1
'tag' is not equal to NULL
3.1
'tag' is not equal to NULL
==NULL__null ? "":tag; // protection against NULL tags
4
'?' condition is false
291 if(strlen(mytag)==0 && allow_deftag
4.1
'allow_deftag' is true
4.1
'allow_deftag' is true
4.1
'allow_deftag' is true
){
5
Taking true branch
292 map<string, string>::const_iterator iter = default_tags.find(T::static_className());
293 if(iter!=default_tags.end())tag = iter->second.c_str();
6
Assuming the condition is true
7
Taking true branch
8
Value assigned to 'tag'
294 }
295
296
297 // If we are trying to keep track of the call stack then we
298 // need to add a new call_stack_t object to the the list
299 // and initialize it with the start time and caller/callee
300 // info.
301 call_stack_t cs;
302
303 // Optionally record starting info of call stack entry
304 if(record_call_stack) CallStackStart(cs, caller_name, caller_tag, T::static_className(), tag);
9
Assuming field 'record_call_stack' is false
10
Taking false branch
305
306 // Get the data (or at least try to)
307 JFactory<T>* factory=NULL__null;
308 try{
309 factory = GetFromFactory(t, tag, cs.data_source, allow_deftag);
11
Passing value via 2nd parameter 'tag'
12
Calling 'JEventLoop::GetFromFactory'
310 if(!factory){
311 // No factory exists for this type and tag. It's possible
312 // that the source may be able to provide the objects
313 // but it will need a place to put them. We can create a
314 // dumb JFactory just to hold the data in case the source
315 // can provide the objects. Before we do though, make sure
316 // the user condones this via the presence of the
317 // "JANA:AUTOFACTORYCREATE" config parameter.
318 string p;
319 try{
320 gPARMS->GetParameter("JANA:AUTOFACTORYCREATE", p);
321 }catch(...){}
322 if(p.size()==0){
323 jout<<std::endl;
324 _DBG__std::cerr<<"/w/halld-scifs17exp/halld2/home/sdobbs/Software/jana/jana_0.8.2/Linux_CentOS7.7-x86_64-gcc4.8.5/include/JANA/JEventLoop.h"
<<":"<<324<<std::endl
;
325 jout<<"No factory of type \""<<T::static_className()<<"\" with tag \""<<tag<<"\" exists."<<std::endl;
326 jout<<"If you are reading objects from a file, I can auto-create a factory"<<std::endl;
327 jout<<"of the appropriate type to hold the objects, but this feature is turned"<<std::endl;
328 jout<<"off by default. To turn it on, set the \"JANA:AUTOFACTORYCREATE\""<<std::endl;
329 jout<<"configuration parameter. This can usually be done by passing the"<<std::endl;
330 jout<<"following argument to the program from the command line:"<<std::endl;
331 jout<<std::endl;
332 jout<<" -PJANA:AUTOFACTORYCREATE=1"<<std::endl;
333 jout<<std::endl;
334 jout<<"Note that since the most commonly expected occurance of this situation."<<std::endl;
335 jout<<"is an error, the program will now throw an exception so that the factory."<<std::endl;
336 jout<<"call stack can be printed."<<std::endl;
337 jout<<std::endl;
338 throw exception();
339 }else{
340 AddFactory(new JFactory<T>(tag));
341 jout<<__FILE__"/w/halld-scifs17exp/halld2/home/sdobbs/Software/jana/jana_0.8.2/Linux_CentOS7.7-x86_64-gcc4.8.5/include/JANA/JEventLoop.h"<<":"<<__LINE__341<<" Auto-created "<<T::static_className()<<":"<<tag<<" factory"<<std::endl;
342
343 // Now try once more. The GetFromFactory method will call
344 // GetFromSource since it's empty.
345 factory = GetFromFactory(t, tag, cs.data_source, allow_deftag);
346 }
347 }
348 }catch(exception &e){
349 // Uh-oh, an exception was thrown. Add us to the call stack
350 // and re-throw the exception
351 error_call_stack_t ecs;
352 ecs.factory_name = T::static_className();
353 ecs.tag = tag;
354 ecs.filename = NULL__null;
355 error_call_stack.push_back(ecs);
356 throw e;
357 }
358
359 // If recording the call stack, update the end_time field and add to stack
360 if(record_call_stack) CallStackEnd(cs);
361
362 return factory;
363}
364
365//-------------
366// GetFromFactory
367//-------------
368template<class T>
369JFactory<T>* JEventLoop::GetFromFactory(vector<const T*> &t, const char *tag, data_source_t &data_source, bool allow_deftag)
370{
371 // We need to find the factory providing data type T with
372 // tag given by "tag".
373 vector<JFactory_base*>::iterator iter=factories.begin();
374 JFactory<T> *factory = NULL__null;
375 string className(T::static_className());
376
377 // Check if a tag was specified for this data type to use for the
378 // default.
379 const char *mytag = tag==NULL__null ? "":tag; // protection against NULL tags
13
Assuming 'tag' is equal to NULL
14
Assuming pointer value is null
15
'?' condition is true
380 if(strlen(mytag)==0 && allow_deftag
15.1
'allow_deftag' is true
15.1
'allow_deftag' is true
15.1
'allow_deftag' is true
){
16
Taking true branch
381 map<string, string>::const_iterator iter = default_tags.find(className);
382 if(iter!=default_tags.end())tag = iter->second.c_str();
17
Assuming the condition is false
18
Taking false branch
383 }
384
385 for(; iter!=factories.end(); iter++){
19
Calling 'operator!=<jana::JFactory_base **, std::vector<jana::JFactory_base *>>'
22
Returning from 'operator!=<jana::JFactory_base **, std::vector<jana::JFactory_base *>>'
23
Loop condition is true. Entering loop body
386 // It turns out a long standing bug in g++ makes dynamic_cast return
387 // zero improperly when used on objects created on one side of
388 // a dynamically shared object (DSO) and the cast occurs on the
389 // other side. I saw bug reports ranging from 2001 to 2004. I saw
390 // saw it first-hand on LinuxEL4 using g++ 3.4.5. This is too bad
391 // since it is much more elegant (and safe) to use dynamic_cast.
392 // To avoid this problem which can occur with plugins, we check
393 // the name of the data classes are the same. (sigh)
394 //factory = dynamic_cast<JFactory<T> *>(*iter);
395 if(className == (*iter)->GetDataClassName())factory = (JFactory<T>*)(*iter);
24
Taking true branch
396 if(factory == NULL__null)continue;
25
Assuming 'factory' is not equal to NULL
26
Taking false branch
397 const char *factag = factory->Tag()==NULL__null ? "":factory->Tag();
27
Assuming the condition is true
28
'?' condition is true
398 if(!strcmp(factag, tag)){
29
Null pointer passed to 2nd parameter expecting 'nonnull'
399 break;
400 }else{
401 factory=NULL__null;
402 }
403 }
404
405 // If factory not found, just return now
406 if(!factory){
407 data_source = DATA_NOT_AVAILABLE;
408 return NULL__null;
409 }
410
411 // OK, we found the factory. If the evnt() routine has already
412 // been called, then just call the factory's Get() routine
413 // to return a copy of the existing data
414 if(factory->evnt_was_called()){
415 factory->CopyFrom(t);
416 data_source = DATA_FROM_CACHE;
417 return factory;
418 }
419
420 // Next option is to get the objects from the data source
421 if(factory->GetCheckSourceFirst()){
422 // If the object type/tag is found in the source, it
423 // will return NOERROR, even if there are zero instances
424 // of it. If it is not available in the source then it
425 // will return OBJECT_NOT_AVAILABLE.
426
427 jerror_t err = GetFromSource(t, factory);
428 if(err == NOERROR){
429 // A return value of NOERROR means the source had the objects
430 // even if there were zero of them.(If the source had no
431 // information about the objects OBJECT_NOT_AVAILABLE would
432 // have been returned.)
433 // The GetFromSource() call will eventually lead to a call to
434 // the GetObjects() method of the concrete class derived
435 // from JEventSource. That routine should copy the object
436 // pointers into the factory using the factory's CopyTo()
437 // method which also sets the evnt_called flag for the factory.
438 // Note also that the "t" vector is then filled with a call
439 // to the factory's CopyFrom() method in JEvent::GetObjects().
440 // All we need to do now is just set the factory pointers in
441 // the newly generated JObjects and return the factory pointer.
442
443 factory->SetFactoryPointers();
444 data_source = DATA_FROM_SOURCE;
445
446 return factory;
447 }
448 }
449
450 // OK. It looks like we have to have the factory make this.
451 // Get pointers to data from the factory.
452 factory->Get(t);
453 factory->SetFactoryPointers();
454 data_source = DATA_FROM_FACTORY;
455
456 return factory;
457}
458
459//-------------
460// GetFromSource
461//-------------
462template<class T>
463jerror_t JEventLoop::GetFromSource(vector<const T*> &t, JFactory_base *factory)
464{
465 /// This tries to get objects from the event source.
466 /// "factory" must be a valid pointer to a JFactory
467 /// object since that will take ownership of the objects
468 /// created by the source.
469 /// This should usually be called from JEventLoop::GetFromFactory
470 /// which is called from JEventLoop::Get. The latter will
471 /// create a dummy JFactory of the proper flavor and tag if
472 /// one does not already exist so if objects exist in the
473 /// file without a corresponding factory to create them, they
474 /// can still be used.
475 if(!factory)throw OBJECT_NOT_AVAILABLE;
476
477 return event.GetObjects(t, factory);
478}
479
480//-------------
481// CallStackStart
482//-------------
483inline void JEventLoop::CallStackStart(JEventLoop::call_stack_t &cs, const string &caller_name, const string &caller_tag, const string callee_name, const string callee_tag)
484{
485 /// This is used to fill initial info into a call_stack_t stucture
486 /// for recording the call stack. It should be matched with a call
487 /// to CallStackEnd. It is normally called from the Get() method
488 /// above, but may also be used by external actors to manipulate
489 /// the call stack (presumably for good and not evil).
490
491 struct itimerval tmr;
492 getitimer(ITIMER_PROFITIMER_PROF, &tmr);
493
494 cs.caller_name = this->caller_name;
495 cs.caller_tag = this->caller_tag;
496 this->caller_name = cs.callee_name = callee_name;
497 this->caller_tag = cs.callee_tag = callee_tag;
498 cs.start_time = tmr.it_value.tv_sec + tmr.it_value.tv_usec/1.0E6;
499}
500
501//-------------
502// CallStackEnd
503//-------------
504inline void JEventLoop::CallStackEnd(JEventLoop::call_stack_t &cs)
505{
506 /// Complete a call stack entry. This should be matched
507 /// with a previous call to CallStackStart which was
508 /// used to fill the cs structure.
509
510 struct itimerval tmr;
511 getitimer(ITIMER_PROFITIMER_PROF, &tmr);
512 cs.end_time = tmr.it_value.tv_sec + tmr.it_value.tv_usec/1.0E6;
513 caller_name = cs.caller_name;
514 caller_tag = cs.caller_tag;
515 call_stack.push_back(cs);
516}
517
518//-------------
519// CheckEventBoundary
520//-------------
521inline bool JEventLoop::CheckEventBoundary(uint64_t event_numberA, uint64_t event_numberB)
522{
523 /// Check whether the two event numbers span one or more boundaries
524 /// in the calibration/conditions database for the current run number.
525 /// Return true if they do and false if they don't. The first parameter
526 /// "event_numberA" is also checked if it lands on a boundary in which
527 /// case true is also returned. If event_numberB lands on a boundary,
528 /// but event_numberA does not, then false is returned.
529 ///
530 /// This method is not expected to be called by a user. It is, however called,
531 /// everytime a JFactory's Get() method is called.
532
533 // Make sure our copy of the boundaries is up to date
534 if(event.GetRunNumber()!=event_boundaries_run){
535 event_boundaries.clear(); // in case we can't get the JCalibration pointer
536 JCalibration *jcalib = GetJCalibration();
537 if(jcalib)jcalib->GetEventBoundaries(event_boundaries);
538 event_boundaries_run = event.GetRunNumber();
539 }
540
541 // Loop over boundaries
542 for(unsigned int i=0; i<event_boundaries.size(); i++){
543 uint64_t eb = event_boundaries[i];
544 if((eb - event_numberA)*(eb - event_numberB) < 0.0 || eb==event_numberA){ // think about it ....
545 // events span a boundary or is on a boundary. Return true
546 return true;
547 }
548 }
549
550 return false;
551}
552
553//-------------
554// FindByID
555//-------------
556template<class T>
557const T* JEventLoop::FindByID(JObject::oid_t id)
558{
559 /// This is a templated method that can be used in place
560 /// of the non-templated FindByID(oid_t) method if one knows
561 /// the class of the object with the specified id.
562 /// This method is faster than calling the non-templated
563 /// FindByID and dynamic_cast-ing the JObject since
564 /// this will only search the objects of factories that
565 /// produce the desired data type.
566 /// This method will cast the JObject pointer to one
567 /// of the specified type. To use this method,
568 /// a type is specified in the call as follows:
569 ///
570 /// const DMyType *t = loop->FindByID<DMyType>(id);
571
572 // Loop over factories looking for ones that provide
573 // specified data type.
574 for(unsigned int i=0; i<factories.size(); i++){
575 if(factories[i]->GetDataClassName() != T::static_className())continue;
576
577 // This factory provides data of type T. Search it for
578 // the object with the specified id.
579 const JObject *my_obj = factories[i]->GetByID(id);
580 if(my_obj)return dynamic_cast<const T*>(my_obj);
581 }
582
583 return NULL__null;
584}
585
586//-------------
587// GetCalib (map)
588//-------------
589template<class T>
590bool JEventLoop::GetCalib(string namepath, map<string,T> &vals)
591{
592 /// Get the JCalibration object from JApplication for the run number of
593 /// the current event and call its Get() method to get the constants.
594
595 // Note that we could do this by making "vals" a generic type T thus, combining
596 // this with the vector version below. However, doing this explicitly will make
597 // it easier for the user to understand how to call us.
598
599 vals.clear();
600
601 JCalibration *calib = GetJCalibration();
602 if(!calib){
603 _DBG_std::cerr<<"/w/halld-scifs17exp/halld2/home/sdobbs/Software/jana/jana_0.8.2/Linux_CentOS7.7-x86_64-gcc4.8.5/include/JANA/JEventLoop.h"
<<":"<<603<<" "
<<"Unable to get JCalibration object for run "<<event.GetRunNumber()<<std::endl;
604 return true;
605 }
606
607 return calib->Get(namepath, vals, event.GetEventNumber());
608}
609
610//-------------
611// GetCalib (vector)
612//-------------
613template<class T> bool JEventLoop::GetCalib(string namepath, vector<T> &vals)
614{
615 /// Get the JCalibration object from JApplication for the run number of
616 /// the current event and call its Get() method to get the constants.
617
618 vals.clear();
619
620 JCalibration *calib = GetJCalibration();
621 if(!calib){
622 _DBG_std::cerr<<"/w/halld-scifs17exp/halld2/home/sdobbs/Software/jana/jana_0.8.2/Linux_CentOS7.7-x86_64-gcc4.8.5/include/JANA/JEventLoop.h"
<<":"<<622<<" "
<<"Unable to get JCalibration object for run "<<event.GetRunNumber()<<std::endl;
623 return true;
624 }
625
626 return calib->Get(namepath, vals, event.GetEventNumber());
627}
628
629//-------------
630// GetCalib (single)
631//-------------
632template<class T> bool JEventLoop::GetCalib(string namepath, T &val)
633{
634 /// This is a convenience method for getting a single entry. It
635 /// simply calls the vector version and returns the first entry.
636 /// It returns true if the vector version returns true AND there
637 /// is at least one entry in the vector. No check is made for there
638 /// there being more than one entry in the vector.
639
640 vector<T> vals;
641 bool ret = GetCalib(namepath, vals);
642 if(vals.empty()) return true;
643 val = vals[0];
644
645 return ret;
646}
647
648//-------------
649// GetGeom (map)
650//-------------
651template<class T>
652bool JEventLoop::GetGeom(string namepath, map<string,T> &vals)
653{
654 /// Get the JGeometry object from JApplication for the run number of
655 /// the current event and call its Get() method to get the constants.
656
657 // Note that we could do this by making "vals" a generic type T thus, combining
658 // this with the vector version below. However, doing this explicitly will make
659 // it easier for the user to understand how to call us.
660
661 vals.clear();
662
663 JGeometry *geom = GetJGeometry();
664 if(!geom){
665 _DBG_std::cerr<<"/w/halld-scifs17exp/halld2/home/sdobbs/Software/jana/jana_0.8.2/Linux_CentOS7.7-x86_64-gcc4.8.5/include/JANA/JEventLoop.h"
<<":"<<665<<" "
<<"Unable to get JGeometry object for run "<<event.GetRunNumber()<<std::endl;
666 return true;
667 }
668
669 return geom->Get(namepath, vals);
670}
671
672//-------------
673// GetGeom (atomic)
674//-------------
675template<class T> bool JEventLoop::GetGeom(string namepath, T &val)
676{
677 /// Get the JCalibration object from JApplication for the run number of
678 /// the current event and call its Get() method to get the constants.
679
680 JGeometry *geom = GetJGeometry();
681 if(!geom){
682 _DBG_std::cerr<<"/w/halld-scifs17exp/halld2/home/sdobbs/Software/jana/jana_0.8.2/Linux_CentOS7.7-x86_64-gcc4.8.5/include/JANA/JEventLoop.h"
<<":"<<682<<" "
<<"Unable to get JGeometry object for run "<<event.GetRunNumber()<<std::endl;
683 return true;
684 }
685
686 return geom->Get(namepath, val);
687}
688
689//-------------
690// SetRef
691//-------------
692template<class T>
693void JEventLoop::SetRef(T *t)
694{
695 pair<const char*, void*> p(typeid(T).name(), (void*)t);
696 user_refs.push_back(p);
697}
698
699//-------------
700// GetResource
701//-------------
702template<class T> bool JEventLoop::GetResource(string namepath, T vals, int event_number)
703{
704 JResourceManager *resource_manager = GetJResourceManager();
705 if(!resource_manager){
706 string mess = string("Unable to get the JResourceManager object (namepath=\"")+namepath+"\")";
707 throw JException(mess);
708 }
709
710 return resource_manager->Get(namepath, vals, event_number);
711}
712
713//-------------
714// GetRef
715//-------------
716template<class T>
717T* JEventLoop::GetRef(void)
718{
719 /// Get a user-defined reference (a pointer)
720 for(unsigned int i=0; i<user_refs.size(); i++){
721 if(user_refs[i].first == typeid(T).name()) return (T*)user_refs[i].second;
722 }
723
724 return NULL__null;
725}
726
727//-------------
728// GetRefsT
729//-------------
730template<class T>
731vector<T*> JEventLoop::GetRefsT(void)
732{
733 vector<T*> refs;
734 for(unsigned int i=0; i<user_refs.size(); i++){
735 if(user_refs[i].first == typeid(T).name()){
736 refs.push_back((T*)user_refs[i].second);
737 }
738 }
739
740 return refs;
741}
742
743//-------------
744// RemoveRef
745//-------------
746template<class T>
747void JEventLoop::RemoveRef(T *t)
748{
749 vector<pair<const char*, void*> >::iterator iter;
750 for(iter=user_refs.begin(); iter!= user_refs.end(); iter++){
751 if(iter->second == (void*)t){
752 user_refs.erase(iter);
753 return;
754 }
755 }
756 _DBG_std::cerr<<"/w/halld-scifs17exp/halld2/home/sdobbs/Software/jana/jana_0.8.2/Linux_CentOS7.7-x86_64-gcc4.8.5/include/JANA/JEventLoop.h"
<<":"<<756<<" "
<<" Attempt to remove user reference not in event loop!" << std::endl;
757}
758
759
760#endif //__CINT__ __CLING__
761
762} // Close JANA namespace
763
764
765
766#endif // _JEventLoop_
767

/usr/lib/gcc/x86_64-redhat-linux/4.8.5/../../../../include/c++/4.8.5/bits/stl_iterator.h

1// Iterators -*- C++ -*-
2
3// Copyright (C) 2001-2013 Free Software Foundation, Inc.
4//
5// This file is part of the GNU ISO C++ Library. This library is free
6// software; you can redistribute it and/or modify it under the
7// terms of the GNU General Public License as published by the
8// Free Software Foundation; either version 3, or (at your option)
9// any later version.
10
11// This library is distributed in the hope that it will be useful,
12// but WITHOUT ANY WARRANTY; without even the implied warranty of
13// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14// GNU General Public License for more details.
15
16// Under Section 7 of GPL version 3, you are granted additional
17// permissions described in the GCC Runtime Library Exception, version
18// 3.1, as published by the Free Software Foundation.
19
20// You should have received a copy of the GNU General Public License and
21// a copy of the GCC Runtime Library Exception along with this program;
22// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
23// <http://www.gnu.org/licenses/>.
24
25/*
26 *
27 * Copyright (c) 1994
28 * Hewlett-Packard Company
29 *
30 * Permission to use, copy, modify, distribute and sell this software
31 * and its documentation for any purpose is hereby granted without fee,
32 * provided that the above copyright notice appear in all copies and
33 * that both that copyright notice and this permission notice appear
34 * in supporting documentation. Hewlett-Packard Company makes no
35 * representations about the suitability of this software for any
36 * purpose. It is provided "as is" without express or implied warranty.
37 *
38 *
39 * Copyright (c) 1996-1998
40 * Silicon Graphics Computer Systems, Inc.
41 *
42 * Permission to use, copy, modify, distribute and sell this software
43 * and its documentation for any purpose is hereby granted without fee,
44 * provided that the above copyright notice appear in all copies and
45 * that both that copyright notice and this permission notice appear
46 * in supporting documentation. Silicon Graphics makes no
47 * representations about the suitability of this software for any
48 * purpose. It is provided "as is" without express or implied warranty.
49 */
50
51/** @file bits/stl_iterator.h
52 * This is an internal header file, included by other library headers.
53 * Do not attempt to use it directly. @headername{iterator}
54 *
55 * This file implements reverse_iterator, back_insert_iterator,
56 * front_insert_iterator, insert_iterator, __normal_iterator, and their
57 * supporting functions and overloaded operators.
58 */
59
60#ifndef _STL_ITERATOR_H1
61#define _STL_ITERATOR_H1 1
62
63#include <bits/cpp_type_traits.h>
64#include <ext/type_traits.h>
65#include <bits/move.h>
66
67namespace std _GLIBCXX_VISIBILITY(default)__attribute__ ((__visibility__ ("default")))
68{
69_GLIBCXX_BEGIN_NAMESPACE_VERSION
70
71 /**
72 * @addtogroup iterators
73 * @{
74 */
75
76 // 24.4.1 Reverse iterators
77 /**
78 * Bidirectional and random access iterators have corresponding reverse
79 * %iterator adaptors that iterate through the data structure in the
80 * opposite direction. They have the same signatures as the corresponding
81 * iterators. The fundamental relation between a reverse %iterator and its
82 * corresponding %iterator @c i is established by the identity:
83 * @code
84 * &*(reverse_iterator(i)) == &*(i - 1)
85 * @endcode
86 *
87 * <em>This mapping is dictated by the fact that while there is always a
88 * pointer past the end of an array, there might not be a valid pointer
89 * before the beginning of an array.</em> [24.4.1]/1,2
90 *
91 * Reverse iterators can be tricky and surprising at first. Their
92 * semantics make sense, however, and the trickiness is a side effect of
93 * the requirement that the iterators must be safe.
94 */
95 template<typename _Iterator>
96 class reverse_iterator
97 : public iterator<typename iterator_traits<_Iterator>::iterator_category,
98 typename iterator_traits<_Iterator>::value_type,
99 typename iterator_traits<_Iterator>::difference_type,
100 typename iterator_traits<_Iterator>::pointer,
101 typename iterator_traits<_Iterator>::reference>
102 {
103 protected:
104 _Iterator current;
105
106 typedef iterator_traits<_Iterator> __traits_type;
107
108 public:
109 typedef _Iterator iterator_type;
110 typedef typename __traits_type::difference_type difference_type;
111 typedef typename __traits_type::pointer pointer;
112 typedef typename __traits_type::reference reference;
113
114 /**
115 * The default constructor value-initializes member @p current.
116 * If it is a pointer, that means it is zero-initialized.
117 */
118 // _GLIBCXX_RESOLVE_LIB_DEFECTS
119 // 235 No specification of default ctor for reverse_iterator
120 reverse_iterator() : current() { }
121
122 /**
123 * This %iterator will move in the opposite direction that @p x does.
124 */
125 explicit
126 reverse_iterator(iterator_type __x) : current(__x) { }
127
128 /**
129 * The copy constructor is normal.
130 */
131 reverse_iterator(const reverse_iterator& __x)
132 : current(__x.current) { }
133
134 /**
135 * A %reverse_iterator across other types can be copied if the
136 * underlying %iterator can be converted to the type of @c current.
137 */
138 template<typename _Iter>
139 reverse_iterator(const reverse_iterator<_Iter>& __x)
140 : current(__x.base()) { }
141
142 /**
143 * @return @c current, the %iterator used for underlying work.
144 */
145 iterator_type
146 base() const
147 { return current; }
148
149 /**
150 * @return A reference to the value at @c --current
151 *
152 * This requires that @c --current is dereferenceable.
153 *
154 * @warning This implementation requires that for an iterator of the
155 * underlying iterator type, @c x, a reference obtained by
156 * @c *x remains valid after @c x has been modified or
157 * destroyed. This is a bug: http://gcc.gnu.org/PR51823
158 */
159 reference
160 operator*() const
161 {
162 _Iterator __tmp = current;
163 return *--__tmp;
164 }
165
166 /**
167 * @return A pointer to the value at @c --current
168 *
169 * This requires that @c --current is dereferenceable.
170 */
171 pointer
172 operator->() const
173 { return &(operator*()); }
174
175 /**
176 * @return @c *this
177 *
178 * Decrements the underlying iterator.
179 */
180 reverse_iterator&
181 operator++()
182 {
183 --current;
184 return *this;
185 }
186
187 /**
188 * @return The original value of @c *this
189 *
190 * Decrements the underlying iterator.
191 */
192 reverse_iterator
193 operator++(int)
194 {
195 reverse_iterator __tmp = *this;
196 --current;
197 return __tmp;
198 }
199
200 /**
201 * @return @c *this
202 *
203 * Increments the underlying iterator.
204 */
205 reverse_iterator&
206 operator--()
207 {
208 ++current;
209 return *this;
210 }
211
212 /**
213 * @return A reverse_iterator with the previous value of @c *this
214 *
215 * Increments the underlying iterator.
216 */
217 reverse_iterator
218 operator--(int)
219 {
220 reverse_iterator __tmp = *this;
221 ++current;
222 return __tmp;
223 }
224
225 /**
226 * @return A reverse_iterator that refers to @c current - @a __n
227 *
228 * The underlying iterator must be a Random Access Iterator.
229 */
230 reverse_iterator
231 operator+(difference_type __n) const
232 { return reverse_iterator(current - __n); }
233
234 /**
235 * @return *this
236 *
237 * Moves the underlying iterator backwards @a __n steps.
238 * The underlying iterator must be a Random Access Iterator.
239 */
240 reverse_iterator&
241 operator+=(difference_type __n)
242 {
243 current -= __n;
244 return *this;
245 }
246
247 /**
248 * @return A reverse_iterator that refers to @c current - @a __n
249 *
250 * The underlying iterator must be a Random Access Iterator.
251 */
252 reverse_iterator
253 operator-(difference_type __n) const
254 { return reverse_iterator(current + __n); }
255
256 /**
257 * @return *this
258 *
259 * Moves the underlying iterator forwards @a __n steps.
260 * The underlying iterator must be a Random Access Iterator.
261 */
262 reverse_iterator&
263 operator-=(difference_type __n)
264 {
265 current += __n;
266 return *this;
267 }
268
269 /**
270 * @return The value at @c current - @a __n - 1
271 *
272 * The underlying iterator must be a Random Access Iterator.
273 */
274 reference
275 operator[](difference_type __n) const
276 { return *(*this + __n); }
277 };
278
279 //@{
280 /**
281 * @param __x A %reverse_iterator.
282 * @param __y A %reverse_iterator.
283 * @return A simple bool.
284 *
285 * Reverse iterators forward many operations to their underlying base()
286 * iterators. Others are implemented in terms of one another.
287 *
288 */
289 template<typename _Iterator>
290 inline bool
291 operator==(const reverse_iterator<_Iterator>& __x,
292 const reverse_iterator<_Iterator>& __y)
293 { return __x.base() == __y.base(); }
294
295 template<typename _Iterator>
296 inline bool
297 operator<(const reverse_iterator<_Iterator>& __x,
298 const reverse_iterator<_Iterator>& __y)
299 { return __y.base() < __x.base(); }
300
301 template<typename _Iterator>
302 inline bool
303 operator!=(const reverse_iterator<_Iterator>& __x,
304 const reverse_iterator<_Iterator>& __y)
305 { return !(__x == __y); }
306
307 template<typename _Iterator>
308 inline bool
309 operator>(const reverse_iterator<_Iterator>& __x,
310 const reverse_iterator<_Iterator>& __y)
311 { return __y < __x; }
312
313 template<typename _Iterator>
314 inline bool
315 operator<=(const reverse_iterator<_Iterator>& __x,
316 const reverse_iterator<_Iterator>& __y)
317 { return !(__y < __x); }
318
319 template<typename _Iterator>
320 inline bool
321 operator>=(const reverse_iterator<_Iterator>& __x,
322 const reverse_iterator<_Iterator>& __y)
323 { return !(__x < __y); }
324
325 template<typename _Iterator>
326 inline typename reverse_iterator<_Iterator>::difference_type
327 operator-(const reverse_iterator<_Iterator>& __x,
328 const reverse_iterator<_Iterator>& __y)
329 { return __y.base() - __x.base(); }
330
331 template<typename _Iterator>
332 inline reverse_iterator<_Iterator>
333 operator+(typename reverse_iterator<_Iterator>::difference_type __n,
334 const reverse_iterator<_Iterator>& __x)
335 { return reverse_iterator<_Iterator>(__x.base() - __n); }
336
337 // _GLIBCXX_RESOLVE_LIB_DEFECTS
338 // DR 280. Comparison of reverse_iterator to const reverse_iterator.
339 template<typename _IteratorL, typename _IteratorR>
340 inline bool
341 operator==(const reverse_iterator<_IteratorL>& __x,
342 const reverse_iterator<_IteratorR>& __y)
343 { return __x.base() == __y.base(); }
344
345 template<typename _IteratorL, typename _IteratorR>
346 inline bool
347 operator<(const reverse_iterator<_IteratorL>& __x,
348 const reverse_iterator<_IteratorR>& __y)
349 { return __y.base() < __x.base(); }
350
351 template<typename _IteratorL, typename _IteratorR>
352 inline bool
353 operator!=(const reverse_iterator<_IteratorL>& __x,
354 const reverse_iterator<_IteratorR>& __y)
355 { return !(__x == __y); }
356
357 template<typename _IteratorL, typename _IteratorR>
358 inline bool
359 operator>(const reverse_iterator<_IteratorL>& __x,
360 const reverse_iterator<_IteratorR>& __y)
361 { return __y < __x; }
362
363 template<typename _IteratorL, typename _IteratorR>
364 inline bool
365 operator<=(const reverse_iterator<_IteratorL>& __x,
366 const reverse_iterator<_IteratorR>& __y)
367 { return !(__y < __x); }
368
369 template<typename _IteratorL, typename _IteratorR>
370 inline bool
371 operator>=(const reverse_iterator<_IteratorL>& __x,
372 const reverse_iterator<_IteratorR>& __y)
373 { return !(__x < __y); }
374
375 template<typename _IteratorL, typename _IteratorR>
376#if __cplusplus201103L >= 201103L
377 // DR 685.
378 inline auto
379 operator-(const reverse_iterator<_IteratorL>& __x,
380 const reverse_iterator<_IteratorR>& __y)
381 -> decltype(__y.base() - __x.base())
382#else
383 inline typename reverse_iterator<_IteratorL>::difference_type
384 operator-(const reverse_iterator<_IteratorL>& __x,
385 const reverse_iterator<_IteratorR>& __y)
386#endif
387 { return __y.base() - __x.base(); }
388 //@}
389
390 // 24.4.2.2.1 back_insert_iterator
391 /**
392 * @brief Turns assignment into insertion.
393 *
394 * These are output iterators, constructed from a container-of-T.
395 * Assigning a T to the iterator appends it to the container using
396 * push_back.
397 *
398 * Tip: Using the back_inserter function to create these iterators can
399 * save typing.
400 */
401 template<typename _Container>
402 class back_insert_iterator
403 : public iterator<output_iterator_tag, void, void, void, void>
404 {
405 protected:
406 _Container* container;
407
408 public:
409 /// A nested typedef for the type of whatever container you used.
410 typedef _Container container_type;
411
412 /// The only way to create this %iterator is with a container.
413 explicit
414 back_insert_iterator(_Container& __x) : container(&__x) { }
415
416 /**
417 * @param __value An instance of whatever type
418 * container_type::const_reference is; presumably a
419 * reference-to-const T for container<T>.
420 * @return This %iterator, for chained operations.
421 *
422 * This kind of %iterator doesn't really have a @a position in the
423 * container (you can think of the position as being permanently at
424 * the end, if you like). Assigning a value to the %iterator will
425 * always append the value to the end of the container.
426 */
427#if __cplusplus201103L < 201103L
428 back_insert_iterator&
429 operator=(typename _Container::const_reference __value)
430 {
431 container->push_back(__value);
432 return *this;
433 }
434#else
435 back_insert_iterator&
436 operator=(const typename _Container::value_type& __value)
437 {
438 container->push_back(__value);
439 return *this;
440 }
441
442 back_insert_iterator&
443 operator=(typename _Container::value_type&& __value)
444 {
445 container->push_back(std::move(__value));
446 return *this;
447 }
448#endif
449
450 /// Simply returns *this.
451 back_insert_iterator&
452 operator*()
453 { return *this; }
454
455 /// Simply returns *this. (This %iterator does not @a move.)
456 back_insert_iterator&
457 operator++()
458 { return *this; }
459
460 /// Simply returns *this. (This %iterator does not @a move.)
461 back_insert_iterator
462 operator++(int)
463 { return *this; }
464 };
465
466 /**
467 * @param __x A container of arbitrary type.
468 * @return An instance of back_insert_iterator working on @p __x.
469 *
470 * This wrapper function helps in creating back_insert_iterator instances.
471 * Typing the name of the %iterator requires knowing the precise full
472 * type of the container, which can be tedious and impedes generic
473 * programming. Using this function lets you take advantage of automatic
474 * template parameter deduction, making the compiler match the correct
475 * types for you.
476 */
477 template<typename _Container>
478 inline back_insert_iterator<_Container>
479 back_inserter(_Container& __x)
480 { return back_insert_iterator<_Container>(__x); }
481
482 /**
483 * @brief Turns assignment into insertion.
484 *
485 * These are output iterators, constructed from a container-of-T.
486 * Assigning a T to the iterator prepends it to the container using
487 * push_front.
488 *
489 * Tip: Using the front_inserter function to create these iterators can
490 * save typing.
491 */
492 template<typename _Container>
493 class front_insert_iterator
494 : public iterator<output_iterator_tag, void, void, void, void>
495 {
496 protected:
497 _Container* container;
498
499 public:
500 /// A nested typedef for the type of whatever container you used.
501 typedef _Container container_type;
502
503 /// The only way to create this %iterator is with a container.
504 explicit front_insert_iterator(_Container& __x) : container(&__x) { }
505
506 /**
507 * @param __value An instance of whatever type
508 * container_type::const_reference is; presumably a
509 * reference-to-const T for container<T>.
510 * @return This %iterator, for chained operations.
511 *
512 * This kind of %iterator doesn't really have a @a position in the
513 * container (you can think of the position as being permanently at
514 * the front, if you like). Assigning a value to the %iterator will
515 * always prepend the value to the front of the container.
516 */
517#if __cplusplus201103L < 201103L
518 front_insert_iterator&
519 operator=(typename _Container::const_reference __value)
520 {
521 container->push_front(__value);
522 return *this;
523 }
524#else
525 front_insert_iterator&
526 operator=(const typename _Container::value_type& __value)
527 {
528 container->push_front(__value);
529 return *this;
530 }
531
532 front_insert_iterator&
533 operator=(typename _Container::value_type&& __value)
534 {
535 container->push_front(std::move(__value));
536 return *this;
537 }
538#endif
539
540 /// Simply returns *this.
541 front_insert_iterator&
542 operator*()
543 { return *this; }
544
545 /// Simply returns *this. (This %iterator does not @a move.)
546 front_insert_iterator&
547 operator++()
548 { return *this; }
549
550 /// Simply returns *this. (This %iterator does not @a move.)
551 front_insert_iterator
552 operator++(int)
553 { return *this; }
554 };
555
556 /**
557 * @param __x A container of arbitrary type.
558 * @return An instance of front_insert_iterator working on @p x.
559 *
560 * This wrapper function helps in creating front_insert_iterator instances.
561 * Typing the name of the %iterator requires knowing the precise full
562 * type of the container, which can be tedious and impedes generic
563 * programming. Using this function lets you take advantage of automatic
564 * template parameter deduction, making the compiler match the correct
565 * types for you.
566 */
567 template<typename _Container>
568 inline front_insert_iterator<_Container>
569 front_inserter(_Container& __x)
570 { return front_insert_iterator<_Container>(__x); }
571
572 /**
573 * @brief Turns assignment into insertion.
574 *
575 * These are output iterators, constructed from a container-of-T.
576 * Assigning a T to the iterator inserts it in the container at the
577 * %iterator's position, rather than overwriting the value at that
578 * position.
579 *
580 * (Sequences will actually insert a @e copy of the value before the
581 * %iterator's position.)
582 *
583 * Tip: Using the inserter function to create these iterators can
584 * save typing.
585 */
586 template<typename _Container>
587 class insert_iterator
588 : public iterator<output_iterator_tag, void, void, void, void>
589 {
590 protected:
591 _Container* container;
592 typename _Container::iterator iter;
593
594 public:
595 /// A nested typedef for the type of whatever container you used.
596 typedef _Container container_type;
597
598 /**
599 * The only way to create this %iterator is with a container and an
600 * initial position (a normal %iterator into the container).
601 */
602 insert_iterator(_Container& __x, typename _Container::iterator __i)
603 : container(&__x), iter(__i) {}
604
605 /**
606 * @param __value An instance of whatever type
607 * container_type::const_reference is; presumably a
608 * reference-to-const T for container<T>.
609 * @return This %iterator, for chained operations.
610 *
611 * This kind of %iterator maintains its own position in the
612 * container. Assigning a value to the %iterator will insert the
613 * value into the container at the place before the %iterator.
614 *
615 * The position is maintained such that subsequent assignments will
616 * insert values immediately after one another. For example,
617 * @code
618 * // vector v contains A and Z
619 *
620 * insert_iterator i (v, ++v.begin());
621 * i = 1;
622 * i = 2;
623 * i = 3;
624 *
625 * // vector v contains A, 1, 2, 3, and Z
626 * @endcode
627 */
628#if __cplusplus201103L < 201103L
629 insert_iterator&
630 operator=(typename _Container::const_reference __value)
631 {
632 iter = container->insert(iter, __value);
633 ++iter;
634 return *this;
635 }
636#else
637 insert_iterator&
638 operator=(const typename _Container::value_type& __value)
639 {
640 iter = container->insert(iter, __value);
641 ++iter;
642 return *this;
643 }
644
645 insert_iterator&
646 operator=(typename _Container::value_type&& __value)
647 {
648 iter = container->insert(iter, std::move(__value));
649 ++iter;
650 return *this;
651 }
652#endif
653
654 /// Simply returns *this.
655 insert_iterator&
656 operator*()
657 { return *this; }
658
659 /// Simply returns *this. (This %iterator does not @a move.)
660 insert_iterator&
661 operator++()
662 { return *this; }
663
664 /// Simply returns *this. (This %iterator does not @a move.)
665 insert_iterator&
666 operator++(int)
667 { return *this; }
668 };
669
670 /**
671 * @param __x A container of arbitrary type.
672 * @return An instance of insert_iterator working on @p __x.
673 *
674 * This wrapper function helps in creating insert_iterator instances.
675 * Typing the name of the %iterator requires knowing the precise full
676 * type of the container, which can be tedious and impedes generic
677 * programming. Using this function lets you take advantage of automatic
678 * template parameter deduction, making the compiler match the correct
679 * types for you.
680 */
681 template<typename _Container, typename _Iterator>
682 inline insert_iterator<_Container>
683 inserter(_Container& __x, _Iterator __i)
684 {
685 return insert_iterator<_Container>(__x,
686 typename _Container::iterator(__i));
687 }
688
689 // @} group iterators
690
691_GLIBCXX_END_NAMESPACE_VERSION
692} // namespace
693
694namespace __gnu_cxx _GLIBCXX_VISIBILITY(default)__attribute__ ((__visibility__ ("default")))
695{
696_GLIBCXX_BEGIN_NAMESPACE_VERSION
697
698 // This iterator adapter is @a normal in the sense that it does not
699 // change the semantics of any of the operators of its iterator
700 // parameter. Its primary purpose is to convert an iterator that is
701 // not a class, e.g. a pointer, into an iterator that is a class.
702 // The _Container parameter exists solely so that different containers
703 // using this template can instantiate different types, even if the
704 // _Iterator parameter is the same.
705 using std::iterator_traits;
706 using std::iterator;
707 template<typename _Iterator, typename _Container>
708 class __normal_iterator
709 {
710 protected:
711 _Iterator _M_current;
712
713 typedef iterator_traits<_Iterator> __traits_type;
714
715 public:
716 typedef _Iterator iterator_type;
717 typedef typename __traits_type::iterator_category iterator_category;
718 typedef typename __traits_type::value_type value_type;
719 typedef typename __traits_type::difference_type difference_type;
720 typedef typename __traits_type::reference reference;
721 typedef typename __traits_type::pointer pointer;
722
723 _GLIBCXX_CONSTEXPRconstexpr __normal_iterator() : _M_current(_Iterator()) { }
724
725 explicit
726 __normal_iterator(const _Iterator& __i) : _M_current(__i) { }
727
728 // Allow iterator to const_iterator conversion
729 template<typename _Iter>
730 __normal_iterator(const __normal_iterator<_Iter,
731 typename __enable_if<
732 (std::__are_same<_Iter, typename _Container::pointer>::__value),
733 _Container>::__type>& __i)
734 : _M_current(__i.base()) { }
735
736 // Forward iterator requirements
737 reference
738 operator*() const
739 { return *_M_current; }
740
741 pointer
742 operator->() const
743 { return _M_current; }
744
745 __normal_iterator&
746 operator++()
747 {
748 ++_M_current;
749 return *this;
750 }
751
752 __normal_iterator
753 operator++(int)
754 { return __normal_iterator(_M_current++); }
755
756 // Bidirectional iterator requirements
757 __normal_iterator&
758 operator--()
759 {
760 --_M_current;
761 return *this;
762 }
763
764 __normal_iterator
765 operator--(int)
766 { return __normal_iterator(_M_current--); }
767
768 // Random access iterator requirements
769 reference
770 operator[](const difference_type& __n) const
771 { return _M_current[__n]; }
772
773 __normal_iterator&
774 operator+=(const difference_type& __n)
775 { _M_current += __n; return *this; }
776
777 __normal_iterator
778 operator+(const difference_type& __n) const
779 { return __normal_iterator(_M_current + __n); }
780
781 __normal_iterator&
782 operator-=(const difference_type& __n)
783 { _M_current -= __n; return *this; }
784
785 __normal_iterator
786 operator-(const difference_type& __n) const
787 { return __normal_iterator(_M_current - __n); }
788
789 const _Iterator&
790 base() const
791 { return _M_current; }
792 };
793
794 // Note: In what follows, the left- and right-hand-side iterators are
795 // allowed to vary in types (conceptually in cv-qualification) so that
796 // comparison between cv-qualified and non-cv-qualified iterators be
797 // valid. However, the greedy and unfriendly operators in std::rel_ops
798 // will make overload resolution ambiguous (when in scope) if we don't
799 // provide overloads whose operands are of the same type. Can someone
800 // remind me what generic programming is about? -- Gaby
801
802 // Forward iterator requirements
803 template<typename _IteratorL, typename _IteratorR, typename _Container>
804 inline bool
805 operator==(const __normal_iterator<_IteratorL, _Container>& __lhs,
806 const __normal_iterator<_IteratorR, _Container>& __rhs)
807 { return __lhs.base() == __rhs.base(); }
808
809 template<typename _Iterator, typename _Container>
810 inline bool
811 operator==(const __normal_iterator<_Iterator, _Container>& __lhs,
812 const __normal_iterator<_Iterator, _Container>& __rhs)
813 { return __lhs.base() == __rhs.base(); }
814
815 template<typename _IteratorL, typename _IteratorR, typename _Container>
816 inline bool
817 operator!=(const __normal_iterator<_IteratorL, _Container>& __lhs,
818 const __normal_iterator<_IteratorR, _Container>& __rhs)
819 { return __lhs.base() != __rhs.base(); }
820
821 template<typename _Iterator, typename _Container>
822 inline bool
823 operator!=(const __normal_iterator<_Iterator, _Container>& __lhs,
824 const __normal_iterator<_Iterator, _Container>& __rhs)
825 { return __lhs.base() != __rhs.base(); }
20
Assuming the condition is true
21
Returning the value 1, which participates in a condition later
826
827 // Random access iterator requirements
828 template<typename _IteratorL, typename _IteratorR, typename _Container>
829 inline bool
830 operator<(const __normal_iterator<_IteratorL, _Container>& __lhs,
831 const __normal_iterator<_IteratorR, _Container>& __rhs)
832 { return __lhs.base() < __rhs.base(); }
833
834 template<typename _Iterator, typename _Container>
835 inline bool
836 operator<(const __normal_iterator<_Iterator, _Container>& __lhs,
837 const __normal_iterator<_Iterator, _Container>& __rhs)
838 { return __lhs.base() < __rhs.base(); }
839
840 template<typename _IteratorL, typename _IteratorR, typename _Container>
841 inline bool
842 operator>(const __normal_iterator<_IteratorL, _Container>& __lhs,
843 const __normal_iterator<_IteratorR, _Container>& __rhs)
844 { return __lhs.base() > __rhs.base(); }
845
846 template<typename _Iterator, typename _Container>
847 inline bool
848 operator>(const __normal_iterator<_Iterator, _Container>& __lhs,
849 const __normal_iterator<_Iterator, _Container>& __rhs)
850 { return __lhs.base() > __rhs.base(); }
851
852 template<typename _IteratorL, typename _IteratorR, typename _Container>
853 inline bool
854 operator<=(const __normal_iterator<_IteratorL, _Container>& __lhs,
855 const __normal_iterator<_IteratorR, _Container>& __rhs)
856 { return __lhs.base() <= __rhs.base(); }
857
858 template<typename _Iterator, typename _Container>
859 inline bool
860 operator<=(const __normal_iterator<_Iterator, _Container>& __lhs,
861 const __normal_iterator<_Iterator, _Container>& __rhs)
862 { return __lhs.base() <= __rhs.base(); }
863
864 template<typename _IteratorL, typename _IteratorR, typename _Container>
865 inline bool
866 operator>=(const __normal_iterator<_IteratorL, _Container>& __lhs,
867 const __normal_iterator<_IteratorR, _Container>& __rhs)
868 { return __lhs.base() >= __rhs.base(); }
869
870 template<typename _Iterator, typename _Container>
871 inline bool
872 operator>=(const __normal_iterator<_Iterator, _Container>& __lhs,
873 const __normal_iterator<_Iterator, _Container>& __rhs)
874 { return __lhs.base() >= __rhs.base(); }
875
876 // _GLIBCXX_RESOLVE_LIB_DEFECTS
877 // According to the resolution of DR179 not only the various comparison
878 // operators but also operator- must accept mixed iterator/const_iterator
879 // parameters.
880 template<typename _IteratorL, typename _IteratorR, typename _Container>
881#if __cplusplus201103L >= 201103L
882 // DR 685.
883 inline auto
884 operator-(const __normal_iterator<_IteratorL, _Container>& __lhs,
885 const __normal_iterator<_IteratorR, _Container>& __rhs)
886 -> decltype(__lhs.base() - __rhs.base())
887#else
888 inline typename __normal_iterator<_IteratorL, _Container>::difference_type
889 operator-(const __normal_iterator<_IteratorL, _Container>& __lhs,
890 const __normal_iterator<_IteratorR, _Container>& __rhs)
891#endif
892 { return __lhs.base() - __rhs.base(); }
893
894 template<typename _Iterator, typename _Container>
895 inline typename __normal_iterator<_Iterator, _Container>::difference_type
896 operator-(const __normal_iterator<_Iterator, _Container>& __lhs,
897 const __normal_iterator<_Iterator, _Container>& __rhs)
898 { return __lhs.base() - __rhs.base(); }
899
900 template<typename _Iterator, typename _Container>
901 inline __normal_iterator<_Iterator, _Container>
902 operator+(typename __normal_iterator<_Iterator, _Container>::difference_type
903 __n, const __normal_iterator<_Iterator, _Container>& __i)
904 { return __normal_iterator<_Iterator, _Container>(__i.base() + __n); }
905
906_GLIBCXX_END_NAMESPACE_VERSION
907} // namespace
908
909#if __cplusplus201103L >= 201103L
910
911namespace std _GLIBCXX_VISIBILITY(default)__attribute__ ((__visibility__ ("default")))
912{
913_GLIBCXX_BEGIN_NAMESPACE_VERSION
914
915 /**
916 * @addtogroup iterators
917 * @{
918 */
919
920 // 24.4.3 Move iterators
921 /**
922 * Class template move_iterator is an iterator adapter with the same
923 * behavior as the underlying iterator except that its dereference
924 * operator implicitly converts the value returned by the underlying
925 * iterator's dereference operator to an rvalue reference. Some
926 * generic algorithms can be called with move iterators to replace
927 * copying with moving.
928 */
929 template<typename _Iterator>
930 class move_iterator
931 {
932 protected:
933 _Iterator _M_current;
934
935 typedef iterator_traits<_Iterator> __traits_type;
936
937 public:
938 typedef _Iterator iterator_type;
939 typedef typename __traits_type::iterator_category iterator_category;
940 typedef typename __traits_type::value_type value_type;
941 typedef typename __traits_type::difference_type difference_type;
942 // NB: DR 680.
943 typedef _Iterator pointer;
944 typedef value_type&& reference;
945
946 move_iterator()
947 : _M_current() { }
948
949 explicit
950 move_iterator(iterator_type __i)
951 : _M_current(__i) { }
952
953 template<typename _Iter>
954 move_iterator(const move_iterator<_Iter>& __i)
955 : _M_current(__i.base()) { }
956
957 iterator_type
958 base() const
959 { return _M_current; }
960
961 reference
962 operator*() const
963 { return std::move(*_M_current); }
964
965 pointer
966 operator->() const
967 { return _M_current; }
968
969 move_iterator&
970 operator++()
971 {
972 ++_M_current;
973 return *this;
974 }
975
976 move_iterator
977 operator++(int)
978 {
979 move_iterator __tmp = *this;
980 ++_M_current;
981 return __tmp;
982 }
983
984 move_iterator&
985 operator--()
986 {
987 --_M_current;
988 return *this;
989 }
990
991 move_iterator
992 operator--(int)
993 {
994 move_iterator __tmp = *this;
995 --_M_current;
996 return __tmp;
997 }
998
999 move_iterator
1000 operator+(difference_type __n) const
1001 { return move_iterator(_M_current + __n); }
1002
1003 move_iterator&
1004 operator+=(difference_type __n)
1005 {
1006 _M_current += __n;
1007 return *this;
1008 }
1009
1010 move_iterator
1011 operator-(difference_type __n) const
1012 { return move_iterator(_M_current - __n); }
1013
1014 move_iterator&
1015 operator-=(difference_type __n)
1016 {
1017 _M_current -= __n;
1018 return *this;
1019 }
1020
1021 reference
1022 operator[](difference_type __n) const
1023 { return std::move(_M_current[__n]); }
1024 };
1025
1026 // Note: See __normal_iterator operators note from Gaby to understand
1027 // why there are always 2 versions for most of the move_iterator
1028 // operators.
1029 template<typename _IteratorL, typename _IteratorR>
1030 inline bool
1031 operator==(const move_iterator<_IteratorL>& __x,
1032 const move_iterator<_IteratorR>& __y)
1033 { return __x.base() == __y.base(); }
1034
1035 template<typename _Iterator>
1036 inline bool
1037 operator==(const move_iterator<_Iterator>& __x,
1038 const move_iterator<_Iterator>& __y)
1039 { return __x.base() == __y.base(); }
1040
1041 template<typename _IteratorL, typename _IteratorR>
1042 inline bool
1043 operator!=(const move_iterator<_IteratorL>& __x,
1044 const move_iterator<_IteratorR>& __y)
1045 { return !(__x == __y); }
1046
1047 template<typename _Iterator>
1048 inline bool
1049 operator!=(const move_iterator<_Iterator>& __x,
1050 const move_iterator<_Iterator>& __y)
1051 { return !(__x == __y); }
1052
1053 template<typename _IteratorL, typename _IteratorR>
1054 inline bool
1055 operator<(const move_iterator<_IteratorL>& __x,
1056 const move_iterator<_IteratorR>& __y)
1057 { return __x.base() < __y.base(); }
1058
1059 template<typename _Iterator>
1060 inline bool
1061 operator<(const move_iterator<_Iterator>& __x,
1062 const move_iterator<_Iterator>& __y)
1063 { return __x.base() < __y.base(); }
1064
1065 template<typename _IteratorL, typename _IteratorR>
1066 inline bool
1067 operator<=(const move_iterator<_IteratorL>& __x,
1068 const move_iterator<_IteratorR>& __y)
1069 { return !(__y < __x); }
1070
1071 template<typename _Iterator>
1072 inline bool
1073 operator<=(const move_iterator<_Iterator>& __x,
1074 const move_iterator<_Iterator>& __y)
1075 { return !(__y < __x); }
1076
1077 template<typename _IteratorL, typename _IteratorR>
1078 inline bool
1079 operator>(const move_iterator<_IteratorL>& __x,
1080 const move_iterator<_IteratorR>& __y)
1081 { return __y < __x; }
1082
1083 template<typename _Iterator>
1084 inline bool
1085 operator>(const move_iterator<_Iterator>& __x,
1086 const move_iterator<_Iterator>& __y)
1087 { return __y < __x; }
1088
1089 template<typename _IteratorL, typename _IteratorR>
1090 inline bool
1091 operator>=(const move_iterator<_IteratorL>& __x,
1092 const move_iterator<_IteratorR>& __y)
1093 { return !(__x < __y); }
1094
1095 template<typename _Iterator>
1096 inline bool
1097 operator>=(const move_iterator<_Iterator>& __x,
1098 const move_iterator<_Iterator>& __y)
1099 { return !(__x < __y); }
1100
1101 // DR 685.
1102 template<typename _IteratorL, typename _IteratorR>
1103 inline auto
1104 operator-(const move_iterator<_IteratorL>& __x,
1105 const move_iterator<_IteratorR>& __y)
1106 -> decltype(__x.base() - __y.base())
1107 { return __x.base() - __y.base(); }
1108
1109 template<typename _Iterator>
1110 inline auto
1111 operator-(const move_iterator<_Iterator>& __x,
1112 const move_iterator<_Iterator>& __y)
1113 -> decltype(__x.base() - __y.base())
1114 { return __x.base() - __y.base(); }
1115
1116 template<typename _Iterator>
1117 inline move_iterator<_Iterator>
1118 operator+(typename move_iterator<_Iterator>::difference_type __n,
1119 const move_iterator<_Iterator>& __x)
1120 { return __x + __n; }
1121
1122 template<typename _Iterator>
1123 inline move_iterator<_Iterator>
1124 make_move_iterator(_Iterator __i)
1125 { return move_iterator<_Iterator>(__i); }
1126
1127 template<typename _Iterator, typename _ReturnType
1128 = typename conditional<__move_if_noexcept_cond
1129 <typename iterator_traits<_Iterator>::value_type>::value,
1130 _Iterator, move_iterator<_Iterator>>::type>
1131 inline _ReturnType
1132 __make_move_if_noexcept_iterator(_Iterator __i)
1133 { return _ReturnType(__i); }
1134
1135 // @} group iterators
1136
1137_GLIBCXX_END_NAMESPACE_VERSION
1138} // namespace
1139
1140#define _GLIBCXX_MAKE_MOVE_ITERATOR(_Iter)std::make_move_iterator(_Iter) std::make_move_iterator(_Iter)
1141#define _GLIBCXX_MAKE_MOVE_IF_NOEXCEPT_ITERATOR(_Iter)std::__make_move_if_noexcept_iterator(_Iter) \
1142 std::__make_move_if_noexcept_iterator(_Iter)
1143#else
1144#define _GLIBCXX_MAKE_MOVE_ITERATOR(_Iter)std::make_move_iterator(_Iter) (_Iter)
1145#define _GLIBCXX_MAKE_MOVE_IF_NOEXCEPT_ITERATOR(_Iter)std::__make_move_if_noexcept_iterator(_Iter) (_Iter)
1146#endif // C++11
1147
1148#endif