Bug Summary

File:alld2/home/sdobbs/Software/jana/jana_0.8.2/Linux_CentOS7.7-x86_64-gcc4.8.5/include/JANA/JEventLoop.h
Warning:line 398, column 7
Null pointer passed to 2nd parameter expecting 'nonnull'

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-unknown-linux-gnu -analyze -disable-free -main-file-name DCutActions.cc -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -mrelocation-model pic -pic-level 2 -fhalf-no-semantic-interposition -mframe-pointer=none -fmath-errno -fno-rounding-math -mconstructor-aliases -munwind-tables -target-cpu x86-64 -tune-cpu generic -fno-split-dwarf-inlining -debugger-tuning=gdb -resource-dir /w/halld-scifs17exp/home/sdobbs/clang/llvm-project/install/lib/clang/12.0.0 -D HAVE_CCDB -D HAVE_RCDB -D HAVE_EVIO -D HAVE_TMVA=1 -D RCDB_MYSQL=1 -D RCDB_SQLITE=1 -D SQLITE_USE_LEGACY_STRUCT=ON -I .Linux_CentOS7.7-x86_64-gcc4.8.5/libraries/ANALYSIS -I libraries/ANALYSIS -I . -I libraries -I libraries/include -I /w/halld-scifs17exp/home/sdobbs/clang/halld_recon/Linux_CentOS7.7-x86_64-gcc4.8.5/include -I external/xstream/include -I /usr/include/tirpc -I /group/halld/Software/builds/Linux_CentOS7.7-x86_64-gcc4.8.5/root/root-6.08.06/include -I /w/halld-scifs17exp/halld2/home/sdobbs/Software/jana/jana_0.8.2/Linux_CentOS7.7-x86_64-gcc4.8.5/include -I /group/halld/Software/builds/Linux_CentOS7.7-x86_64-gcc4.8.5/ccdb/ccdb_1.06.06/include -I /group/halld/Software/builds/Linux_CentOS7.7-x86_64-gcc4.8.5/rcdb/rcdb_0.06.00/cpp/include -I /usr/include/mysql -I /group/halld/Software/builds/Linux_CentOS7.7-x86_64-gcc4.8.5/sqlitecpp/SQLiteCpp-2.2.0^bs130/include -I /group/halld/Software/builds/Linux_CentOS7.7-x86_64-gcc4.8.5/sqlite/sqlite-3.13.0^bs130/include -I /group/halld/Software/builds/Linux_CentOS7.7-x86_64-gcc4.8.5/hdds/hdds-4.9.0/Linux_CentOS7.7-x86_64-gcc4.8.5/src -I /group/halld/Software/builds/Linux_CentOS7.7-x86_64-gcc4.8.5/xerces-c/xerces-c-3.1.4/include -I /group/halld/Software/builds/Linux_CentOS7.7-x86_64-gcc4.8.5/evio/evio-4.4.6/Linux-x86_64/include -internal-isystem /usr/lib/gcc/x86_64-redhat-linux/4.8.5/../../../../include/c++/4.8.5 -internal-isystem /usr/lib/gcc/x86_64-redhat-linux/4.8.5/../../../../include/c++/4.8.5/x86_64-redhat-linux -internal-isystem /usr/lib/gcc/x86_64-redhat-linux/4.8.5/../../../../include/c++/4.8.5/backward -internal-isystem /usr/local/include -internal-isystem /w/halld-scifs17exp/home/sdobbs/clang/llvm-project/install/lib/clang/12.0.0/include -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -std=c++11 -fdeprecated-macro -fdebug-compilation-dir /home/sdobbs/work/clang/halld_recon/src -ferror-limit 19 -fgnuc-version=4.2.1 -fcxx-exceptions -fexceptions -vectorize-loops -vectorize-slp -analyzer-output=html -faddrsig -o /tmp/scan-build-2021-01-21-110224-160369-1 -x c++ libraries/ANALYSIS/DCutActions.cc

libraries/ANALYSIS/DCutActions.cc

1#ifdef VTRACE
2#include "vt_user.h"
3#endif
4
5#include "ANALYSIS/DCutActions.h"
6
7void DCutAction_MinTrackHits::Initialize(JEventLoop* locEventLoop)
8{
9 Run_Update(locEventLoop);
10}
11
12void DCutAction_MinTrackHits::Run_Update(JEventLoop* locEventLoop)
13{
14 locEventLoop->GetSingle(dParticleID);
15}
16
17
18string DCutAction_MinTrackHits::Get_ActionName(void) const
19{
20 ostringstream locStream;
21 locStream << DAnalysisAction::Get_ActionName() << "_" << dMinTrackHits;
22 return locStream.str();
23}
24
25bool DCutAction_MinTrackHits::Perform_Action(JEventLoop* locEventLoop, const DParticleCombo* locParticleCombo)
26{
27 auto locParticles = locParticleCombo->Get_FinalParticles_Measured(Get_Reaction(), d_Charged);
28 for(size_t loc_i = 0; loc_i < locParticles.size(); ++loc_i)
29 {
30 const DChargedTrackHypothesis* locChargedTrackHypothesis = static_cast<const DChargedTrackHypothesis*>(locParticles[loc_i]);
31 auto locTrackTimeBased = locChargedTrackHypothesis->Get_TrackTimeBased();
32
33 set<int> locCDCRings, locFDCPlanes;
34 dParticleID->Get_CDCRings(locTrackTimeBased->dCDCRings, locCDCRings);
35 dParticleID->Get_FDCPlanes(locTrackTimeBased->dFDCPlanes, locFDCPlanes);
36 unsigned int locNumTrackHits = locCDCRings.size() + locFDCPlanes.size();
37 if(locNumTrackHits < dMinTrackHits)
38 return false;
39 }
40 return true;
41}
42
43string DCutAction_ThrownTopology::Get_ActionName(void) const
44{
45 ostringstream locStream;
46 locStream << DAnalysisAction::Get_ActionName() << "_" << dExclusiveMatchFlag;
47 return locStream.str();
48}
49
50void DCutAction_ThrownTopology::Initialize(JEventLoop* locEventLoop)
51{
52 Run_Update(locEventLoop);
53}
54
55void DCutAction_ThrownTopology::Run_Update(JEventLoop* locEventLoop)
56{
57 locEventLoop->GetSingle(dAnalysisUtilities);
58}
59
60bool DCutAction_ThrownTopology::Perform_Action(JEventLoop* locEventLoop, const DParticleCombo* locParticleCombo)
61{
62 return dAnalysisUtilities->Check_ThrownsMatchReaction(locEventLoop, Get_Reaction(), dExclusiveMatchFlag);
63}
64
65bool DCutAction_AllTracksHaveDetectorMatch::Perform_Action(JEventLoop* locEventLoop, const DParticleCombo* locParticleCombo)
66{
67 auto locParticles = locParticleCombo->Get_FinalParticles_Measured(Get_Reaction(), d_Charged);
68 for(size_t loc_i = 0; loc_i < locParticles.size(); ++loc_i)
69 {
70 const DChargedTrackHypothesis* locChargedTrackHypothesis = static_cast<const DChargedTrackHypothesis*>(locParticles[loc_i]);
71 if(locChargedTrackHypothesis->Get_SCHitMatchParams() != NULL__null)
72 continue;
73 if(locChargedTrackHypothesis->Get_TOFHitMatchParams() != NULL__null)
74 continue;
75 if(locChargedTrackHypothesis->Get_BCALShowerMatchParams() != NULL__null)
76 continue;
77 if(locChargedTrackHypothesis->Get_FCALShowerMatchParams() != NULL__null)
78 continue;
79 return false;
80 }
81 return true;
82}
83
84string DCutAction_PIDFOM::Get_ActionName(void) const
85{
86 ostringstream locStream;
87 locStream << DAnalysisAction::Get_ActionName() << "_" << dMinimumConfidenceLevel;
88 return locStream.str();
89}
90
91bool DCutAction_PIDFOM::Perform_Action(JEventLoop* locEventLoop, const DParticleCombo* locParticleCombo)
92{
93 auto locSteps = locParticleCombo->Get_ParticleComboSteps();
94 for(size_t loc_i = 0; loc_i < locSteps.size(); ++loc_i)
95 {
96 if((dStepPID != Unknown) && (Get_Reaction()->Get_ReactionStep(loc_i)->Get_InitialPID() != dStepPID))
97 continue;
98 auto locParticles = locSteps[loc_i]->Get_FinalParticles_Measured(Get_Reaction()->Get_ReactionStep(loc_i), d_AllCharges);
99 for(size_t loc_j = 0; loc_j < locParticles.size(); ++loc_j)
100 {
101 if((locParticles[loc_j]->PID() != dParticleID) && (dParticleID != Unknown))
102 continue;
103 if(ParticleCharge(dParticleID) == 0)
104 {
105 const DNeutralParticleHypothesis* locNeutralParticleHypothesis = static_cast<const DNeutralParticleHypothesis*>(locParticles[loc_i]);
106 if((locNeutralParticleHypothesis->Get_FOM() < dMinimumConfidenceLevel) && (locNeutralParticleHypothesis->Get_NDF() > 0))
107 return false;
108 if(dCutNDFZeroFlag && (locNeutralParticleHypothesis->Get_NDF() == 0))
109 return false;
110 }
111 else
112 {
113 const DChargedTrackHypothesis* locChargedTrackHypothesis = static_cast<const DChargedTrackHypothesis*>(locParticles[loc_i]);
114 if((locChargedTrackHypothesis->Get_FOM() < dMinimumConfidenceLevel) && (locChargedTrackHypothesis->Get_NDF() > 0))
115 return false;
116 if(dCutNDFZeroFlag && (locChargedTrackHypothesis->Get_NDF() == 0))
117 return false;
118 }
119 }
120 }
121 return true;
122}
123
124string DCutAction_EachPIDFOM::Get_ActionName(void) const
125{
126 ostringstream locStream;
127 locStream << DAnalysisAction::Get_ActionName() << "_" << dMinimumConfidenceLevel;
128 return locStream.str();
129}
130
131bool DCutAction_EachPIDFOM::Perform_Action(JEventLoop* locEventLoop, const DParticleCombo* locParticleCombo)
132{
133 auto locParticles = locParticleCombo->Get_FinalParticles_Measured(Get_Reaction(), d_AllCharges);
134 for(size_t loc_i = 0; loc_i < locParticles.size(); ++loc_i)
135 {
136 if(ParticleCharge(locParticles[loc_i]->PID()) == 0)
137 {
138 const DNeutralParticleHypothesis* locNeutralParticleHypothesis = static_cast<const DNeutralParticleHypothesis*>(locParticles[loc_i]);
139 if(dCutNDFZeroFlag && (locNeutralParticleHypothesis->Get_NDF() == 0))
140 return false;
141 if((locNeutralParticleHypothesis->Get_FOM() < dMinimumConfidenceLevel) && (locNeutralParticleHypothesis->Get_NDF() > 0))
142 return false;
143 }
144 else
145 {
146 const DChargedTrackHypothesis* locChargedTrackHypothesis = static_cast<const DChargedTrackHypothesis*>(locParticles[loc_i]);
147 if(dCutNDFZeroFlag && (locChargedTrackHypothesis->Get_NDF() == 0))
148 return false;
149 if((locChargedTrackHypothesis->Get_FOM() < dMinimumConfidenceLevel) && (locChargedTrackHypothesis->Get_NDF() > 0))
150 return false;
151 }
152 }
153 return true;
154}
155
156string DCutAction_CombinedPIDFOM::Get_ActionName(void) const
157{
158 ostringstream locStream;
159 locStream << DAnalysisAction::Get_ActionName() << "_" << dMinimumConfidenceLevel;
160 return locStream.str();
161}
162
163bool DCutAction_CombinedPIDFOM::Perform_Action(JEventLoop* locEventLoop, const DParticleCombo* locParticleCombo)
164{
165 auto locParticles = locParticleCombo->Get_FinalParticles_Measured(Get_Reaction(), d_AllCharges);
166
167 unsigned int locTotalNDF = 0;
168 double locTotalChiSq = 0.0;
169 for(size_t loc_i = 0; loc_i < locParticles.size(); ++loc_i)
170 {
171 if(ParticleCharge(locParticles[loc_i]->PID()) == 0)
172 {
173 const DNeutralParticleHypothesis* locNeutralParticleHypothesis = static_cast<const DNeutralParticleHypothesis*>(locParticles[loc_i]);
174 if(dCutNDFZeroFlag && (locNeutralParticleHypothesis->Get_NDF() == 0))
175 return false;
176 locTotalNDF += locNeutralParticleHypothesis->Get_NDF();
177 locTotalChiSq += locNeutralParticleHypothesis->Get_ChiSq();
178 }
179 else
180 {
181 const DChargedTrackHypothesis* locChargedTrackHypothesis = static_cast<const DChargedTrackHypothesis*>(locParticles[loc_i]);
182 if(dCutNDFZeroFlag && (locChargedTrackHypothesis->Get_NDF() == 0))
183 return false;
184 locTotalNDF += locChargedTrackHypothesis->Get_NDF();
185 locTotalChiSq += locChargedTrackHypothesis->Get_ChiSq();
186 }
187 }
188 return ((locTotalNDF == 0) ? true : (TMath::Prob(locTotalChiSq, locTotalNDF) >= dMinimumConfidenceLevel));
189}
190
191string DCutAction_CombinedTrackingFOM::Get_ActionName(void) const
192{
193 ostringstream locStream;
194 locStream << DAnalysisAction::Get_ActionName() << "_" << dMinimumConfidenceLevel;
195 return locStream.str();
196}
197
198bool DCutAction_CombinedTrackingFOM::Perform_Action(JEventLoop* locEventLoop, const DParticleCombo* locParticleCombo)
199{
200 unsigned int locTotalNDF = 0;
201 double locTotalChiSq = 0.0;
202
203 auto locParticles = locParticleCombo->Get_FinalParticles_Measured(Get_Reaction(), d_Charged);
204 for(size_t loc_i = 0; loc_i < locParticles.size(); ++loc_i)
205 {
206 auto locTrackTimeBased = (dynamic_cast<const DChargedTrackHypothesis*>(locParticles[loc_i]))->Get_TrackTimeBased();
207 locTotalNDF += locTrackTimeBased->Ndof;
208 locTotalChiSq += locTrackTimeBased->chisq;
209 }
210
211 return ((locTotalNDF == 0) ? true : (TMath::Prob(locTotalChiSq, locTotalNDF) >= dMinimumConfidenceLevel));
212}
213
214string DCutAction_MissingMass::Get_ActionName(void) const
215{
216 ostringstream locStream;
217 locStream << DAnalysisAction::Get_ActionName() << "_" << dMinimumMissingMass << "_" << dMaximumMissingMass;
218 return locStream.str();
219}
220
221void DCutAction_MissingMass::Initialize(JEventLoop* locEventLoop)
222{
223 Run_Update(locEventLoop);
224}
225
226void DCutAction_MissingMass::Run_Update(JEventLoop* locEventLoop)
227{
228 locEventLoop->GetSingle(dAnalysisUtilities);
229}
230
231bool DCutAction_MissingMass::Perform_Action(JEventLoop* locEventLoop, const DParticleCombo* locParticleCombo)
232{
233 //build all possible combinations of the included pids
234 set<set<size_t> > locIndexCombos = dAnalysisUtilities->Build_IndexCombos(Get_Reaction()->Get_ReactionStep(dMissingMassOffOfStepIndex), dMissingMassOffOfPIDs);
235
236 //loop over them: Must fail ALL to fail. if any succeed, return true
237 set<set<size_t> >::iterator locComboIterator = locIndexCombos.begin();
238 for(; locComboIterator != locIndexCombos.end(); ++locComboIterator)
239 {
240 DLorentzVector locMissingP4 = dAnalysisUtilities->Calc_MissingP4(Get_Reaction(), locParticleCombo, 0, dMissingMassOffOfStepIndex, *locComboIterator, Get_UseKinFitResultsFlag());
241 double locMissingMass = locMissingP4.M();
242 if((locMissingMass >= dMinimumMissingMass) && (locMissingMass <= dMaximumMissingMass))
243 return true;
244 }
245
246 return false; //all failed
247}
248
249string DCutAction_MissingMassSquared::Get_ActionName(void) const
250{
251 ostringstream locStream;
252 locStream << DAnalysisAction::Get_ActionName() << "_" << dMinimumMissingMassSq << "_" << dMaximumMissingMassSq;
253 return locStream.str();
254}
255
256void DCutAction_MissingMassSquared::Initialize(JEventLoop* locEventLoop)
257{
258 locEventLoop->GetSingle(dAnalysisUtilities);
259}
260
261void DCutAction_MissingMassSquared::Run_Update(JEventLoop* locEventLoop)
262{
263 locEventLoop->GetSingle(dAnalysisUtilities);
264}
265
266
267bool DCutAction_MissingMassSquared::Perform_Action(JEventLoop* locEventLoop, const DParticleCombo* locParticleCombo)
268{
269 //build all possible combinations of the included pids
270 set<set<size_t> > locIndexCombos = dAnalysisUtilities->Build_IndexCombos(Get_Reaction()->Get_ReactionStep(dMissingMassOffOfStepIndex), dMissingMassOffOfPIDs);
271
272 //loop over them: Must fail ALL to fail. if any succeed, return true
273 set<set<size_t> >::iterator locComboIterator = locIndexCombos.begin();
274 for(; locComboIterator != locIndexCombos.end(); ++locComboIterator)
275 {
276 DLorentzVector locMissingP4 = dAnalysisUtilities->Calc_MissingP4(Get_Reaction(), locParticleCombo, 0, dMissingMassOffOfStepIndex, *locComboIterator, Get_UseKinFitResultsFlag());
277 double locMissingMassSq = locMissingP4.M2();
278 if((locMissingMassSq >= dMinimumMissingMassSq) && (locMissingMassSq <= dMaximumMissingMassSq))
279 return true;
280 }
281
282 return false; //all failed
283}
284
285string DCutAction_InvariantMass::Get_ActionName(void) const
286{
287 ostringstream locStream;
288 locStream << DAnalysisAction::Get_ActionName() << "_" << dInitialPID << "_" << dMinMass << "_" << dMaxMass;
289 return locStream.str();
290}
291
292void DCutAction_InvariantMass::Initialize(JEventLoop* locEventLoop)
293{
294 Run_Update(locEventLoop);
295}
296
297void DCutAction_InvariantMass::Run_Update(JEventLoop* locEventLoop)
298{
299 locEventLoop->GetSingle(dAnalysisUtilities);
300}
301
302bool DCutAction_InvariantMass::Perform_Action(JEventLoop* locEventLoop, const DParticleCombo* locParticleCombo)
303{
304 for(size_t loc_i = 0; loc_i < locParticleCombo->Get_NumParticleComboSteps(); ++loc_i)
305 {
306 const DReactionStep* locReactionStep = Get_Reaction()->Get_ReactionStep(loc_i);
307 if((dInitialPID != Unknown) && (locReactionStep->Get_InitialPID() != dInitialPID))
308 continue;
309 if((dStepIndex != -1) && (int(loc_i) != dStepIndex))
310 continue;
311
312 //build all possible combinations of the included pids
313 set<set<size_t> > locIndexCombos = dAnalysisUtilities->Build_IndexCombos(locReactionStep, dToIncludePIDs);
314
315 //loop over them: Must fail ALL to fail. if any succeed, go to the next step
316 set<set<size_t> >::iterator locComboIterator = locIndexCombos.begin();
317 bool locAnyOKFlag = false;
318 for(; locComboIterator != locIndexCombos.end(); ++locComboIterator)
319 {
320 DLorentzVector locFinalStateP4 = dAnalysisUtilities->Calc_FinalStateP4(Get_Reaction(), locParticleCombo, loc_i, *locComboIterator, Get_UseKinFitResultsFlag());
321 double locInvariantMass = locFinalStateP4.M();
322 if((locInvariantMass > dMaxMass) || (locInvariantMass < dMinMass))
323 continue;
324 locAnyOKFlag = true;
325 break;
326 }
327 if(!locAnyOKFlag)
328 return false;
329 }
330
331 return true;
332}
333
334string DCutAction_AllVertexZ::Get_ActionName(void) const
335{
336 ostringstream locStream;
337 locStream << DAnalysisAction::Get_ActionName() << "_" << dMinVertexZ << "_" << dMaxVertexZ;
338 return locStream.str();
339}
340
341bool DCutAction_AllVertexZ::Perform_Action(JEventLoop* locEventLoop, const DParticleCombo* locParticleCombo)
342{
343 auto locParticles = locParticleCombo->Get_FinalParticles_Measured(Get_Reaction(), d_Charged);
344 double locVertexZ;
345 for(size_t loc_i = 0; loc_i < locParticles.size(); ++loc_i)
346 {
347 locVertexZ = locParticles[loc_i]->position().Z();
348 if((locVertexZ < dMinVertexZ) || (locVertexZ > dMaxVertexZ))
349 return false;
350 }
351 return true;
352}
353
354string DCutAction_ProductionVertexZ::Get_ActionName(void) const
355{
356 ostringstream locStream;
357 locStream << DAnalysisAction::Get_ActionName() << "_" << dMinVertexZ << "_" << dMaxVertexZ;
358 return locStream.str();
359}
360
361bool DCutAction_ProductionVertexZ::Perform_Action(JEventLoop* locEventLoop, const DParticleCombo* locParticleCombo)
362{
363 const DParticleComboStep* locStep = locParticleCombo->Get_ParticleComboStep(0);
364 double locVertexZ = locStep->Get_Position().Z();
365 return ((locVertexZ >= dMinVertexZ) && (locVertexZ <= dMaxVertexZ));
366}
367
368string DCutAction_MaxTrackDOCA::Get_ActionName(void) const
369{
370 ostringstream locStream;
371 locStream << DAnalysisAction::Get_ActionName() << "_" << dMaxTrackDOCA;
372 return locStream.str();
373}
374
375void DCutAction_MaxTrackDOCA::Initialize(JEventLoop* locEventLoop)
376{
377 Run_Update(locEventLoop);
378}
379
380void DCutAction_MaxTrackDOCA::Run_Update(JEventLoop* locEventLoop)
381{
382 locEventLoop->GetSingle(dAnalysisUtilities);
383}
384
385bool DCutAction_MaxTrackDOCA::Perform_Action(JEventLoop* locEventLoop, const DParticleCombo* locParticleCombo)
386{
387 //should be improved...: the particles at a given vertex may span several steps
388 auto locSteps = locParticleCombo->Get_ParticleComboSteps();
389 for(size_t loc_i = 0; loc_i < locSteps.size(); ++loc_i)
390 {
391 if((dInitialPID != Unknown) && (Get_Reaction()->Get_ReactionStep(loc_i)->Get_InitialPID() != dInitialPID))
392 continue;
393 auto locParticles = locSteps[loc_i]->Get_FinalParticles_Measured(Get_Reaction()->Get_ReactionStep(loc_i), d_Charged);
394 for(size_t loc_j = 0; loc_j < locParticles.size(); ++loc_j)
395 {
396 for(size_t loc_k = loc_j + 1; loc_k < locParticles.size(); ++loc_k)
397 {
398 auto locDOCA = dAnalysisUtilities->Calc_DOCA(locParticles[loc_j], locParticles[loc_k]);
399 if(locDOCA > dMaxTrackDOCA)
400 return false;
401 }
402 }
403 }
404 return true;
405}
406
407string DCutAction_KinFitFOM::Get_ActionName(void) const
408{
409 ostringstream locStream;
410 locStream << DAnalysisAction::Get_ActionName() << "_" << dMinimumConfidenceLevel;
411 return locStream.str();
412}
413
414bool DCutAction_KinFitFOM::Perform_Action(JEventLoop* locEventLoop, const DParticleCombo* locParticleCombo)
415{
416 const DKinFitResults* locKinFitResults = locParticleCombo->Get_KinFitResults();
417 if(locKinFitResults == NULL__null)
418 return false;
419 return (locKinFitResults->Get_ConfidenceLevel() > dMinimumConfidenceLevel);
420}
421
422string DCutAction_KinFitChiSq::Get_ActionName(void) const
423{
424 ostringstream locStream;
425 locStream << DAnalysisAction::Get_ActionName() << "_" << dMaximumChiSq;
426 return locStream.str();
427}
428
429bool DCutAction_KinFitChiSq::Perform_Action(JEventLoop* locEventLoop, const DParticleCombo* locParticleCombo)
430{
431 const DKinFitResults* locKinFitResults = locParticleCombo->Get_KinFitResults();
432 if(locKinFitResults == NULL__null)
433 return false;
434 return (locKinFitResults->Get_ChiSq()/locKinFitResults->Get_NDF() < dMaximumChiSq);
435}
436
437void DCutAction_BDTSignalCombo::Initialize(JEventLoop* locEventLoop)
438{
439 if(dCutAction_TrueBeamParticle == nullptr)
440 dCutAction_TrueBeamParticle = new DCutAction_TrueBeamParticle(Get_Reaction());
441 dCutAction_TrueBeamParticle->Initialize(locEventLoop);
442 Run_Update(locEventLoop);
443}
444
445void DCutAction_BDTSignalCombo::Run_Update(JEventLoop* locEventLoop)
446{
447 locEventLoop->GetSingle(dAnalysisUtilities);
448}
449
450bool DCutAction_BDTSignalCombo::Perform_Action(JEventLoop* locEventLoop, const DParticleCombo* locParticleCombo)
451{
452#ifdef VTRACE
453 VT_TRACER("DCutAction_BDTSignalCombo::Perform_Action()");
454#endif
455
456 vector<const DMCThrownMatching*> locMCThrownMatchingVector;
457 locEventLoop->Get(locMCThrownMatchingVector);
458 if(locMCThrownMatchingVector.empty())
459 return false; //not a simulated event
460 const DMCThrownMatching* locMCThrownMatching = locMCThrownMatchingVector[0];
461
462 //Check DReaction vs thrown (i.e. not combo contents)
463 if(!dAnalysisUtilities->Check_IsBDTSignalEvent(locEventLoop, Get_Reaction(), dExclusiveMatchFlag, dIncludeDecayingToReactionFlag))
464 return false;
465
466 //Do we need to pick the beam photon? If so, look for it
467 Particle_t locPID = Get_Reaction()->Get_ReactionStep(0)->Get_InitialPID();
468 if(locPID == Gamma)
469 {
470 if(!(*dCutAction_TrueBeamParticle)(locEventLoop, locParticleCombo))
471 return false; //needed the true beam photon, didn't have it
472 }
473
474 //get & organize throwns
475 vector<const DMCThrown*> locMCThrowns;
476 locEventLoop->Get(locMCThrowns);
477
478 map<int, const DMCThrown*> locMCThrownMyIDMap; //map of myid -> thrown
479 for(size_t loc_i = 0; loc_i < locMCThrowns.size(); ++loc_i)
480 locMCThrownMyIDMap[locMCThrowns[loc_i]->myid] = locMCThrowns[loc_i];
481
482 //OK, now need to check and see if the particles have the right PID & the right parent chain
483 for(size_t loc_i = 0; loc_i < locParticleCombo->Get_NumParticleComboSteps(); ++loc_i)
484 {
485 const DParticleComboStep* locParticleComboStep = locParticleCombo->Get_ParticleComboStep(loc_i);
486 auto locReactionStep = Get_Reaction()->Get_ReactionStep(loc_i);
487
488 auto locParticles = locParticleComboStep->Get_FinalParticles_Measured(locReactionStep, d_AllCharges);
489 for(size_t loc_j = 0; loc_j < locParticles.size(); ++loc_j)
490 {
491 const DMCThrown* locMCThrown = NULL__null;
492 double locMatchFOM = 0.0;
493 if(ParticleCharge(locParticles[loc_j]->PID()) == 0)
494 {
495 //check if good neutral & PID
496 const DNeutralParticleHypothesis* locNeutralParticleHypothesis = static_cast<const DNeutralParticleHypothesis*>(locParticles[loc_j]);
497 locMCThrown = locMCThrownMatching->Get_MatchingMCThrown(locNeutralParticleHypothesis, locMatchFOM);
498 if((locMCThrown == NULL__null) || (locMatchFOM < dMinThrownMatchFOM))
499 return false; //not matched
500 if(((Particle_t)locMCThrown->type) != locParticles[loc_j]->PID())
501 return false; //bad PID
502 }
503 else
504 {
505 //check if good track & PID
506 double locMatchFOM = 0.0;
507 const DChargedTrackHypothesis* locChargedTrackHypothesis = static_cast<const DChargedTrackHypothesis*>(locParticles[loc_j]);
508 locMCThrown = locMCThrownMatching->Get_MatchingMCThrown(locChargedTrackHypothesis, locMatchFOM);
509 if((locMCThrown == NULL__null) || (locMatchFOM < dMinThrownMatchFOM))
510 return false; //not matched
511 if(((Particle_t)locMCThrown->type) != locParticles[loc_j]->PID())
512 return false; //bad PID
513 }
514
515 //check if parent is correct
516 auto locParentSearchReactionStep = locReactionStep;
517 int locParentID = locMCThrown->parentid;
518 int locSearchStepIndex = loc_i;
519
520 do
521 {
522 if(locParentID == -1)
523 return false; //parent particle is not listed: matched to knock-out particle, is wrong. bail
524
525 if(locParentID == 0)
526 {
527 //parent id of 0 is directly produced
528 Particle_t locInitPID = locParentSearchReactionStep->Get_InitialPID();
529 if((locInitPID == phiMeson) || (locInitPID == omega))
530 {
531 //these particles are not constrained: check their parent step instead
532 locSearchStepIndex = DAnalysis::Get_InitialParticleDecayFromIndices(Get_Reaction(), locSearchStepIndex).first;
533 locReactionStep = Get_Reaction()->Get_ReactionStep(locSearchStepIndex);
534 continue;
535 }
536 if(locInitPID != Gamma)
537 return false; //was directly (photo-) produced, but not so in combo: bail
538 break; //good: this is the only "good" exit point of the do-loop
539 }
540
541 const DMCThrown* locMCThrownParent = locMCThrownMyIDMap[locParentID];
542 Particle_t locPID = locMCThrownParent->PID();
543 if((locPID == Unknown) || IsResonance(locPID) || (locPID == omega) || (locPID == phiMeson))
544 {
545 //intermediate (unknown, resonance, phi, or omega) particle: go to its parent
546 locParentID = locMCThrownParent->parentid;
547 continue;
548 }
549
550 if(locPID != locParentSearchReactionStep->Get_InitialPID())
551 {
552 //the true particle was produced from a different parent
553 if(!dIncludeDecayingToReactionFlag)
554 return false; //will not consider intermediate decays: bail
555
556 //it could still be BDT signal, if the thrown parent eventually came from the combo parent particle
557 //treat as an intermediate decaying particle: go to its parent
558 locParentID = locMCThrownParent->parentid;
559 continue;
560 }
561
562 //OK, we've determined that the particle in question decayed from the correct particle.
563 //HOWEVER, we need to determine whether the PARENT decayed from the correct particle (and on(back)wards until the production step)
564 locParentID = locMCThrownParent->parentid;
565 locSearchStepIndex = DAnalysis::Get_InitialParticleDecayFromIndices(Get_Reaction(), locSearchStepIndex).first;
566 locReactionStep = Get_Reaction()->Get_ReactionStep(locSearchStepIndex);
567 }
568 while(true);
569 }
570 }
571
572 return true; //we made it!
573}
574
575DCutAction_BDTSignalCombo::~DCutAction_BDTSignalCombo(void)
576{
577 if(dCutAction_TrueBeamParticle != NULL__null)
578 delete dCutAction_TrueBeamParticle;
579}
580
581void DCutAction_TrueCombo::Initialize(JEventLoop* locEventLoop)
582{
583 if(dCutAction_TrueBeamParticle == nullptr)
584 dCutAction_TrueBeamParticle = new DCutAction_TrueBeamParticle(Get_Reaction());
585 dCutAction_TrueBeamParticle->Initialize(locEventLoop);
586 if(dCutAction_ThrownTopology == nullptr)
587 dCutAction_ThrownTopology = new DCutAction_ThrownTopology(Get_Reaction(), dExclusiveMatchFlag);
588 dCutAction_ThrownTopology->Initialize(locEventLoop);
589}
590
591void DCutAction_TrueCombo::Run_Update(JEventLoop* locEventLoop)
592{
593 dCutAction_TrueBeamParticle->Run_Update(locEventLoop);
594 dCutAction_ThrownTopology->Run_Update(locEventLoop);
595}
596
597bool DCutAction_TrueCombo::Perform_Action(JEventLoop* locEventLoop, const DParticleCombo* locParticleCombo)
598{
599#ifdef VTRACE
600 VT_TRACER("DCutAction_TrueCombo::Perform_Action()");
601#endif
602
603 vector<const DMCThrownMatching*> locMCThrownMatchingVector;
604 locEventLoop->Get(locMCThrownMatchingVector);
605 if(locMCThrownMatchingVector.empty())
606 return false; //not a simulated event
607 const DMCThrownMatching* locMCThrownMatching = locMCThrownMatchingVector[0];
608
609 if(!(*dCutAction_ThrownTopology)(locEventLoop, locParticleCombo))
610 return false; //not the thrown topology: bail
611
612 //Do we need to pick the beam photon? If so, look for it
613 if(DAnalysis::Get_IsFirstStepBeam(Get_Reaction()))
614 {
615 if(!(*dCutAction_TrueBeamParticle)(locEventLoop, locParticleCombo))
616 return false; //needed the true beam photon, didn't have it
617 }
618
619 //get & organize throwns
620 vector<const DMCThrown*> locMCThrowns;
621 locEventLoop->Get(locMCThrowns);
622
623 map<int, const DMCThrown*> locMCThrownMyIDMap; //map of myid -> thrown
624 for(size_t loc_i = 0; loc_i < locMCThrowns.size(); ++loc_i)
625 locMCThrownMyIDMap[locMCThrowns[loc_i]->myid] = locMCThrowns[loc_i];
626
627 //OK, now need to check and see if the particles have the right PID & the right parent chain
628 for(size_t loc_i = 0; loc_i < locParticleCombo->Get_NumParticleComboSteps(); ++loc_i)
629 {
630 const DParticleComboStep* locParticleComboStep = locParticleCombo->Get_ParticleComboStep(loc_i);
631 auto locReactionStep = Get_Reaction()->Get_ReactionStep(loc_i);
632
633 auto locParticles = locParticleComboStep->Get_FinalParticles_Measured(locReactionStep, d_AllCharges);
634 for(size_t loc_j = 0; loc_j < locParticles.size(); ++loc_j)
635 {
636 const DMCThrown* locMCThrown = NULL__null;
637 double locMatchFOM = 0.0;
638 if(ParticleCharge(locParticles[loc_j]->PID()) == 0)
639 {
640 //check if good neutral & PID
641 const DNeutralParticleHypothesis* locNeutralParticleHypothesis = static_cast<const DNeutralParticleHypothesis*>(locParticles[loc_j]);
642 locMCThrown = locMCThrownMatching->Get_MatchingMCThrown(locNeutralParticleHypothesis, locMatchFOM);
643 if((locMCThrown == NULL__null) || (locMatchFOM < dMinThrownMatchFOM))
644 return false; //not matched
645 if(((Particle_t)locMCThrown->type) != locParticles[loc_j]->PID())
646 return false; //bad PID
647 }
648 else
649 {
650 //check if good track & PID
651 double locMatchFOM = 0.0;
652 const DChargedTrackHypothesis* locChargedTrackHypothesis = static_cast<const DChargedTrackHypothesis*>(locParticles[loc_j]);
653 locMCThrown = locMCThrownMatching->Get_MatchingMCThrown(locChargedTrackHypothesis, locMatchFOM);
654 if((locMCThrown == NULL__null) || (locMatchFOM < dMinThrownMatchFOM))
655 return false; //not matched
656 if(((Particle_t)locMCThrown->type) != locParticles[loc_j]->PID())
657 return false; //bad PID
658 }
659
660 //check if parent is correct
661 auto locParentSearchReactionStep = locReactionStep;
662 int locParentID = locMCThrown->parentid;
663 int locSearchStepIndex = loc_i;
664
665 do
666 {
667 if(locParentID == -1)
668 return false; //parent particle is not listed: matched to knock-out particle, is wrong. bail
669 if(locParentID == 0)
670 {
671 //parent id of 0 is directly produced
672 if(locParentSearchReactionStep->Get_InitialPID() != Gamma)
673 return false; //was directly (photo-) produced, but not so in combo: bail
674 break; //good: this is the only "good" exit point of the do-loop
675 }
676
677 const DMCThrown* locMCThrownParent = locMCThrownMyIDMap[locParentID];
678 Particle_t locPID = locMCThrownParent->PID();
679 if((locPID == Unknown) || IsResonance(locPID))
680 {
681 //intermediate (unknown or resonance) particle: go to its parent
682 locParentID = locMCThrownParent->parentid;
683 continue;
684 }
685 if(locPID != locParentSearchReactionStep->Get_InitialPID())
686 return false; //the true particle was produced from a different parent: bail
687
688 //OK, we've determined that the particle in question decayed from the correct particle.
689 //HOWEVER, we need to determine whether the PARENT decayed from the correct particle (and on(back)wards until the production step)
690 locParentID = locMCThrownParent->parentid;
691 locSearchStepIndex = DAnalysis::Get_InitialParticleDecayFromIndices(Get_Reaction(), locSearchStepIndex).first;
692 if(locSearchStepIndex < 0)
693 {
694 //DReaction is not the full reaction (i.e. doesn't contain beam (e.g. only pi0 decay))
695 if(dExclusiveMatchFlag)
696 return false;
697 break; //good
698 }
699 locParentSearchReactionStep = Get_Reaction()->Get_ReactionStep(locSearchStepIndex);
700 }
701 while(true);
702 }
703 }
704
705 return true; //we made it!
706}
707
708DCutAction_TrueCombo::~DCutAction_TrueCombo(void)
709{
710 if(dCutAction_TrueBeamParticle != NULL__null)
711 delete dCutAction_TrueBeamParticle;
712 if(dCutAction_ThrownTopology != NULL__null)
713 delete dCutAction_ThrownTopology;
714}
715
716bool DCutAction_TrueBeamParticle::Perform_Action(JEventLoop* locEventLoop, const DParticleCombo* locParticleCombo)
717{
718 vector<const DBeamPhoton*> locBeamPhotons;
719 locEventLoop->Get(locBeamPhotons, "TAGGEDMCGEN");
720 if(locBeamPhotons.empty())
721 return false; //true not tagged
722
723 const DKinematicData* locKinematicData = locParticleCombo->Get_ParticleComboStep(0)->Get_InitialParticle_Measured();
724 if(locKinematicData == NULL__null)
725 return false; //initial step is not production step
726
727 const DBeamPhoton* locBeamPhoton = dynamic_cast<const DBeamPhoton*>(locKinematicData);
728 if(locBeamPhoton == NULL__null)
729 return false; //dunno how could be possible ...
730
731 double locDeltaT = fabs(locBeamPhoton->time() - locBeamPhotons[0]->time());
732 return ((locBeamPhoton->dSystem == locBeamPhotons[0]->dSystem) && (locBeamPhoton->dCounter == locBeamPhotons[0]->dCounter) && (locDeltaT < 1.0));
733}
734
735bool DCutAction_TruePID::Perform_Action(JEventLoop* locEventLoop, const DParticleCombo* locParticleCombo)
736{
737 vector<const DMCThrownMatching*> locMCThrownMatchingVector;
738 locEventLoop->Get(locMCThrownMatchingVector);
739 const DMCThrownMatching* locMCThrownMatching = locMCThrownMatchingVector[0];
740
741 auto locSteps = locParticleCombo->Get_ParticleComboSteps();
742 for(size_t loc_i = 0; loc_i < locSteps.size(); ++loc_i)
743 {
744 if((dInitialPID != Unknown) && (Get_Reaction()->Get_ReactionStep(loc_i)->Get_InitialPID() != dInitialPID))
745 continue;
746 auto locParticles = locSteps[loc_i]->Get_FinalParticles_Measured(Get_Reaction()->Get_ReactionStep(loc_i), d_AllCharges);
747 for(size_t loc_j = 0; loc_j < locParticles.size(); ++loc_j)
748 {
749 if((locParticles[loc_j]->PID() != dTruePID) && (dTruePID != Unknown))
750 continue;
751
752 for(size_t loc_i = 0; loc_i < locParticles.size(); ++loc_i)
753 {
754 if(ParticleCharge(dTruePID) == 0)
755 {
756 double locMatchFOM = 0.0;
757 const DNeutralParticleHypothesis* locNeutralParticleHypothesis = static_cast<const DNeutralParticleHypothesis*>(locParticles[loc_i]);
758 auto locMCThrown = locMCThrownMatching->Get_MatchingMCThrown(locNeutralParticleHypothesis, locMatchFOM);
759 if((locMCThrown == NULL__null) || (locMatchFOM < dMinThrownMatchFOM))
760 return false;
761 if(((Particle_t)locMCThrown->type) != dTruePID)
762 return false;
763 }
764 else
765 {
766 double locMatchFOM = 0.0;
767 const DChargedTrackHypothesis* locChargedTrackHypothesis = static_cast<const DChargedTrackHypothesis*>(locParticles[loc_i]);
768 auto locMCThrown = locMCThrownMatching->Get_MatchingMCThrown(locChargedTrackHypothesis, locMatchFOM);
769 if((locMCThrown == NULL__null) || (locMatchFOM < dMinThrownMatchFOM))
770 return false;
771 if(((Particle_t)locMCThrown->type) != dTruePID)
772 return false;
773 }
774 }
775 }
776 }
777 return true;
778}
779
780bool DCutAction_AllTruePID::Perform_Action(JEventLoop* locEventLoop, const DParticleCombo* locParticleCombo)
781{
782 vector<const DMCThrownMatching*> locMCThrownMatchingVector;
783 locEventLoop->Get(locMCThrownMatchingVector);
784 const DMCThrownMatching* locMCThrownMatching = locMCThrownMatchingVector[0];
785 const DMCThrown* locMCThrown;
786
787 auto locParticles = locParticleCombo->Get_FinalParticles_Measured(Get_Reaction(), d_AllCharges);
788 for(size_t loc_i = 0; loc_i < locParticles.size(); ++loc_i)
789 {
790 if(ParticleCharge(locParticles[loc_i]->PID()) == 0)
791 {
792 double locMatchFOM = 0.0;
793 const DNeutralParticleHypothesis* locNeutralParticleHypothesis = static_cast<const DNeutralParticleHypothesis*>(locParticles[loc_i]);
794 locMCThrown = locMCThrownMatching->Get_MatchingMCThrown(locNeutralParticleHypothesis, locMatchFOM);
795 if((locMCThrown == NULL__null) || (locMatchFOM < dMinThrownMatchFOM))
796 return false;
797 if(((Particle_t)locMCThrown->type) != locParticles[loc_i]->PID())
798 return false;
799 }
800 else
801 {
802 double locMatchFOM = 0.0;
803 const DChargedTrackHypothesis* locChargedTrackHypothesis = static_cast<const DChargedTrackHypothesis*>(locParticles[loc_i]);
804 locMCThrown = locMCThrownMatching->Get_MatchingMCThrown(locChargedTrackHypothesis, locMatchFOM);
805 if((locMCThrown == NULL__null) || (locMatchFOM < dMinThrownMatchFOM))
806 return false;
807 if(((Particle_t)locMCThrown->type) != locParticles[loc_i]->PID())
808 return false;
809 }
810 }
811 return true;
812}
813
814string DCutAction_GoodEventRFBunch::Get_ActionName(void) const
815{
816 ostringstream locStream;
817 locStream << DAnalysisAction::Get_ActionName() << "_" << dCutIfBadRFBunchFlag;
818 return locStream.str();
819}
820
821bool DCutAction_GoodEventRFBunch::Perform_Action(JEventLoop* locEventLoop, const DParticleCombo* locParticleCombo)
822{
823 const DEventRFBunch* locEventRFBunch = locParticleCombo->Get_EventRFBunch();
824 return (locEventRFBunch->dTime == locEventRFBunch->dTime);
825}
826
827string DCutAction_TransverseMomentum::Get_ActionName(void) const
828{
829 ostringstream locStream;
830 locStream << DAnalysisAction::Get_ActionName() << "_" << dMaxTransverseMomentum;
831 return locStream.str();
832}
833
834bool DCutAction_TransverseMomentum::Perform_Action(JEventLoop* locEventLoop, const DParticleCombo* locParticleCombo)
835{
836 auto locParticles = locParticleCombo->Get_FinalParticles_Measured(Get_Reaction(), d_AllCharges);
837
838 DVector3 locTotalMomentum;
839 for(size_t loc_i = 0; loc_i < locParticles.size(); ++loc_i)
840 locTotalMomentum += locParticles[loc_i]->momentum();
841
842 return (dMaxTransverseMomentum >= locTotalMomentum.Perp());
843}
844
845string DCutAction_TrackHitPattern::Get_ActionName(void) const
846{
847 ostringstream locStream;
848 locStream << DAnalysisAction::Get_ActionName() << "_" << dMinHitRingsPerCDCSuperlayer << "_" << dMinHitPlanesPerFDCPackage;
849 return locStream.str();
850}
851
852bool DCutAction_TrackHitPattern::Perform_Action(JEventLoop* locEventLoop, const DParticleCombo* locParticleCombo)
853{
854 auto locParticles = locParticleCombo->Get_FinalParticles_Measured(Get_Reaction(), d_AllCharges);
855
856 const DParticleID* locParticleID = NULL__null;
857 locEventLoop->GetSingle(locParticleID);
858
859 for(size_t loc_i = 0; loc_i < locParticles.size(); ++loc_i)
860 {
861 const DChargedTrackHypothesis* locChargedTrackHypothesis = static_cast<const DChargedTrackHypothesis*>(locParticles[loc_i]);
862 auto locTrackTimeBased = locChargedTrackHypothesis->Get_TrackTimeBased();
863 if(!Cut_TrackHitPattern(locParticleID, locTrackTimeBased))
864 return false;
865 }
866
867 return true;
868}
869
870bool DCutAction_TrackHitPattern::Cut_TrackHitPattern(const DParticleID* locParticleID, const DKinematicData* locTrack) const
871{
872 const DTrackTimeBased* locTrackTimeBased = dynamic_cast<const DTrackTimeBased*>(locTrack);
873 const DTrackWireBased* locTrackWireBased = dynamic_cast<const DTrackWireBased*>(locTrack);
874 const DTrackCandidate* locTrackCandidate = dynamic_cast<const DTrackCandidate*>(locTrack);
875
876 map<int, int> locNumHitRingsPerSuperlayer, locNumHitPlanesPerPackage;
877 if(locTrackTimeBased != NULL__null)
878 {
879 locParticleID->Get_CDCNumHitRingsPerSuperlayer(locTrackTimeBased->dCDCRings, locNumHitRingsPerSuperlayer);
880 locParticleID->Get_FDCNumHitPlanesPerPackage(locTrackTimeBased->dFDCPlanes, locNumHitPlanesPerPackage);
881 }
882 else if(locTrackWireBased != NULL__null)
883 {
884 locParticleID->Get_CDCNumHitRingsPerSuperlayer(locTrackWireBased->dCDCRings, locNumHitRingsPerSuperlayer);
885 locParticleID->Get_FDCNumHitPlanesPerPackage(locTrackWireBased->dFDCPlanes, locNumHitPlanesPerPackage);
886 }
887 else if(locTrackCandidate != NULL__null)
888 {
889 locParticleID->Get_CDCNumHitRingsPerSuperlayer(locTrackCandidate->dCDCRings, locNumHitRingsPerSuperlayer);
890 locParticleID->Get_FDCNumHitPlanesPerPackage(locTrackCandidate->dFDCPlanes, locNumHitPlanesPerPackage);
891 }
892 else
893 return false;
894
895 //CDC: find inner-most & outer-most superlayers
896 int locInnermostCDCSuperlayer = 10, locOutermostCDCSuperlayer = 0;
897 for(auto& locSuperlayerPair : locNumHitRingsPerSuperlayer)
898 {
899 if(locSuperlayerPair.second == 0)
900 continue; //0 hits
901 if(locSuperlayerPair.first < locInnermostCDCSuperlayer)
902 locInnermostCDCSuperlayer = locSuperlayerPair.first;
903 if(locSuperlayerPair.first > locOutermostCDCSuperlayer)
904 locOutermostCDCSuperlayer = locSuperlayerPair.first;
905 }
906
907 //CDC: loop again, cutting
908 for(auto& locSuperlayerPair : locNumHitRingsPerSuperlayer)
909 {
910 if(locSuperlayerPair.first == locOutermostCDCSuperlayer)
911 break; //don't check the last one: track could be leaving
912 if(locSuperlayerPair.first < locInnermostCDCSuperlayer)
913 continue; //don't check before the first one: could be detached vertex
914 if(locSuperlayerPair.second < int(dMinHitRingsPerCDCSuperlayer))
915 return false;
916 }
917
918 //FDC: find inner-most & outer-most superlayers
919 int locOutermostFDCPlane = 0;
920 for(auto& locPackagePair : locNumHitPlanesPerPackage)
921 {
922 if(locPackagePair.second == 0)
923 continue; //0 hits
924 if(locPackagePair.first > locOutermostFDCPlane)
925 locOutermostFDCPlane = locPackagePair.first;
926 }
927
928 //FDC: loop again, cutting
929 for(auto& locPackagePair : locNumHitPlanesPerPackage)
930 {
931 if(locPackagePair.first == locOutermostFDCPlane)
932 break; //don't check the last one: track could be leaving
933 if(locPackagePair.second == 0)
934 continue; //0 hits: is ok: could be curling through beamline
935 if(locPackagePair.second < int(dMinHitPlanesPerFDCPackage))
936 return false;
937 }
938
939 if((locOutermostCDCSuperlayer <= 2) && locNumHitPlanesPerPackage.empty())
940 return false; //would have at least expected it to hit the first FDC package //is likely spurious
941
942 return true;
943}
944
945void DCutAction_dEdx::Initialize(JEventLoop* locEventLoop)
946{
947 japp->RootWriteLock(); //ACQUIRE ROOT LOCK!! //I have no idea why this is needed, but without it it crashes. Sigh.
948 {
949 if(dCutMap.find(Proton) == dCutMap.end())
950 {
951 dCutMap[Proton].first = new TF1("df_dEdxCut_ProtonLow", "exp(-1.0*[0]*x + [1]) + [2]", 0.0, 12.0);
952 dCutMap[Proton].first->SetParameters(3.93024, 3.0, 1.0);
953 dCutMap[Proton].second = new TF1("df_dEdxCut_ProtonHigh", "[0]", 0.0, 12.0);
954 dCutMap[Proton].second->SetParameter(0, 9999999.9);
955 }
956
957 if(dCutMap.find(PiPlus) == dCutMap.end())
958 {
959 dCutMap[PiPlus].first = new TF1("df_dEdxCut_PionLow", "[0]", 0.0, 12.0);
960 dCutMap[PiPlus].first->SetParameter(0, -1.0);
961 dCutMap[PiPlus].second = new TF1("df_dEdxCut_PionHigh", "exp(-1.0*[0]*x + [1]) + [2]", 0.0, 12.0);
962 dCutMap[PiPlus].second->SetParameters(6.0, 2.80149, 2.55);
963 }
964 }
965 japp->RootUnLock(); //RELEASE ROOT LOCK!!
966}
967
968bool DCutAction_dEdx::Perform_Action(JEventLoop* locEventLoop, const DParticleCombo* locParticleCombo)
969{
970 auto locParticles = locParticleCombo->Get_FinalParticles_Measured(Get_Reaction(), d_Charged);
971 for(size_t loc_i = 0; loc_i < locParticles.size(); ++loc_i)
972 {
973 auto locChargedTrackHypothesis = static_cast<const DChargedTrackHypothesis*>(locParticles[loc_i]);
974 if(!Cut_dEdx(locChargedTrackHypothesis))
975 return false;
976 }
977
978 return true;
979}
980
981bool DCutAction_dEdx::Cut_dEdx(const DChargedTrackHypothesis* locChargedTrackHypothesis)
982{
983 auto locTrackTimeBased = locChargedTrackHypothesis->Get_TrackTimeBased();
984
985 Particle_t locPID = locChargedTrackHypothesis->PID();
986 if(dCutMap.find(locPID) == dCutMap.end())
987 return true;
988 auto locCutPair = dCutMap[locPID];
989
990 if(locTrackTimeBased->dNumHitsUsedFordEdx_CDC == 0)
991 return true;
992
993 auto locP = locTrackTimeBased->momentum().Mag();
994 auto locdEdx = locTrackTimeBased->ddEdx_CDC_amp*1.0E6;
995
996 return ((locdEdx >= locCutPair.first->Eval(locP)) && (locdEdx <= locCutPair.second->Eval(locP)));
997}
998
999string DCutAction_BeamEnergy::Get_ActionName(void) const
1000{
1001 ostringstream locStream;
1002 locStream << DAnalysisAction::Get_ActionName() << "_" << dMinBeamEnergy << "_" << dMaxBeamEnergy;
1003 return locStream.str();
1004}
1005
1006bool DCutAction_BeamEnergy::Perform_Action(JEventLoop* locEventLoop, const DParticleCombo* locParticleCombo)
1007{
1008 const DKinematicData* locInitParticle = NULL__null;
1009 if(Get_UseKinFitResultsFlag())
1010 locInitParticle = locParticleCombo->Get_ParticleComboStep(0)->Get_InitialParticle();
1011 else
1012 locInitParticle = locParticleCombo->Get_ParticleComboStep(0)->Get_InitialParticle_Measured();
1013 if(locInitParticle == NULL__null)
1014 return false;
1015
1016 double locBeamEnergy = locInitParticle->energy();
1017 return ((locBeamEnergy >= dMinBeamEnergy) && (locBeamEnergy <= dMaxBeamEnergy));
1018}
1019
1020string DCutAction_TrackFCALShowerEOverP::Get_ActionName(void) const
1021{
1022 ostringstream locStream;
1023 locStream << DAnalysisAction::Get_ActionName() << "_" << dShowerEOverPCut;
1024 return locStream.str();
1025}
1026
1027bool DCutAction_TrackFCALShowerEOverP::Perform_Action(JEventLoop* locEventLoop, const DParticleCombo* locParticleCombo)
1028{
1029 // For all charged tracks except e+/e-, cuts those with E/p > input value
1030 // For e+/e-, cuts those with E/p < input value
1031 // Does not cut tracks without a matching FCAL shower
1032
1033 auto locParticles = Get_UseKinFitResultsFlag() ? locParticleCombo->Get_FinalParticles(Get_Reaction(), false, false, d_Charged) : locParticleCombo->Get_FinalParticles_Measured(Get_Reaction(), d_Charged);
1034 for(size_t loc_i = 0; loc_i < locParticles.size(); ++loc_i)
1035 {
1036 const DChargedTrackHypothesis* locChargedTrackHypothesis = static_cast<const DChargedTrackHypothesis*>(locParticles[loc_i]);
1037 auto locFCALShowerMatchParams = locChargedTrackHypothesis->Get_FCALShowerMatchParams();
1038 if(locFCALShowerMatchParams == NULL__null)
1039 continue;
1040
1041 Particle_t locPID = locChargedTrackHypothesis->PID();
1042 const DFCALShower* locFCALShower = locFCALShowerMatchParams->dFCALShower;
1043 double locShowerEOverP = locFCALShower->getEnergy()/locChargedTrackHypothesis->momentum().Mag();
1044
1045 if((locPID == Electron) || (locPID == Positron))
1046 {
1047 if(locShowerEOverP < dShowerEOverPCut)
1048 return false;
1049 }
1050 else if(locShowerEOverP > dShowerEOverPCut)
1051 return false;
1052 }
1053
1054 return true;
1055}
1056
1057string DCutAction_TrackShowerEOverP::Get_ActionName(void) const
1058{
1059 ostringstream locStream;
1060 locStream << DAnalysisAction::Get_ActionName() << "_" << dDetector << "_" << dPID << "_" << dShowerEOverPCut;
1061 return locStream.str();
1062}
1063
1064bool DCutAction_TrackShowerEOverP::Perform_Action(JEventLoop* locEventLoop, const DParticleCombo* locParticleCombo)
1065{
1066 // For all charged tracks except e+/e-, cuts those with E/p > input value
1067 // For e+/e-, cuts those with E/p < input value
1068 // Does not cut tracks without a matching FCAL shower
1069
1070 auto locParticles = Get_UseKinFitResultsFlag() ? locParticleCombo->Get_FinalParticles(Get_Reaction(), false, false, d_Charged) : locParticleCombo->Get_FinalParticles_Measured(Get_Reaction(), d_Charged);
1071 for(size_t loc_i = 0; loc_i < locParticles.size(); ++loc_i)
1072 {
1073 const DChargedTrackHypothesis* locChargedTrackHypothesis = static_cast<const DChargedTrackHypothesis*>(locParticles[loc_i]);
1074
1075 Particle_t locPID = locChargedTrackHypothesis->PID();
1076 if(locPID != dPID)
1077 continue;
1078
1079 double locP = locChargedTrackHypothesis->momentum().Mag();
1080 double locShowerEOverP = 0.0;
1081 if(dDetector == SYS_FCAL)
1082 {
1083 auto locFCALShowerMatchParams = locChargedTrackHypothesis->Get_FCALShowerMatchParams();
1084 if(locFCALShowerMatchParams == NULL__null)
1085 continue;
1086
1087 const DFCALShower* locFCALShower = locFCALShowerMatchParams->dFCALShower;
1088 locShowerEOverP = locFCALShower->getEnergy()/locP;
1089 }
1090 else if(dDetector == SYS_BCAL)
1091 {
1092 auto locBCALShowerMatchParams = locChargedTrackHypothesis->Get_BCALShowerMatchParams();
1093 if(locBCALShowerMatchParams == NULL__null)
1094 continue;
1095
1096 const DBCALShower* locBCALShower = locBCALShowerMatchParams->dBCALShower;
1097 locShowerEOverP = locBCALShower->E/locP;
1098 }
1099 else
1100 continue; //what??
1101
1102 if((locPID == Electron) || (locPID == Positron))
1103 {
1104 if(locShowerEOverP < dShowerEOverPCut)
1105 return false;
1106 }
1107 else if(locShowerEOverP > dShowerEOverPCut)
1108 return false;
1109 }
1110
1111 return true;
1112}
1113
1114string DCutAction_PIDDeltaT::Get_ActionName(void) const
1115{
1116 ostringstream locStream;
1117 locStream << DAnalysisAction::Get_ActionName() << "_" << dPID << "_" << dSystem << "_" << dDeltaTCut;
1118 return locStream.str();
1119}
1120
1121bool DCutAction_PIDDeltaT::Perform_Action(JEventLoop* locEventLoop, const DParticleCombo* locParticleCombo)
1122{
1123 //if dPID = Unknown, apply cut to all PIDs
1124 //if dSystem = SYS_NULL, apply cut to all systems
1125
1126 auto locParticles = Get_UseKinFitResultsFlag() ? locParticleCombo->Get_FinalParticles(Get_Reaction(), false, false, d_AllCharges) : locParticleCombo->Get_FinalParticles_Measured(Get_Reaction(), d_AllCharges);
1127 for(size_t loc_i = 0; loc_i < locParticles.size(); ++loc_i)
1128 {
1129 if((dPID != Unknown) && (locParticles[loc_i]->PID() != dPID))
1130 continue;
1131
1132 auto locChargedHypo = dynamic_cast<const DChargedTrackHypothesis*>(locParticles[loc_i]);
1133 if(locChargedHypo != nullptr)
1134 {
1135 if((dSystem != SYS_NULL) && (locChargedHypo->t1_detector() != dSystem))
1136 continue;
1137// double locDeltaT = locChargedHypo->time() - (locChargedHypo->t0() + (locChargedHypo->position().Z() - locVertex.Z())/SPEED_OF_LIGHT); //COMPARE: to old
1138 double locDeltaT = locChargedHypo->Get_TimeAtPOCAToVertex() - locChargedHypo->t0(); //UNCOMMENT WHEN DONE COMPARING
1139 if(fabs(locDeltaT) > dDeltaTCut)
1140 return false;
1141 continue;
1142 }
1143 auto locNeutralHypo = dynamic_cast<const DNeutralParticleHypothesis*>(locParticles[loc_i]);
1144 if(locNeutralHypo != nullptr)
1145 {
1146 if((dSystem != SYS_NULL) && (locNeutralHypo->t1_detector() != dSystem))
1147 continue;
1148 double locDeltaT = locParticles[loc_i]->time() - locNeutralHypo->t0();
1149 if(fabs(locDeltaT) > dDeltaTCut)
1150 return false;
1151 continue;
1152 }
1153 }
1154
1155 return true;
1156}
1157
1158string DCutAction_PIDTimingBeta::Get_ActionName(void) const
1159{
1160 ostringstream locStream;
1161 locStream << DAnalysisAction::Get_ActionName() << "_" << dPID << "_" << dSystem << "_" << dMinBeta << "_" << dMaxBeta;
1162 return locStream.str();
1163}
1164
1165bool DCutAction_PIDTimingBeta::Perform_Action(JEventLoop* locEventLoop, const DParticleCombo* locParticleCombo)
1166{
1167 //if dPID = Unknown, apply cut to all PIDs
1168 //if dSystem = SYS_NULL, apply cut to all systems
1169
1170 auto locParticles = locParticleCombo->Get_FinalParticles_Measured(Get_Reaction(), d_AllCharges);
1171 for(size_t loc_i = 0; loc_i < locParticles.size(); ++loc_i)
1172 {
1173 if((dPID != Unknown) && (locParticles[loc_i]->PID() != dPID))
1174 continue;
1175
1176 auto locChargedHypo = dynamic_cast<const DChargedTrackHypothesis*>(locParticles[loc_i]);
1177 if(locChargedHypo != nullptr)
1178 {
1179 if((dSystem != SYS_NULL) && (locChargedHypo->t1_detector() != dSystem))
1180 continue;
1181 double locBeta = locChargedHypo->measuredBeta();
1182 if((locBeta < dMinBeta) || (locBeta > dMaxBeta))
1183 return false;
1184 continue;
1185 }
1186 auto locNeutralHypo = dynamic_cast<const DNeutralParticleHypothesis*>(locParticles[loc_i]);
1187 if(locNeutralHypo != nullptr)
1188 {
1189 if((dSystem != SYS_NULL) && (locNeutralHypo->t1_detector() != dSystem))
1190 continue;
1191 double locBeta = locNeutralHypo->measuredBeta();
1192 if((locBeta < dMinBeta) || (locBeta > dMaxBeta))
1193 return false;
1194 continue;
1195 }
1196 }
1197
1198 return true;
1199}
1200
1201string DCutAction_NoPIDHit::Get_ActionName(void) const
1202{
1203 ostringstream locStream;
1204 locStream << DAnalysisAction::Get_ActionName() << "_" << dPID;
1205 return locStream.str();
1206}
1207
1208bool DCutAction_NoPIDHit::Perform_Action(JEventLoop* locEventLoop, const DParticleCombo* locParticleCombo)
1209{
1210 //if dPID = Unknown, apply cut to all PIDs
1211
1212 auto locParticles = locParticleCombo->Get_FinalParticles_Measured(Get_Reaction(), d_Charged);
1213 for(size_t loc_i = 0; loc_i < locParticles.size(); ++loc_i)
1214 {
1215 if((dPID != Unknown) && (locParticles[loc_i]->PID() != dPID))
1216 continue;
1217 auto locChargedHypo = static_cast<const DChargedTrackHypothesis*>(locParticles[loc_i]);
1218 if(locChargedHypo->t1_detector() == SYS_NULL)
1219 return false;
1220 }
1221
1222 return true;
1223}
1224
1225string DCutAction_FlightDistance::Get_ActionName(void) const
1226{
1227 ostringstream locStream;
1228 locStream << DAnalysisAction::Get_ActionName() << "_" << dPID << "_" << dMinFlightDistance;
1229 return locStream.str();
1230}
1231
1232bool DCutAction_FlightDistance::Perform_Action(JEventLoop* locEventLoop, const DParticleCombo* locParticleCombo)
1233{
1234 //if dPID = Unknown, apply cut to all PIDs
1235 DKinFitType locKinFitType = Get_Reaction()->Get_KinFitType();
1236
1237 // for now, require a kinematic fit to make these selections, assuming that the common decay vertex
1238 // is constrained in the fit
1239 if(!Get_UseKinFitResultsFlag())
1240 return true;
1241
1242 vector<const DReactionVertexInfo*> locVertexInfos;
1243 locEventLoop->Get(locVertexInfos);
1244
1245 // figure out what the right DReactionVertexInfo is
1246 const DReactionVertexInfo *locReactionVertexInfo = nullptr;
1247 for(auto& locVertexInfo : locVertexInfos) {
1248 auto locVertexReactions = locVertexInfo->Get_Reactions();
1249 if(find(locVertexReactions.begin(), locVertexReactions.end(), Get_Reaction()) != locVertexReactions.end()) {
1250 locReactionVertexInfo = locVertexInfo;
1251 break;
1252 }
1253 }
1254
1255 // check each individual decaying particle (if they exist)
1256 for(size_t loc_i = 0; loc_i < locParticleCombo->Get_NumParticleComboSteps(); ++loc_i)
1257 {
1258 const DParticleComboStep* locParticleComboStep = locParticleCombo->Get_ParticleComboStep(loc_i);
1259 //auto locParticles = Get_UseKinFitResultsFlag() ? locParticleComboStep->Get_FinalParticles(Get_Reaction()->Get_ReactionStep(loc_i), false, false, d_AllCharges) : locParticleComboStep->Get_FinalParticles_Measured(Get_Reaction()->Get_ReactionStep(loc_i), d_AllCharges);
1260
1261 if((dPID != Unknown) && (locParticleComboStep->Get_InitialParticle()->PID() != dPID))
1262 continue;
1263
1264 // fill info on decaying particles, which is on the particle combo step level
1265 if(((locParticleComboStep->Get_InitialParticle()!=nullptr) && !Is_FinalStateParticle(locParticleComboStep->Get_InitialParticle()->PID()))) { // decaying particles
1266 // FOR NOW: we only calculate these displaced vertex quantities if a kinematic fit
1267 // was performed where the vertex is constrained
1268 // TODO: Cleverly handle the other cases
1269
1270 // pull out information related to the kinematic fit
1271 if( !Get_UseKinFitResultsFlag() ) continue;
1272 if( locReactionVertexInfo == nullptr ) continue;
1273
1274 auto locKinFitParticle = locParticleComboStep->Get_InitialKinFitParticle();
1275
1276 // extract the info about the vertex, to make sure that the information that we
1277 // need to calculate displaced vertices is there
1278 auto locStepVertexInfo = locReactionVertexInfo->Get_StepVertexInfo(loc_i);
1279
1280 auto locPathLength = locKinFitParticle->Get_PathLength();
1281
1282 if(locPathLength < dMinFlightDistance)
1283 return false;
1284 }
1285
1286 }
1287
1288 return true;
1289}
1290
1291
1292string DCutAction_FlightSignificance::Get_ActionName(void) const
1293{
1294 ostringstream locStream;
1295 locStream << DAnalysisAction::Get_ActionName() << "_" << dPID << "_" << dMinFlightSignificance;
1296 return locStream.str();
1297}
1298
1299bool DCutAction_FlightSignificance::Perform_Action(JEventLoop* locEventLoop, const DParticleCombo* locParticleCombo)
1300{
1301 //if dPID = Unknown, apply cut to all PIDs
1302 DKinFitType locKinFitType = Get_Reaction()->Get_KinFitType();
1303
1304 // for now, require a kinematic fit to make these selections, assuming that the common decay vertex
1305 // is constrained in the fit
1306 if(!Get_UseKinFitResultsFlag())
1307 return true;
1308
1309 vector<const DReactionVertexInfo*> locVertexInfos;
1310 locEventLoop->Get(locVertexInfos);
1311
1312 // figure out what the right DReactionVertexInfo is
1313 const DReactionVertexInfo *locReactionVertexInfo = nullptr;
1314 for(auto& locVertexInfo : locVertexInfos) {
1315 auto locVertexReactions = locVertexInfo->Get_Reactions();
1316 if(find(locVertexReactions.begin(), locVertexReactions.end(), Get_Reaction()) != locVertexReactions.end()) {
1317 locReactionVertexInfo = locVertexInfo;
1318 break;
1319 }
1320 }
1321
1322 // check each individual decaying particle (if they exist)
1323 for(size_t loc_i = 0; loc_i < locParticleCombo->Get_NumParticleComboSteps(); ++loc_i)
1324 {
1325 const DParticleComboStep* locParticleComboStep = locParticleCombo->Get_ParticleComboStep(loc_i);
1326 //auto locParticles = Get_UseKinFitResultsFlag() ? locParticleComboStep->Get_FinalParticles(Get_Reaction()->Get_ReactionStep(loc_i), false, false, d_AllCharges) : locParticleComboStep->Get_FinalParticles_Measured(Get_Reaction()->Get_ReactionStep(loc_i), d_AllCharges);
1327
1328 if((dPID != Unknown) && (locParticleComboStep->Get_InitialParticle()->PID() != dPID))
1329 continue;
1330
1331 // fill info on decaying particles, which is on the particle combo step level
1332 if(((locParticleComboStep->Get_InitialParticle()!=nullptr) && !Is_FinalStateParticle(locParticleComboStep->Get_InitialParticle()->PID()))) { // decaying particles
1333 // FOR NOW: we only calculate these displaced vertex quantities if a kinematic fit
1334 // was performed where the vertex is constrained
1335 // TODO: Cleverly handle the other cases
1336
1337 // pull out information related to the kinematic fit
1338 if( !Get_UseKinFitResultsFlag() ) continue;
1339 if( locReactionVertexInfo == nullptr ) continue;
1340
1341 auto locKinFitParticle = locParticleComboStep->Get_InitialKinFitParticle();
1342
1343 // extract the info about the vertex, to make sure that the information that we
1344 // need to calculate displaced vertices is there
1345 auto locStepVertexInfo = locReactionVertexInfo->Get_StepVertexInfo(loc_i);
1346
1347 auto locPathLength = locKinFitParticle->Get_PathLength();
1348 auto locPathLengthSigma = locKinFitParticle->Get_PathLengthUncertainty();
1349 double locPathLengthSignificance = locPathLength / locPathLengthSigma;
1350
1351 if(locPathLengthSignificance < dMinFlightSignificance)
1352 return false;
1353
1354 }
1355
1356 }
1357
1358 return true;
1359}
1360
1361
1362
1363void DCutAction_OneVertexKinFit::Initialize(JEventLoop* locEventLoop)
1364{
1365 // Optional: Useful utility functions.
1366 locEventLoop->GetSingle(dAnalysisUtilities);
1367
1368 dKinFitUtils = new DKinFitUtils_GlueX(locEventLoop);
1369 dKinFitter = new DKinFitter(dKinFitUtils);
1370 dKinFitUtils->Set_UpdateCovarianceMatricesFlag(false);
1371
1372 //CREATE THE HISTOGRAMS
1373 //Since we are creating histograms, the contents of gDirectory will be modified: must use JANA-wide ROOT lock
1374 japp->RootWriteLock(); //ACQUIRE ROOT LOCK!!
1375 {
1376 //Required: Create a folder in the ROOT output file that will contain all of the output ROOT objects (if any) for this action.
1377 //If another thread has already created the folder, it just changes to it.
1378 CreateAndChangeTo_ActionDirectory();
1379
1380 dHist_ConfidenceLevel = GetOrCreate_Histogram<TH1I>("ConfidenceLevel", "Vertex Kinematic Fit;Confidence Level", 500, 0.0, 1.0);
1381 dHist_VertexZ = GetOrCreate_Histogram<TH1I>("VertexZ", "Vertex Kinematic Fit;Vertex-Z (cm)", 500, 0.0, 200.0);
1382 dHist_VertexYVsX = GetOrCreate_Histogram<TH2I>("VertexYVsX", "Vertex Kinematic Fit;Vertex-X (cm);Vertex-Y (cm)", 300, -10.0, 10.0, 300, -10.0, 10.0);
1383 }
1384 japp->RootUnLock(); //RELEASE ROOT LOCK!!
1385}
1386
1387void DCutAction_OneVertexKinFit::Run_Update(JEventLoop* locEventLoop)
1388{
1389 locEventLoop->GetSingle(dAnalysisUtilities);
1
Calling 'JEventLoop::GetSingle'
1390 dKinFitUtils->Set_RunDependent_Data(locEventLoop);
1391 dKinFitter->Set_RunDependent_Data(locEventLoop);
1392}
1393
1394bool DCutAction_OneVertexKinFit::Perform_Action(JEventLoop* locEventLoop, const DParticleCombo* locParticleCombo)
1395{
1396 //need to call prior to use in each event (cleans up memory allocated from last event)
1397 //this call invalidates memory from previous fits (but that's OK, we aren't saving them anywhere)
1398 dKinFitter->Reset_NewEvent();
1399 dKinFitUtils->Reset_NewEvent();
1400
1401 //Get particles for fit (all detected q+)
1402 auto locParticles = locParticleCombo->Get_FinalParticles_Measured(Get_Reaction(), d_Charged);
1403
1404 //Make DKinFitParticle objects for each one
1405 deque<shared_ptr<DKinFitParticle>> locKinFitParticles;
1406 set<shared_ptr<DKinFitParticle>> locKinFitParticleSet;
1407 for(size_t loc_i = 0; loc_i < locParticles.size(); ++loc_i)
1408 {
1409 auto locChargedTrackHypothesis = static_cast<const DChargedTrackHypothesis*>(locParticles[loc_i]);
1410 auto locKinFitParticle = dKinFitUtils->Make_DetectedParticle(locChargedTrackHypothesis);
1411 locKinFitParticles.push_back(locKinFitParticle);
1412 locKinFitParticleSet.insert(locKinFitParticle);
1413 }
1414
1415 // vertex guess
1416 TVector3 locVertexGuess = dAnalysisUtilities->Calc_CrudeVertex(locParticles);
1417
1418 // make & set vertex constraint
1419 auto locVertexConstraint = dKinFitUtils->Make_VertexConstraint(locKinFitParticleSet, {}, locVertexGuess);
1420 dKinFitter->Add_Constraint(locVertexConstraint);
1421
1422 // PERFORM THE KINEMATIC FIT
1423 if(!dKinFitter->Fit_Reaction())
1424 {
1425 dKinFitter->Recycle_LastFitMemory(); //RESET MEMORY FROM LAST KINFIT!! //results no longer needed
1426 return (dMinKinFitCL < 0.0); //fit failed to converge, return false if converge required
1427 }
1428
1429 // GET THE FIT RESULTS
1430 double locConfidenceLevel = dKinFitter->Get_ConfidenceLevel();
1431 auto locResultVertexConstraint = std::dynamic_pointer_cast<DKinFitConstraint_Vertex>(*dKinFitter->Get_KinFitConstraints().begin());
1432 TVector3 locFitVertex = locResultVertexConstraint->Get_CommonVertex();
1433
1434 //RESET MEMORY FROM LAST KINFIT!!
1435 dKinFitter->Recycle_LastFitMemory(); //results no longer needed
1436
1437 //FILL HISTOGRAMS
1438 //Since we are filling histograms local to this action, it will not interfere with other ROOT operations: can use action-wide ROOT lock
1439 //Note, the mutex is unique to this DReaction + action_string combo: actions of same class with different hists will have a different mutex
1440 Lock_Action(); //ACQUIRE ROOT LOCK!!
1441 {
1442 dHist_ConfidenceLevel->Fill(locConfidenceLevel);
1443 dHist_VertexZ->Fill(locFitVertex.Z());
1444 dHist_VertexYVsX->Fill(locFitVertex.X(), locFitVertex.Y());
1445 }
1446 Unlock_Action(); //RELEASE ROOT LOCK!!
1447
1448 if(locConfidenceLevel < dMinKinFitCL)
1449 return false;
1450 if(dMinVertexZ < dMaxVertexZ) //don't cut otherwise
1451 {
1452 if((locFitVertex.Z() < dMinVertexZ) || (locFitVertex.Z() > dMaxVertexZ))
1453 return false;
1454 }
1455 return true;
1456}
1457
1458DCutAction_OneVertexKinFit::~DCutAction_OneVertexKinFit(void)
1459{
1460 if(dKinFitter != NULL__null)
1461 delete dKinFitter;
1462 if(dKinFitUtils != NULL__null)
1463 delete dKinFitUtils;
1464}
1465

/w/halld-scifs17exp/halld2/home/sdobbs/Software/jana/jana_0.8.2/Linux_CentOS7.7-x86_64-gcc4.8.5/include/JANA/JEventLoop.h

1// $Id: JEventLoop.h 1763 2006-05-10 14:29:25Z davidl $
2//
3// File: JEventLoop.h
4// Created: Wed Jun 8 12:30:51 EDT 2005
5// Creator: davidl (on Darwin wire129.jlab.org 7.8.0 powerpc)
6//
7
8#ifndef _JEventLoop_
9#define _JEventLoop_
10
11#include <sys/time.h>
12
13#include <vector>
14#include <list>
15#include <string>
16#include <utility>
17#include <typeinfo>
18#include <string.h>
19#include <map>
20#include <utility>
21using std::vector;
22using std::list;
23using std::string;
24using std::type_info;
25
26#include <JANA/jerror.h>
27#include <JANA/JObject.h>
28#include <JANA/JException.h>
29#include <JANA/JEvent.h>
30#include <JANA/JThread.h>
31#include <JANA/JFactory_base.h>
32#include <JANA/JCalibration.h>
33#include <JANA/JGeometry.h>
34#include <JANA/JResourceManager.h>
35#include <JANA/JStreamLog.h>
36
37// The following is here just so we can use ROOT's THtml class to generate documentation.
38#include "cint.h"
39
40
41// Place everything in JANA namespace
42namespace jana{
43
44
45template<class T> class JFactory;
46class JApplication;
47class JEventProcessor;
48
49
50class JEventLoop{
51 public:
52
53 friend class JApplication;
54
55 enum data_source_t{
56 DATA_NOT_AVAILABLE = 1,
57 DATA_FROM_CACHE,
58 DATA_FROM_SOURCE,
59 DATA_FROM_FACTORY
60 };
61
62 typedef struct{
63 string caller_name;
64 string caller_tag;
65 string callee_name;
66 string callee_tag;
67 double start_time;
68 double end_time;
69 data_source_t data_source;
70 }call_stack_t;
71
72 typedef struct{
73 const char* factory_name;
74 string tag;
75 const char* filename;
76 int line;
77 }error_call_stack_t;
78
79 JEventLoop(JApplication *app); ///< Constructor
80 virtual ~JEventLoop(); ////< Destructor
81 virtual const char* className(void){return static_className();}
82 static const char* static_className(void){return "JEventLoop";}
83
84 JApplication* GetJApplication(void) const {return app;} ///< Get pointer to the JApplication object
85 void RefreshProcessorListFromJApplication(void); ///< Re-copy the list of JEventProcessors from JApplication
86 virtual jerror_t AddFactory(JFactory_base* factory); ///< Add a factory
87 jerror_t RemoveFactory(JFactory_base* factory); ///< Remove a factory
88 JFactory_base* GetFactory(const string data_name, const char *tag="", bool allow_deftag=true); ///< Get a specific factory pointer
89 vector<JFactory_base*> GetFactories(void) const {return factories;} ///< Get all factory pointers
90 void GetFactoryNames(vector<string> &factorynames); ///< Get names of all factories in name:tag format
91 void GetFactoryNames(map<string,string> &factorynames); ///< Get names of all factories in map with key=name, value=tag
92 map<string,string> GetDefaultTags(void) const {return default_tags;}
93 jerror_t ClearFactories(void); ///< Reset all factories in preparation for next event.
94 jerror_t PrintFactories(int sparsify=0); ///< Print a list of all factories.
95 jerror_t Print(const string data_name, const char *tag=""); ///< Print the data of the given type
96
97 JCalibration* GetJCalibration();
98 template<class T> bool GetCalib(string namepath, map<string,T> &vals);
99 template<class T> bool GetCalib(string namepath, vector<T> &vals);
100 template<class T> bool GetCalib(string namepath, T &val);
101
102 JGeometry* GetJGeometry();
103 template<class T> bool GetGeom(string namepath, map<string,T> &vals);
104 template<class T> bool GetGeom(string namepath, T &val);
105
106 JResourceManager* GetJResourceManager(void);
107 string GetResource(string namepath);
108 template<class T> bool GetResource(string namepath, T vals, int event_number=0);
109
110 void Initialize(void); ///< Do initializations just before event processing starts
111 jerror_t Loop(void); ///< Loop over events
112 jerror_t OneEvent(uint64_t event_number); ///< Process a specific single event (if source supports it)
113 jerror_t OneEvent(void); ///< Process a single event
114 inline void Pause(void){pause = 1;} ///< Pause event processing
115 inline void Resume(void){pause = 0;} ///< Resume event processing
116 inline void Quit(void){quit = 1;} ///< Clean up and exit the event loop
117 inline bool GetQuit(void) const {return quit;}
118 void QuitProgram(void);
119
120 // Support for random access of events
121 bool HasRandomAccess(void);
122 void AddToEventQueue(uint64_t event_number){ next_events_to_process.push_back(event_number); }
123 void AddToEventQueue(list<uint64_t> &event_numbers) { next_events_to_process.insert(next_events_to_process.end(), event_numbers.begin(), event_numbers.end()); }
124 list<uint64_t> GetEventQueue(void){ return next_events_to_process; }
125 void ClearEventQueue(void){ next_events_to_process.clear(); }
126
127 template<class T> JFactory<T>* GetSingle(const T* &t, const char *tag="", bool exception_if_not_one=true); ///< Get pointer to first data object from (source or factory).
128 template<class T> JFactory<T>* Get(vector<const T*> &t, const char *tag="", bool allow_deftag=true); ///< Get data object pointers from (source or factory)
129 template<class T> JFactory<T>* GetFromFactory(vector<const T*> &t, const char *tag="", data_source_t &data_source=null_data_source, bool allow_deftag=true); ///< Get data object pointers from factory
130 template<class T> jerror_t GetFromSource(vector<const T*> &t, JFactory_base *factory=NULL__null); ///< Get data object pointers from source.
131 inline JEvent& GetJEvent(void){return event;} ///< Get pointer to the current JEvent object.
132 inline void SetJEvent(JEvent *event){this->event = *event;} ///< Set the JEvent pointer.
133 inline void SetAutoFree(int auto_free){this->auto_free = auto_free;} ///< Set the Auto-Free flag on/off
134 inline pthread_t GetPThreadID(void) const {return pthread_id;} ///< Get the pthread of the thread to which this JEventLoop belongs
135 double GetInstantaneousRate(void) const {return rate_instantaneous;} ///< Get the current event processing rate
136 double GetIntegratedRate(void) const {return rate_integrated;} ///< Get the current event processing rate
137 double GetLastEventProcessingTime(void) const {return delta_time_single;}
138 unsigned int GetNevents(void) const {return Nevents;}
139
140 inline bool CheckEventBoundary(uint64_t event_numberA, uint64_t event_numberB);
141
142 inline bool GetCallStackRecordingStatus(void){ return record_call_stack; }
143 inline void DisableCallStackRecording(void){ record_call_stack = false; }
144 inline void EnableCallStackRecording(void){ record_call_stack = true; }
145 inline void CallStackStart(JEventLoop::call_stack_t &cs, const string &caller_name, const string &caller_tag, const string callee_name, const string callee_tag);
146 inline void CallStackEnd(JEventLoop::call_stack_t &cs);
147 inline vector<call_stack_t> GetCallStack(void){return call_stack;} ///< Get the current factory call stack
148 inline void AddToCallStack(call_stack_t &cs){if(record_call_stack) call_stack.push_back(cs);} ///< Add specified item to call stack record but only if record_call_stack is true
149 inline void AddToErrorCallStack(error_call_stack_t &cs){error_call_stack.push_back(cs);} ///< Add layer to the factory call stack
150 inline vector<error_call_stack_t> GetErrorCallStack(void){return error_call_stack;} ///< Get the current factory error call stack
151 void PrintErrorCallStack(void); ///< Print the current factory call stack
152
153 const JObject* FindByID(JObject::oid_t id); ///< Find a data object by its identifier.
154 template<class T> const T* FindByID(JObject::oid_t id); ///< Find a data object by its type and identifier
155 JFactory_base* FindOwner(const JObject *t); ///< Find the factory that owns a data object by pointer
156 JFactory_base* FindOwner(JObject::oid_t id); ///< Find a factory that owns a data object by identifier
157
158 // User defined references
159 template<class T> void SetRef(T *t); ///< Add a user reference to this JEventLoop (must be a pointer)
160 template<class T> T* GetRef(void); ///< Get a user-defined reference of a specific type
161 template<class T> vector<T*> GetRefsT(void); ///< Get all user-defined refrences of a specicif type
162 vector<pair<const char*, void*> > GetRefs(void){ return user_refs; } ///< Get copy of full list of user-defined references
163 template<class T> void RemoveRef(T *t); ///< Remove user reference from list
164
165 // Convenience methods wrapping JEvent methods of same name
166 uint64_t GetStatus(void){return event.GetStatus();}
167 bool GetStatusBit(uint32_t bit){return event.GetStatusBit(bit);}
168 bool SetStatusBit(uint32_t bit, bool val=true){return event.SetStatusBit(bit, val);}
169 bool ClearStatusBit(uint32_t bit){return event.ClearStatusBit(bit);}
170 void ClearStatus(void){event.ClearStatus();}
171 void SetStatusBitDescription(uint32_t bit, string description){event.SetStatusBitDescription(bit, description);}
172 string GetStatusBitDescription(uint32_t bit){return event.GetStatusBitDescription(bit);}
173 void GetStatusBitDescriptions(map<uint32_t, string> &status_bit_descriptions){return event.GetStatusBitDescriptions(status_bit_descriptions);}
174 string StatusWordToString(void);
175
176 private:
177 JEvent event;
178 vector<JFactory_base*> factories;
179 vector<JEventProcessor*> processors;
180 vector<error_call_stack_t> error_call_stack;
181 vector<call_stack_t> call_stack;
182 JApplication *app;
183 JThread *jthread;
184 bool initialized;
185 bool print_parameters_called;
186 int pause;
187 int quit;
188 int auto_free;
189 pthread_t pthread_id;
190 map<string, string> default_tags;
191 vector<pair<string,string> > auto_activated_factories;
192 bool record_call_stack;
193 string caller_name;
194 string caller_tag;
195 vector<uint64_t> event_boundaries;
196 int32_t event_boundaries_run; ///< Run number boundaries were retrieved from (possbily 0)
197 list<uint64_t> next_events_to_process;
198
199 uint64_t Nevents; ///< Total events processed (this thread)
200 uint64_t Nevents_rate; ///< Num. events accumulated for "instantaneous" rate
201 double delta_time_single; ///< Time spent processing last event
202 double delta_time_rate; ///< Integrated time accumulated "instantaneous" rate (partial number of events)
203 double delta_time; ///< Total time spent processing events (this thread)
204 double rate_instantaneous; ///< Latest instantaneous rate
205 double rate_integrated; ///< Rate integrated over all events
206
207 static data_source_t null_data_source;
208
209 vector<pair<const char*, void*> > user_refs;
210};
211
212
213// The following is here just so we can use ROOT's THtml class to generate documentation.
214#ifdef G__DICTIONARY
215typedef JEventLoop::call_stack_t call_stack_t;
216typedef JEventLoop::error_call_stack_t error_call_stack_t;
217#endif
218
219#if !defined(__CINT__) && !defined(__CLING__)
220
221//-------------
222// GetSingle
223//-------------
224template<class T>
225JFactory<T>* JEventLoop::GetSingle(const T* &t, const char *tag, bool exception_if_not_one)
226{
227 /// This is a convenience method that can be used to get a pointer to the single
228 /// object of type T from the specified factory. It simply calls the Get(vector<...>) method
229 /// and copies the first pointer into "t" (or NULL if something other than 1 object is returned).
230 ///
231 /// This is intended to address the common situation in which there is an interest
232 /// in the event if and only if there is exactly 1 object of type T. If the event
233 /// has no objects of that type or more than 1 object of that type (for the specified
234 /// factory) then an exception of type "unsigned long" is thrown with the value
235 /// being the number of objects of type T. You can supress the exception by setting
236 /// exception_if_not_one to false. In that case, you will have to check if t==NULL to
237 /// know if the call succeeded.
238 vector<const T*> v;
239 JFactory<T> *fac = Get(v, tag);
2
Calling 'JEventLoop::Get'
240
241 if(v.size()!=1){
242 t = NULL__null;
243 if(exception_if_not_one) throw v.size();
244 }
245
246 t = v[0];
247
248 return fac;
249}
250
251//-------------
252// Get
253//-------------
254template<class T>
255JFactory<T>* JEventLoop::Get(vector<const T*> &t, const char *tag, bool allow_deftag)
256{
257 /// Retrieve or generate the array of objects of
258 /// type T for the curent event being processed
259 /// by this thread.
260 ///
261 /// By default, preference is given to reading the
262 /// objects from the data source(e.g. file) before generating
263 /// them in the factory. A flag exists in the factory
264 /// however to change this so that the factory is
265 /// given preference.
266 ///
267 /// Note that regardless of the setting of this flag,
268 /// the data are only either read in or generated once.
269 /// Ownership of the objects will always be with the
270 /// factory so subsequent calls will always return pointers to
271 /// the same data.
272 ///
273 /// If the factory is called on to generate the data,
274 /// it is done by calling the factory's Get() method
275 /// which, in turn, calls the evnt() method.
276 ///
277 /// First, we just call the GetFromFactory() method.
278 /// It will make the initial decision as to whether
279 /// it should look in the source first or not. If
280 /// it returns NULL, then the factory couldn't be
281 /// found so we automatically try the file.
282 ///
283 /// Note that if no factory exists to hold the objects
284 /// from the file, one can be created automatically
285 /// providing the <i>JANA:AUTOFACTORYCREATE</i>
286 /// configuration parameter is set.
287
288 // Check if a tag was specified for this data type to use for the
289 // default.
290 const char *mytag = tag
2.1
'tag' is not equal to NULL
2.1
'tag' is not equal to NULL
2.1
'tag' is not equal to NULL
==NULL__null ? "":tag; // protection against NULL tags
3
'?' condition is false
291 if(strlen(mytag)==0 && allow_deftag
3.1
'allow_deftag' is true
3.1
'allow_deftag' is true
3.1
'allow_deftag' is true
){
4
Taking true branch
292 map<string, string>::const_iterator iter = default_tags.find(T::static_className());
293 if(iter!=default_tags.end())tag = iter->second.c_str();
5
Assuming the condition is true
6
Taking true branch
7
Value assigned to 'tag'
294 }
295
296
297 // If we are trying to keep track of the call stack then we
298 // need to add a new call_stack_t object to the the list
299 // and initialize it with the start time and caller/callee
300 // info.
301 call_stack_t cs;
302
303 // Optionally record starting info of call stack entry
304 if(record_call_stack) CallStackStart(cs, caller_name, caller_tag, T::static_className(), tag);
8
Assuming field 'record_call_stack' is false
9
Taking false branch
305
306 // Get the data (or at least try to)
307 JFactory<T>* factory=NULL__null;
308 try{
309 factory = GetFromFactory(t, tag, cs.data_source, allow_deftag);
10
Passing value via 2nd parameter 'tag'
11
Calling 'JEventLoop::GetFromFactory'
310 if(!factory){
311 // No factory exists for this type and tag. It's possible
312 // that the source may be able to provide the objects
313 // but it will need a place to put them. We can create a
314 // dumb JFactory just to hold the data in case the source
315 // can provide the objects. Before we do though, make sure
316 // the user condones this via the presence of the
317 // "JANA:AUTOFACTORYCREATE" config parameter.
318 string p;
319 try{
320 gPARMS->GetParameter("JANA:AUTOFACTORYCREATE", p);
321 }catch(...){}
322 if(p.size()==0){
323 jout<<std::endl;
324 _DBG__std::cerr<<"/w/halld-scifs17exp/halld2/home/sdobbs/Software/jana/jana_0.8.2/Linux_CentOS7.7-x86_64-gcc4.8.5/include/JANA/JEventLoop.h"
<<":"<<324<<std::endl
;
325 jout<<"No factory of type \""<<T::static_className()<<"\" with tag \""<<tag<<"\" exists."<<std::endl;
326 jout<<"If you are reading objects from a file, I can auto-create a factory"<<std::endl;
327 jout<<"of the appropriate type to hold the objects, but this feature is turned"<<std::endl;
328 jout<<"off by default. To turn it on, set the \"JANA:AUTOFACTORYCREATE\""<<std::endl;
329 jout<<"configuration parameter. This can usually be done by passing the"<<std::endl;
330 jout<<"following argument to the program from the command line:"<<std::endl;
331 jout<<std::endl;
332 jout<<" -PJANA:AUTOFACTORYCREATE=1"<<std::endl;
333 jout<<std::endl;
334 jout<<"Note that since the most commonly expected occurance of this situation."<<std::endl;
335 jout<<"is an error, the program will now throw an exception so that the factory."<<std::endl;
336 jout<<"call stack can be printed."<<std::endl;
337 jout<<std::endl;
338 throw exception();
339 }else{
340 AddFactory(new JFactory<T>(tag));
341 jout<<__FILE__"/w/halld-scifs17exp/halld2/home/sdobbs/Software/jana/jana_0.8.2/Linux_CentOS7.7-x86_64-gcc4.8.5/include/JANA/JEventLoop.h"<<":"<<__LINE__341<<" Auto-created "<<T::static_className()<<":"<<tag<<" factory"<<std::endl;
342
343 // Now try once more. The GetFromFactory method will call
344 // GetFromSource since it's empty.
345 factory = GetFromFactory(t, tag, cs.data_source, allow_deftag);
346 }
347 }
348 }catch(exception &e){
349 // Uh-oh, an exception was thrown. Add us to the call stack
350 // and re-throw the exception
351 error_call_stack_t ecs;
352 ecs.factory_name = T::static_className();
353 ecs.tag = tag;
354 ecs.filename = NULL__null;
355 error_call_stack.push_back(ecs);
356 throw e;
357 }
358
359 // If recording the call stack, update the end_time field and add to stack
360 if(record_call_stack) CallStackEnd(cs);
361
362 return factory;
363}
364
365//-------------
366// GetFromFactory
367//-------------
368template<class T>
369JFactory<T>* JEventLoop::GetFromFactory(vector<const T*> &t, const char *tag, data_source_t &data_source, bool allow_deftag)
370{
371 // We need to find the factory providing data type T with
372 // tag given by "tag".
373 vector<JFactory_base*>::iterator iter=factories.begin();
374 JFactory<T> *factory = NULL__null;
375 string className(T::static_className());
376
377 // Check if a tag was specified for this data type to use for the
378 // default.
379 const char *mytag = tag==NULL__null ? "":tag; // protection against NULL tags
12
Assuming 'tag' is equal to NULL
13
Assuming pointer value is null
14
'?' condition is true
380 if(strlen(mytag)==0 && allow_deftag
14.1
'allow_deftag' is true
14.1
'allow_deftag' is true
14.1
'allow_deftag' is true
){
15
Taking true branch
381 map<string, string>::const_iterator iter = default_tags.find(className);
382 if(iter!=default_tags.end())tag = iter->second.c_str();
16
Assuming the condition is false
17
Taking false branch
383 }
384
385 for(; iter!=factories.end(); iter++){
18
Calling 'operator!=<jana::JFactory_base **, std::vector<jana::JFactory_base *>>'
21
Returning from 'operator!=<jana::JFactory_base **, std::vector<jana::JFactory_base *>>'
22
Loop condition is true. Entering loop body
386 // It turns out a long standing bug in g++ makes dynamic_cast return
387 // zero improperly when used on objects created on one side of
388 // a dynamically shared object (DSO) and the cast occurs on the
389 // other side. I saw bug reports ranging from 2001 to 2004. I saw
390 // saw it first-hand on LinuxEL4 using g++ 3.4.5. This is too bad
391 // since it is much more elegant (and safe) to use dynamic_cast.
392 // To avoid this problem which can occur with plugins, we check
393 // the name of the data classes are the same. (sigh)
394 //factory = dynamic_cast<JFactory<T> *>(*iter);
395 if(className == (*iter)->GetDataClassName())factory = (JFactory<T>*)(*iter);
23
Taking true branch
396 if(factory == NULL__null)continue;
24
Assuming 'factory' is not equal to NULL
25
Taking false branch
397 const char *factag = factory->Tag()==NULL__null ? "":factory->Tag();
26
Assuming the condition is true
27
'?' condition is true
398 if(!strcmp(factag, tag)){
28
Null pointer passed to 2nd parameter expecting 'nonnull'
399 break;
400 }else{
401 factory=NULL__null;
402 }
403 }
404
405 // If factory not found, just return now
406 if(!factory){
407 data_source = DATA_NOT_AVAILABLE;
408 return NULL__null;
409 }
410
411 // OK, we found the factory. If the evnt() routine has already
412 // been called, then just call the factory's Get() routine
413 // to return a copy of the existing data
414 if(factory->evnt_was_called()){
415 factory->CopyFrom(t);
416 data_source = DATA_FROM_CACHE;
417 return factory;
418 }
419
420 // Next option is to get the objects from the data source
421 if(factory->GetCheckSourceFirst()){
422 // If the object type/tag is found in the source, it
423 // will return NOERROR, even if there are zero instances
424 // of it. If it is not available in the source then it
425 // will return OBJECT_NOT_AVAILABLE.
426
427 jerror_t err = GetFromSource(t, factory);
428 if(err == NOERROR){
429 // A return value of NOERROR means the source had the objects
430 // even if there were zero of them.(If the source had no
431 // information about the objects OBJECT_NOT_AVAILABLE would
432 // have been returned.)
433 // The GetFromSource() call will eventually lead to a call to
434 // the GetObjects() method of the concrete class derived
435 // from JEventSource. That routine should copy the object
436 // pointers into the factory using the factory's CopyTo()
437 // method which also sets the evnt_called flag for the factory.
438 // Note also that the "t" vector is then filled with a call
439 // to the factory's CopyFrom() method in JEvent::GetObjects().
440 // All we need to do now is just set the factory pointers in
441 // the newly generated JObjects and return the factory pointer.
442
443 factory->SetFactoryPointers();
444 data_source = DATA_FROM_SOURCE;
445
446 return factory;
447 }
448 }
449
450 // OK. It looks like we have to have the factory make this.
451 // Get pointers to data from the factory.
452 factory->Get(t);
453 factory->SetFactoryPointers();
454 data_source = DATA_FROM_FACTORY;
455
456 return factory;
457}
458
459//-------------
460// GetFromSource
461//-------------
462template<class T>
463jerror_t JEventLoop::GetFromSource(vector<const T*> &t, JFactory_base *factory)
464{
465 /// This tries to get objects from the event source.
466 /// "factory" must be a valid pointer to a JFactory
467 /// object since that will take ownership of the objects
468 /// created by the source.
469 /// This should usually be called from JEventLoop::GetFromFactory
470 /// which is called from JEventLoop::Get. The latter will
471 /// create a dummy JFactory of the proper flavor and tag if
472 /// one does not already exist so if objects exist in the
473 /// file without a corresponding factory to create them, they
474 /// can still be used.
475 if(!factory)throw OBJECT_NOT_AVAILABLE;
476
477 return event.GetObjects(t, factory);
478}
479
480//-------------
481// CallStackStart
482//-------------
483inline void JEventLoop::CallStackStart(JEventLoop::call_stack_t &cs, const string &caller_name, const string &caller_tag, const string callee_name, const string callee_tag)
484{
485 /// This is used to fill initial info into a call_stack_t stucture
486 /// for recording the call stack. It should be matched with a call
487 /// to CallStackEnd. It is normally called from the Get() method
488 /// above, but may also be used by external actors to manipulate
489 /// the call stack (presumably for good and not evil).
490
491 struct itimerval tmr;
492 getitimer(ITIMER_PROFITIMER_PROF, &tmr);
493
494 cs.caller_name = this->caller_name;
495 cs.caller_tag = this->caller_tag;
496 this->caller_name = cs.callee_name = callee_name;
497 this->caller_tag = cs.callee_tag = callee_tag;
498 cs.start_time = tmr.it_value.tv_sec + tmr.it_value.tv_usec/1.0E6;
499}
500
501//-------------
502// CallStackEnd
503//-------------
504inline void JEventLoop::CallStackEnd(JEventLoop::call_stack_t &cs)
505{
506 /// Complete a call stack entry. This should be matched
507 /// with a previous call to CallStackStart which was
508 /// used to fill the cs structure.
509
510 struct itimerval tmr;
511 getitimer(ITIMER_PROFITIMER_PROF, &tmr);
512 cs.end_time = tmr.it_value.tv_sec + tmr.it_value.tv_usec/1.0E6;
513 caller_name = cs.caller_name;
514 caller_tag = cs.caller_tag;
515 call_stack.push_back(cs);
516}
517
518//-------------
519// CheckEventBoundary
520//-------------
521inline bool JEventLoop::CheckEventBoundary(uint64_t event_numberA, uint64_t event_numberB)
522{
523 /// Check whether the two event numbers span one or more boundaries
524 /// in the calibration/conditions database for the current run number.
525 /// Return true if they do and false if they don't. The first parameter
526 /// "event_numberA" is also checked if it lands on a boundary in which
527 /// case true is also returned. If event_numberB lands on a boundary,
528 /// but event_numberA does not, then false is returned.
529 ///
530 /// This method is not expected to be called by a user. It is, however called,
531 /// everytime a JFactory's Get() method is called.
532
533 // Make sure our copy of the boundaries is up to date
534 if(event.GetRunNumber()!=event_boundaries_run){
535 event_boundaries.clear(); // in case we can't get the JCalibration pointer
536 JCalibration *jcalib = GetJCalibration();
537 if(jcalib)jcalib->GetEventBoundaries(event_boundaries);
538 event_boundaries_run = event.GetRunNumber();
539 }
540
541 // Loop over boundaries
542 for(unsigned int i=0; i<event_boundaries.size(); i++){
543 uint64_t eb = event_boundaries[i];
544 if((eb - event_numberA)*(eb - event_numberB) < 0.0 || eb==event_numberA){ // think about it ....
545 // events span a boundary or is on a boundary. Return true
546 return true;
547 }
548 }
549
550 return false;
551}
552
553//-------------
554// FindByID
555//-------------
556template<class T>
557const T* JEventLoop::FindByID(JObject::oid_t id)
558{
559 /// This is a templated method that can be used in place
560 /// of the non-templated FindByID(oid_t) method if one knows
561 /// the class of the object with the specified id.
562 /// This method is faster than calling the non-templated
563 /// FindByID and dynamic_cast-ing the JObject since
564 /// this will only search the objects of factories that
565 /// produce the desired data type.
566 /// This method will cast the JObject pointer to one
567 /// of the specified type. To use this method,
568 /// a type is specified in the call as follows:
569 ///
570 /// const DMyType *t = loop->FindByID<DMyType>(id);
571
572 // Loop over factories looking for ones that provide
573 // specified data type.
574 for(unsigned int i=0; i<factories.size(); i++){
575 if(factories[i]->GetDataClassName() != T::static_className())continue;
576
577 // This factory provides data of type T. Search it for
578 // the object with the specified id.
579 const JObject *my_obj = factories[i]->GetByID(id);
580 if(my_obj)return dynamic_cast<const T*>(my_obj);
581 }
582
583 return NULL__null;
584}
585
586//-------------
587// GetCalib (map)
588//-------------
589template<class T>
590bool JEventLoop::GetCalib(string namepath, map<string,T> &vals)
591{
592 /// Get the JCalibration object from JApplication for the run number of
593 /// the current event and call its Get() method to get the constants.
594
595 // Note that we could do this by making "vals" a generic type T thus, combining
596 // this with the vector version below. However, doing this explicitly will make
597 // it easier for the user to understand how to call us.
598
599 vals.clear();
600
601 JCalibration *calib = GetJCalibration();
602 if(!calib){
603 _DBG_std::cerr<<"/w/halld-scifs17exp/halld2/home/sdobbs/Software/jana/jana_0.8.2/Linux_CentOS7.7-x86_64-gcc4.8.5/include/JANA/JEventLoop.h"
<<":"<<603<<" "
<<"Unable to get JCalibration object for run "<<event.GetRunNumber()<<std::endl;
604 return true;
605 }
606
607 return calib->Get(namepath, vals, event.GetEventNumber());
608}
609
610//-------------
611// GetCalib (vector)
612//-------------
613template<class T> bool JEventLoop::GetCalib(string namepath, vector<T> &vals)
614{
615 /// Get the JCalibration object from JApplication for the run number of
616 /// the current event and call its Get() method to get the constants.
617
618 vals.clear();
619
620 JCalibration *calib = GetJCalibration();
621 if(!calib){
622 _DBG_std::cerr<<"/w/halld-scifs17exp/halld2/home/sdobbs/Software/jana/jana_0.8.2/Linux_CentOS7.7-x86_64-gcc4.8.5/include/JANA/JEventLoop.h"
<<":"<<622<<" "
<<"Unable to get JCalibration object for run "<<event.GetRunNumber()<<std::endl;
623 return true;
624 }
625
626 return calib->Get(namepath, vals, event.GetEventNumber());
627}
628
629//-------------
630// GetCalib (single)
631//-------------
632template<class T> bool JEventLoop::GetCalib(string namepath, T &val)
633{
634 /// This is a convenience method for getting a single entry. It
635 /// simply calls the vector version and returns the first entry.
636 /// It returns true if the vector version returns true AND there
637 /// is at least one entry in the vector. No check is made for there
638 /// there being more than one entry in the vector.
639
640 vector<T> vals;
641 bool ret = GetCalib(namepath, vals);
642 if(vals.empty()) return true;
643 val = vals[0];
644
645 return ret;
646}
647
648//-------------
649// GetGeom (map)
650//-------------
651template<class T>
652bool JEventLoop::GetGeom(string namepath, map<string,T> &vals)
653{
654 /// Get the JGeometry object from JApplication for the run number of
655 /// the current event and call its Get() method to get the constants.
656
657 // Note that we could do this by making "vals" a generic type T thus, combining
658 // this with the vector version below. However, doing this explicitly will make
659 // it easier for the user to understand how to call us.
660
661 vals.clear();
662
663 JGeometry *geom = GetJGeometry();
664 if(!geom){
665 _DBG_std::cerr<<"/w/halld-scifs17exp/halld2/home/sdobbs/Software/jana/jana_0.8.2/Linux_CentOS7.7-x86_64-gcc4.8.5/include/JANA/JEventLoop.h"
<<":"<<665<<" "
<<"Unable to get JGeometry object for run "<<event.GetRunNumber()<<std::endl;
666 return true;
667 }
668
669 return geom->Get(namepath, vals);
670}
671
672//-------------
673// GetGeom (atomic)
674//-------------
675template<class T> bool JEventLoop::GetGeom(string namepath, T &val)
676{
677 /// Get the JCalibration object from JApplication for the run number of
678 /// the current event and call its Get() method to get the constants.
679
680 JGeometry *geom = GetJGeometry();
681 if(!geom){
682 _DBG_std::cerr<<"/w/halld-scifs17exp/halld2/home/sdobbs/Software/jana/jana_0.8.2/Linux_CentOS7.7-x86_64-gcc4.8.5/include/JANA/JEventLoop.h"
<<":"<<682<<" "
<<"Unable to get JGeometry object for run "<<event.GetRunNumber()<<std::endl;
683 return true;
684 }
685
686 return geom->Get(namepath, val);
687}
688
689//-------------
690// SetRef
691//-------------
692template<class T>
693void JEventLoop::SetRef(T *t)
694{
695 pair<const char*, void*> p(typeid(T).name(), (void*)t);
696 user_refs.push_back(p);
697}
698
699//-------------
700// GetResource
701//-------------
702template<class T> bool JEventLoop::GetResource(string namepath, T vals, int event_number)
703{
704 JResourceManager *resource_manager = GetJResourceManager();
705 if(!resource_manager){
706 string mess = string("Unable to get the JResourceManager object (namepath=\"")+namepath+"\")";
707 throw JException(mess);
708 }
709
710 return resource_manager->Get(namepath, vals, event_number);
711}
712
713//-------------
714// GetRef
715//-------------
716template<class T>
717T* JEventLoop::GetRef(void)
718{
719 /// Get a user-defined reference (a pointer)
720 for(unsigned int i=0; i<user_refs.size(); i++){
721 if(user_refs[i].first == typeid(T).name()) return (T*)user_refs[i].second;
722 }
723
724 return NULL__null;
725}
726
727//-------------
728// GetRefsT
729//-------------
730template<class T>
731vector<T*> JEventLoop::GetRefsT(void)
732{
733 vector<T*> refs;
734 for(unsigned int i=0; i<user_refs.size(); i++){
735 if(user_refs[i].first == typeid(T).name()){
736 refs.push_back((T*)user_refs[i].second);
737 }
738 }
739
740 return refs;
741}
742
743//-------------
744// RemoveRef
745//-------------
746template<class T>
747void JEventLoop::RemoveRef(T *t)
748{
749 vector<pair<const char*, void*> >::iterator iter;
750 for(iter=user_refs.begin(); iter!= user_refs.end(); iter++){
751 if(iter->second == (void*)t){
752 user_refs.erase(iter);
753 return;
754 }
755 }
756 _DBG_std::cerr<<"/w/halld-scifs17exp/halld2/home/sdobbs/Software/jana/jana_0.8.2/Linux_CentOS7.7-x86_64-gcc4.8.5/include/JANA/JEventLoop.h"
<<":"<<756<<" "
<<" Attempt to remove user reference not in event loop!" << std::endl;
757}
758
759
760#endif //__CINT__ __CLING__
761
762} // Close JANA namespace
763
764
765
766#endif // _JEventLoop_
767

/usr/lib/gcc/x86_64-redhat-linux/4.8.5/../../../../include/c++/4.8.5/bits/stl_iterator.h

1// Iterators -*- C++ -*-
2
3// Copyright (C) 2001-2013 Free Software Foundation, Inc.
4//
5// This file is part of the GNU ISO C++ Library. This library is free
6// software; you can redistribute it and/or modify it under the
7// terms of the GNU General Public License as published by the
8// Free Software Foundation; either version 3, or (at your option)
9// any later version.
10
11// This library is distributed in the hope that it will be useful,
12// but WITHOUT ANY WARRANTY; without even the implied warranty of
13// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14// GNU General Public License for more details.
15
16// Under Section 7 of GPL version 3, you are granted additional
17// permissions described in the GCC Runtime Library Exception, version
18// 3.1, as published by the Free Software Foundation.
19
20// You should have received a copy of the GNU General Public License and
21// a copy of the GCC Runtime Library Exception along with this program;
22// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
23// <http://www.gnu.org/licenses/>.
24
25/*
26 *
27 * Copyright (c) 1994
28 * Hewlett-Packard Company
29 *
30 * Permission to use, copy, modify, distribute and sell this software
31 * and its documentation for any purpose is hereby granted without fee,
32 * provided that the above copyright notice appear in all copies and
33 * that both that copyright notice and this permission notice appear
34 * in supporting documentation. Hewlett-Packard Company makes no
35 * representations about the suitability of this software for any
36 * purpose. It is provided "as is" without express or implied warranty.
37 *
38 *
39 * Copyright (c) 1996-1998
40 * Silicon Graphics Computer Systems, Inc.
41 *
42 * Permission to use, copy, modify, distribute and sell this software
43 * and its documentation for any purpose is hereby granted without fee,
44 * provided that the above copyright notice appear in all copies and
45 * that both that copyright notice and this permission notice appear
46 * in supporting documentation. Silicon Graphics makes no
47 * representations about the suitability of this software for any
48 * purpose. It is provided "as is" without express or implied warranty.
49 */
50
51/** @file bits/stl_iterator.h
52 * This is an internal header file, included by other library headers.
53 * Do not attempt to use it directly. @headername{iterator}
54 *
55 * This file implements reverse_iterator, back_insert_iterator,
56 * front_insert_iterator, insert_iterator, __normal_iterator, and their
57 * supporting functions and overloaded operators.
58 */
59
60#ifndef _STL_ITERATOR_H1
61#define _STL_ITERATOR_H1 1
62
63#include <bits/cpp_type_traits.h>
64#include <ext/type_traits.h>
65#include <bits/move.h>
66
67namespace std _GLIBCXX_VISIBILITY(default)__attribute__ ((__visibility__ ("default")))
68{
69_GLIBCXX_BEGIN_NAMESPACE_VERSION
70
71 /**
72 * @addtogroup iterators
73 * @{
74 */
75
76 // 24.4.1 Reverse iterators
77 /**
78 * Bidirectional and random access iterators have corresponding reverse
79 * %iterator adaptors that iterate through the data structure in the
80 * opposite direction. They have the same signatures as the corresponding
81 * iterators. The fundamental relation between a reverse %iterator and its
82 * corresponding %iterator @c i is established by the identity:
83 * @code
84 * &*(reverse_iterator(i)) == &*(i - 1)
85 * @endcode
86 *
87 * <em>This mapping is dictated by the fact that while there is always a
88 * pointer past the end of an array, there might not be a valid pointer
89 * before the beginning of an array.</em> [24.4.1]/1,2
90 *
91 * Reverse iterators can be tricky and surprising at first. Their
92 * semantics make sense, however, and the trickiness is a side effect of
93 * the requirement that the iterators must be safe.
94 */
95 template<typename _Iterator>
96 class reverse_iterator
97 : public iterator<typename iterator_traits<_Iterator>::iterator_category,
98 typename iterator_traits<_Iterator>::value_type,
99 typename iterator_traits<_Iterator>::difference_type,
100 typename iterator_traits<_Iterator>::pointer,
101 typename iterator_traits<_Iterator>::reference>
102 {
103 protected:
104 _Iterator current;
105
106 typedef iterator_traits<_Iterator> __traits_type;
107
108 public:
109 typedef _Iterator iterator_type;
110 typedef typename __traits_type::difference_type difference_type;
111 typedef typename __traits_type::pointer pointer;
112 typedef typename __traits_type::reference reference;
113
114 /**
115 * The default constructor value-initializes member @p current.
116 * If it is a pointer, that means it is zero-initialized.
117 */
118 // _GLIBCXX_RESOLVE_LIB_DEFECTS
119 // 235 No specification of default ctor for reverse_iterator
120 reverse_iterator() : current() { }
121
122 /**
123 * This %iterator will move in the opposite direction that @p x does.
124 */
125 explicit
126 reverse_iterator(iterator_type __x) : current(__x) { }
127
128 /**
129 * The copy constructor is normal.
130 */
131 reverse_iterator(const reverse_iterator& __x)
132 : current(__x.current) { }
133
134 /**
135 * A %reverse_iterator across other types can be copied if the
136 * underlying %iterator can be converted to the type of @c current.
137 */
138 template<typename _Iter>
139 reverse_iterator(const reverse_iterator<_Iter>& __x)
140 : current(__x.base()) { }
141
142 /**
143 * @return @c current, the %iterator used for underlying work.
144 */
145 iterator_type
146 base() const
147 { return current; }
148
149 /**
150 * @return A reference to the value at @c --current
151 *
152 * This requires that @c --current is dereferenceable.
153 *
154 * @warning This implementation requires that for an iterator of the
155 * underlying iterator type, @c x, a reference obtained by
156 * @c *x remains valid after @c x has been modified or
157 * destroyed. This is a bug: http://gcc.gnu.org/PR51823
158 */
159 reference
160 operator*() const
161 {
162 _Iterator __tmp = current;
163 return *--__tmp;
164 }
165
166 /**
167 * @return A pointer to the value at @c --current
168 *
169 * This requires that @c --current is dereferenceable.
170 */
171 pointer
172 operator->() const
173 { return &(operator*()); }
174
175 /**
176 * @return @c *this
177 *
178 * Decrements the underlying iterator.
179 */
180 reverse_iterator&
181 operator++()
182 {
183 --current;
184 return *this;
185 }
186
187 /**
188 * @return The original value of @c *this
189 *
190 * Decrements the underlying iterator.
191 */
192 reverse_iterator
193 operator++(int)
194 {
195 reverse_iterator __tmp = *this;
196 --current;
197 return __tmp;
198 }
199
200 /**
201 * @return @c *this
202 *
203 * Increments the underlying iterator.
204 */
205 reverse_iterator&
206 operator--()
207 {
208 ++current;
209 return *this;
210 }
211
212 /**
213 * @return A reverse_iterator with the previous value of @c *this
214 *
215 * Increments the underlying iterator.
216 */
217 reverse_iterator
218 operator--(int)
219 {
220 reverse_iterator __tmp = *this;
221 ++current;
222 return __tmp;
223 }
224
225 /**
226 * @return A reverse_iterator that refers to @c current - @a __n
227 *
228 * The underlying iterator must be a Random Access Iterator.
229 */
230 reverse_iterator
231 operator+(difference_type __n) const
232 { return reverse_iterator(current - __n); }
233
234 /**
235 * @return *this
236 *
237 * Moves the underlying iterator backwards @a __n steps.
238 * The underlying iterator must be a Random Access Iterator.
239 */
240 reverse_iterator&
241 operator+=(difference_type __n)
242 {
243 current -= __n;
244 return *this;
245 }
246
247 /**
248 * @return A reverse_iterator that refers to @c current - @a __n
249 *
250 * The underlying iterator must be a Random Access Iterator.
251 */
252 reverse_iterator
253 operator-(difference_type __n) const
254 { return reverse_iterator(current + __n); }
255
256 /**
257 * @return *this
258 *
259 * Moves the underlying iterator forwards @a __n steps.
260 * The underlying iterator must be a Random Access Iterator.
261 */
262 reverse_iterator&
263 operator-=(difference_type __n)
264 {
265 current += __n;
266 return *this;
267 }
268
269 /**
270 * @return The value at @c current - @a __n - 1
271 *
272 * The underlying iterator must be a Random Access Iterator.
273 */
274 reference
275 operator[](difference_type __n) const
276 { return *(*this + __n); }
277 };
278
279 //@{
280 /**
281 * @param __x A %reverse_iterator.
282 * @param __y A %reverse_iterator.
283 * @return A simple bool.
284 *
285 * Reverse iterators forward many operations to their underlying base()
286 * iterators. Others are implemented in terms of one another.
287 *
288 */
289 template<typename _Iterator>
290 inline bool
291 operator==(const reverse_iterator<_Iterator>& __x,
292 const reverse_iterator<_Iterator>& __y)
293 { return __x.base() == __y.base(); }
294
295 template<typename _Iterator>
296 inline bool
297 operator<(const reverse_iterator<_Iterator>& __x,
298 const reverse_iterator<_Iterator>& __y)
299 { return __y.base() < __x.base(); }
300
301 template<typename _Iterator>
302 inline bool
303 operator!=(const reverse_iterator<_Iterator>& __x,
304 const reverse_iterator<_Iterator>& __y)
305 { return !(__x == __y); }
306
307 template<typename _Iterator>
308 inline bool
309 operator>(const reverse_iterator<_Iterator>& __x,
310 const reverse_iterator<_Iterator>& __y)
311 { return __y < __x; }
312
313 template<typename _Iterator>
314 inline bool
315 operator<=(const reverse_iterator<_Iterator>& __x,
316 const reverse_iterator<_Iterator>& __y)
317 { return !(__y < __x); }
318
319 template<typename _Iterator>
320 inline bool
321 operator>=(const reverse_iterator<_Iterator>& __x,
322 const reverse_iterator<_Iterator>& __y)
323 { return !(__x < __y); }
324
325 template<typename _Iterator>
326 inline typename reverse_iterator<_Iterator>::difference_type
327 operator-(const reverse_iterator<_Iterator>& __x,
328 const reverse_iterator<_Iterator>& __y)
329 { return __y.base() - __x.base(); }
330
331 template<typename _Iterator>
332 inline reverse_iterator<_Iterator>
333 operator+(typename reverse_iterator<_Iterator>::difference_type __n,
334 const reverse_iterator<_Iterator>& __x)
335 { return reverse_iterator<_Iterator>(__x.base() - __n); }
336
337 // _GLIBCXX_RESOLVE_LIB_DEFECTS
338 // DR 280. Comparison of reverse_iterator to const reverse_iterator.
339 template<typename _IteratorL, typename _IteratorR>
340 inline bool
341 operator==(const reverse_iterator<_IteratorL>& __x,
342 const reverse_iterator<_IteratorR>& __y)
343 { return __x.base() == __y.base(); }
344
345 template<typename _IteratorL, typename _IteratorR>
346 inline bool
347 operator<(const reverse_iterator<_IteratorL>& __x,
348 const reverse_iterator<_IteratorR>& __y)
349 { return __y.base() < __x.base(); }
350
351 template<typename _IteratorL, typename _IteratorR>
352 inline bool
353 operator!=(const reverse_iterator<_IteratorL>& __x,
354 const reverse_iterator<_IteratorR>& __y)
355 { return !(__x == __y); }
356
357 template<typename _IteratorL, typename _IteratorR>
358 inline bool
359 operator>(const reverse_iterator<_IteratorL>& __x,
360 const reverse_iterator<_IteratorR>& __y)
361 { return __y < __x; }
362
363 template<typename _IteratorL, typename _IteratorR>
364 inline bool
365 operator<=(const reverse_iterator<_IteratorL>& __x,
366 const reverse_iterator<_IteratorR>& __y)
367 { return !(__y < __x); }
368
369 template<typename _IteratorL, typename _IteratorR>
370 inline bool
371 operator>=(const reverse_iterator<_IteratorL>& __x,
372 const reverse_iterator<_IteratorR>& __y)
373 { return !(__x < __y); }
374
375 template<typename _IteratorL, typename _IteratorR>
376#if __cplusplus201103L >= 201103L
377 // DR 685.
378 inline auto
379 operator-(const reverse_iterator<_IteratorL>& __x,
380 const reverse_iterator<_IteratorR>& __y)
381 -> decltype(__y.base() - __x.base())
382#else
383 inline typename reverse_iterator<_IteratorL>::difference_type
384 operator-(const reverse_iterator<_IteratorL>& __x,
385 const reverse_iterator<_IteratorR>& __y)
386#endif
387 { return __y.base() - __x.base(); }
388 //@}
389
390 // 24.4.2.2.1 back_insert_iterator
391 /**
392 * @brief Turns assignment into insertion.
393 *
394 * These are output iterators, constructed from a container-of-T.
395 * Assigning a T to the iterator appends it to the container using
396 * push_back.
397 *
398 * Tip: Using the back_inserter function to create these iterators can
399 * save typing.
400 */
401 template<typename _Container>
402 class back_insert_iterator
403 : public iterator<output_iterator_tag, void, void, void, void>
404 {
405 protected:
406 _Container* container;
407
408 public:
409 /// A nested typedef for the type of whatever container you used.
410 typedef _Container container_type;
411
412 /// The only way to create this %iterator is with a container.
413 explicit
414 back_insert_iterator(_Container& __x) : container(&__x) { }
415
416 /**
417 * @param __value An instance of whatever type
418 * container_type::const_reference is; presumably a
419 * reference-to-const T for container<T>.
420 * @return This %iterator, for chained operations.
421 *
422 * This kind of %iterator doesn't really have a @a position in the
423 * container (you can think of the position as being permanently at
424 * the end, if you like). Assigning a value to the %iterator will
425 * always append the value to the end of the container.
426 */
427#if __cplusplus201103L < 201103L
428 back_insert_iterator&
429 operator=(typename _Container::const_reference __value)
430 {
431 container->push_back(__value);
432 return *this;
433 }
434#else
435 back_insert_iterator&
436 operator=(const typename _Container::value_type& __value)
437 {
438 container->push_back(__value);
439 return *this;
440 }
441
442 back_insert_iterator&
443 operator=(typename _Container::value_type&& __value)
444 {
445 container->push_back(std::move(__value));
446 return *this;
447 }
448#endif
449
450 /// Simply returns *this.
451 back_insert_iterator&
452 operator*()
453 { return *this; }
454
455 /// Simply returns *this. (This %iterator does not @a move.)
456 back_insert_iterator&
457 operator++()
458 { return *this; }
459
460 /// Simply returns *this. (This %iterator does not @a move.)
461 back_insert_iterator
462 operator++(int)
463 { return *this; }
464 };
465
466 /**
467 * @param __x A container of arbitrary type.
468 * @return An instance of back_insert_iterator working on @p __x.
469 *
470 * This wrapper function helps in creating back_insert_iterator instances.
471 * Typing the name of the %iterator requires knowing the precise full
472 * type of the container, which can be tedious and impedes generic
473 * programming. Using this function lets you take advantage of automatic
474 * template parameter deduction, making the compiler match the correct
475 * types for you.
476 */
477 template<typename _Container>
478 inline back_insert_iterator<_Container>
479 back_inserter(_Container& __x)
480 { return back_insert_iterator<_Container>(__x); }
481
482 /**
483 * @brief Turns assignment into insertion.
484 *
485 * These are output iterators, constructed from a container-of-T.
486 * Assigning a T to the iterator prepends it to the container using
487 * push_front.
488 *
489 * Tip: Using the front_inserter function to create these iterators can
490 * save typing.
491 */
492 template<typename _Container>
493 class front_insert_iterator
494 : public iterator<output_iterator_tag, void, void, void, void>
495 {
496 protected:
497 _Container* container;
498
499 public:
500 /// A nested typedef for the type of whatever container you used.
501 typedef _Container container_type;
502
503 /// The only way to create this %iterator is with a container.
504 explicit front_insert_iterator(_Container& __x) : container(&__x) { }
505
506 /**
507 * @param __value An instance of whatever type
508 * container_type::const_reference is; presumably a
509 * reference-to-const T for container<T>.
510 * @return This %iterator, for chained operations.
511 *
512 * This kind of %iterator doesn't really have a @a position in the
513 * container (you can think of the position as being permanently at
514 * the front, if you like). Assigning a value to the %iterator will
515 * always prepend the value to the front of the container.
516 */
517#if __cplusplus201103L < 201103L
518 front_insert_iterator&
519 operator=(typename _Container::const_reference __value)
520 {
521 container->push_front(__value);
522 return *this;
523 }
524#else
525 front_insert_iterator&
526 operator=(const typename _Container::value_type& __value)
527 {
528 container->push_front(__value);
529 return *this;
530 }
531
532 front_insert_iterator&
533 operator=(typename _Container::value_type&& __value)
534 {
535 container->push_front(std::move(__value));
536 return *this;
537 }
538#endif
539
540 /// Simply returns *this.
541 front_insert_iterator&
542 operator*()
543 { return *this; }
544
545 /// Simply returns *this. (This %iterator does not @a move.)
546 front_insert_iterator&
547 operator++()
548 { return *this; }
549
550 /// Simply returns *this. (This %iterator does not @a move.)
551 front_insert_iterator
552 operator++(int)
553 { return *this; }
554 };
555
556 /**
557 * @param __x A container of arbitrary type.
558 * @return An instance of front_insert_iterator working on @p x.
559 *
560 * This wrapper function helps in creating front_insert_iterator instances.
561 * Typing the name of the %iterator requires knowing the precise full
562 * type of the container, which can be tedious and impedes generic
563 * programming. Using this function lets you take advantage of automatic
564 * template parameter deduction, making the compiler match the correct
565 * types for you.
566 */
567 template<typename _Container>
568 inline front_insert_iterator<_Container>
569 front_inserter(_Container& __x)
570 { return front_insert_iterator<_Container>(__x); }
571
572 /**
573 * @brief Turns assignment into insertion.
574 *
575 * These are output iterators, constructed from a container-of-T.
576 * Assigning a T to the iterator inserts it in the container at the
577 * %iterator's position, rather than overwriting the value at that
578 * position.
579 *
580 * (Sequences will actually insert a @e copy of the value before the
581 * %iterator's position.)
582 *
583 * Tip: Using the inserter function to create these iterators can
584 * save typing.
585 */
586 template<typename _Container>
587 class insert_iterator
588 : public iterator<output_iterator_tag, void, void, void, void>
589 {
590 protected:
591 _Container* container;
592 typename _Container::iterator iter;
593
594 public:
595 /// A nested typedef for the type of whatever container you used.
596 typedef _Container container_type;
597
598 /**
599 * The only way to create this %iterator is with a container and an
600 * initial position (a normal %iterator into the container).
601 */
602 insert_iterator(_Container& __x, typename _Container::iterator __i)
603 : container(&__x), iter(__i) {}
604
605 /**
606 * @param __value An instance of whatever type
607 * container_type::const_reference is; presumably a
608 * reference-to-const T for container<T>.
609 * @return This %iterator, for chained operations.
610 *
611 * This kind of %iterator maintains its own position in the
612 * container. Assigning a value to the %iterator will insert the
613 * value into the container at the place before the %iterator.
614 *
615 * The position is maintained such that subsequent assignments will
616 * insert values immediately after one another. For example,
617 * @code
618 * // vector v contains A and Z
619 *
620 * insert_iterator i (v, ++v.begin());
621 * i = 1;
622 * i = 2;
623 * i = 3;
624 *
625 * // vector v contains A, 1, 2, 3, and Z
626 * @endcode
627 */
628#if __cplusplus201103L < 201103L
629 insert_iterator&
630 operator=(typename _Container::const_reference __value)
631 {
632 iter = container->insert(iter, __value);
633 ++iter;
634 return *this;
635 }
636#else
637 insert_iterator&
638 operator=(const typename _Container::value_type& __value)
639 {
640 iter = container->insert(iter, __value);
641 ++iter;
642 return *this;
643 }
644
645 insert_iterator&
646 operator=(typename _Container::value_type&& __value)
647 {
648 iter = container->insert(iter, std::move(__value));
649 ++iter;
650 return *this;
651 }
652#endif
653
654 /// Simply returns *this.
655 insert_iterator&
656 operator*()
657 { return *this; }
658
659 /// Simply returns *this. (This %iterator does not @a move.)
660 insert_iterator&
661 operator++()
662 { return *this; }
663
664 /// Simply returns *this. (This %iterator does not @a move.)
665 insert_iterator&
666 operator++(int)
667 { return *this; }
668 };
669
670 /**
671 * @param __x A container of arbitrary type.
672 * @return An instance of insert_iterator working on @p __x.
673 *
674 * This wrapper function helps in creating insert_iterator instances.
675 * Typing the name of the %iterator requires knowing the precise full
676 * type of the container, which can be tedious and impedes generic
677 * programming. Using this function lets you take advantage of automatic
678 * template parameter deduction, making the compiler match the correct
679 * types for you.
680 */
681 template<typename _Container, typename _Iterator>
682 inline insert_iterator<_Container>
683 inserter(_Container& __x, _Iterator __i)
684 {
685 return insert_iterator<_Container>(__x,
686 typename _Container::iterator(__i));
687 }
688
689 // @} group iterators
690
691_GLIBCXX_END_NAMESPACE_VERSION
692} // namespace
693
694namespace __gnu_cxx _GLIBCXX_VISIBILITY(default)__attribute__ ((__visibility__ ("default")))
695{
696_GLIBCXX_BEGIN_NAMESPACE_VERSION
697
698 // This iterator adapter is @a normal in the sense that it does not
699 // change the semantics of any of the operators of its iterator
700 // parameter. Its primary purpose is to convert an iterator that is
701 // not a class, e.g. a pointer, into an iterator that is a class.
702 // The _Container parameter exists solely so that different containers
703 // using this template can instantiate different types, even if the
704 // _Iterator parameter is the same.
705 using std::iterator_traits;
706 using std::iterator;
707 template<typename _Iterator, typename _Container>
708 class __normal_iterator
709 {
710 protected:
711 _Iterator _M_current;
712
713 typedef iterator_traits<_Iterator> __traits_type;
714
715 public:
716 typedef _Iterator iterator_type;
717 typedef typename __traits_type::iterator_category iterator_category;
718 typedef typename __traits_type::value_type value_type;
719 typedef typename __traits_type::difference_type difference_type;
720 typedef typename __traits_type::reference reference;
721 typedef typename __traits_type::pointer pointer;
722
723 _GLIBCXX_CONSTEXPRconstexpr __normal_iterator() : _M_current(_Iterator()) { }
724
725 explicit
726 __normal_iterator(const _Iterator& __i) : _M_current(__i) { }
727
728 // Allow iterator to const_iterator conversion
729 template<typename _Iter>
730 __normal_iterator(const __normal_iterator<_Iter,
731 typename __enable_if<
732 (std::__are_same<_Iter, typename _Container::pointer>::__value),
733 _Container>::__type>& __i)
734 : _M_current(__i.base()) { }
735
736 // Forward iterator requirements
737 reference
738 operator*() const
739 { return *_M_current; }
740
741 pointer
742 operator->() const
743 { return _M_current; }
744
745 __normal_iterator&
746 operator++()
747 {
748 ++_M_current;
749 return *this;
750 }
751
752 __normal_iterator
753 operator++(int)
754 { return __normal_iterator(_M_current++); }
755
756 // Bidirectional iterator requirements
757 __normal_iterator&
758 operator--()
759 {
760 --_M_current;
761 return *this;
762 }
763
764 __normal_iterator
765 operator--(int)
766 { return __normal_iterator(_M_current--); }
767
768 // Random access iterator requirements
769 reference
770 operator[](const difference_type& __n) const
771 { return _M_current[__n]; }
772
773 __normal_iterator&
774 operator+=(const difference_type& __n)
775 { _M_current += __n; return *this; }
776
777 __normal_iterator
778 operator+(const difference_type& __n) const
779 { return __normal_iterator(_M_current + __n); }
780
781 __normal_iterator&
782 operator-=(const difference_type& __n)
783 { _M_current -= __n; return *this; }
784
785 __normal_iterator
786 operator-(const difference_type& __n) const
787 { return __normal_iterator(_M_current - __n); }
788
789 const _Iterator&
790 base() const
791 { return _M_current; }
792 };
793
794 // Note: In what follows, the left- and right-hand-side iterators are
795 // allowed to vary in types (conceptually in cv-qualification) so that
796 // comparison between cv-qualified and non-cv-qualified iterators be
797 // valid. However, the greedy and unfriendly operators in std::rel_ops
798 // will make overload resolution ambiguous (when in scope) if we don't
799 // provide overloads whose operands are of the same type. Can someone
800 // remind me what generic programming is about? -- Gaby
801
802 // Forward iterator requirements
803 template<typename _IteratorL, typename _IteratorR, typename _Container>
804 inline bool
805 operator==(const __normal_iterator<_IteratorL, _Container>& __lhs,
806 const __normal_iterator<_IteratorR, _Container>& __rhs)
807 { return __lhs.base() == __rhs.base(); }
808
809 template<typename _Iterator, typename _Container>
810 inline bool
811 operator==(const __normal_iterator<_Iterator, _Container>& __lhs,
812 const __normal_iterator<_Iterator, _Container>& __rhs)
813 { return __lhs.base() == __rhs.base(); }
814
815 template<typename _IteratorL, typename _IteratorR, typename _Container>
816 inline bool
817 operator!=(const __normal_iterator<_IteratorL, _Container>& __lhs,
818 const __normal_iterator<_IteratorR, _Container>& __rhs)
819 { return __lhs.base() != __rhs.base(); }
820
821 template<typename _Iterator, typename _Container>
822 inline bool
823 operator!=(const __normal_iterator<_Iterator, _Container>& __lhs,
824 const __normal_iterator<_Iterator, _Container>& __rhs)
825 { return __lhs.base() != __rhs.base(); }
19
Assuming the condition is true
20
Returning the value 1, which participates in a condition later
826
827 // Random access iterator requirements
828 template<typename _IteratorL, typename _IteratorR, typename _Container>
829 inline bool
830 operator<(const __normal_iterator<_IteratorL, _Container>& __lhs,
831 const __normal_iterator<_IteratorR, _Container>& __rhs)
832 { return __lhs.base() < __rhs.base(); }
833
834 template<typename _Iterator, typename _Container>
835 inline bool
836 operator<(const __normal_iterator<_Iterator, _Container>& __lhs,
837 const __normal_iterator<_Iterator, _Container>& __rhs)
838 { return __lhs.base() < __rhs.base(); }
839
840 template<typename _IteratorL, typename _IteratorR, typename _Container>
841 inline bool
842 operator>(const __normal_iterator<_IteratorL, _Container>& __lhs,
843 const __normal_iterator<_IteratorR, _Container>& __rhs)
844 { return __lhs.base() > __rhs.base(); }
845
846 template<typename _Iterator, typename _Container>
847 inline bool
848 operator>(const __normal_iterator<_Iterator, _Container>& __lhs,
849 const __normal_iterator<_Iterator, _Container>& __rhs)
850 { return __lhs.base() > __rhs.base(); }
851
852 template<typename _IteratorL, typename _IteratorR, typename _Container>
853 inline bool
854 operator<=(const __normal_iterator<_IteratorL, _Container>& __lhs,
855 const __normal_iterator<_IteratorR, _Container>& __rhs)
856 { return __lhs.base() <= __rhs.base(); }
857
858 template<typename _Iterator, typename _Container>
859 inline bool
860 operator<=(const __normal_iterator<_Iterator, _Container>& __lhs,
861 const __normal_iterator<_Iterator, _Container>& __rhs)
862 { return __lhs.base() <= __rhs.base(); }
863
864 template<typename _IteratorL, typename _IteratorR, typename _Container>
865 inline bool
866 operator>=(const __normal_iterator<_IteratorL, _Container>& __lhs,
867 const __normal_iterator<_IteratorR, _Container>& __rhs)
868 { return __lhs.base() >= __rhs.base(); }
869
870 template<typename _Iterator, typename _Container>
871 inline bool
872 operator>=(const __normal_iterator<_Iterator, _Container>& __lhs,
873 const __normal_iterator<_Iterator, _Container>& __rhs)
874 { return __lhs.base() >= __rhs.base(); }
875
876 // _GLIBCXX_RESOLVE_LIB_DEFECTS
877 // According to the resolution of DR179 not only the various comparison
878 // operators but also operator- must accept mixed iterator/const_iterator
879 // parameters.
880 template<typename _IteratorL, typename _IteratorR, typename _Container>
881#if __cplusplus201103L >= 201103L
882 // DR 685.
883 inline auto
884 operator-(const __normal_iterator<_IteratorL, _Container>& __lhs,
885 const __normal_iterator<_IteratorR, _Container>& __rhs)
886 -> decltype(__lhs.base() - __rhs.base())
887#else
888 inline typename __normal_iterator<_IteratorL, _Container>::difference_type
889 operator-(const __normal_iterator<_IteratorL, _Container>& __lhs,
890 const __normal_iterator<_IteratorR, _Container>& __rhs)
891#endif
892 { return __lhs.base() - __rhs.base(); }
893
894 template<typename _Iterator, typename _Container>
895 inline typename __normal_iterator<_Iterator, _Container>::difference_type
896 operator-(const __normal_iterator<_Iterator, _Container>& __lhs,
897 const __normal_iterator<_Iterator, _Container>& __rhs)
898 { return __lhs.base() - __rhs.base(); }
899
900 template<typename _Iterator, typename _Container>
901 inline __normal_iterator<_Iterator, _Container>
902 operator+(typename __normal_iterator<_Iterator, _Container>::difference_type
903 __n, const __normal_iterator<_Iterator, _Container>& __i)
904 { return __normal_iterator<_Iterator, _Container>(__i.base() + __n); }
905
906_GLIBCXX_END_NAMESPACE_VERSION
907} // namespace
908
909#if __cplusplus201103L >= 201103L
910
911namespace std _GLIBCXX_VISIBILITY(default)__attribute__ ((__visibility__ ("default")))
912{
913_GLIBCXX_BEGIN_NAMESPACE_VERSION
914
915 /**
916 * @addtogroup iterators
917 * @{
918 */
919
920 // 24.4.3 Move iterators
921 /**
922 * Class template move_iterator is an iterator adapter with the same
923 * behavior as the underlying iterator except that its dereference
924 * operator implicitly converts the value returned by the underlying
925 * iterator's dereference operator to an rvalue reference. Some
926 * generic algorithms can be called with move iterators to replace
927 * copying with moving.
928 */
929 template<typename _Iterator>
930 class move_iterator
931 {
932 protected:
933 _Iterator _M_current;
934
935 typedef iterator_traits<_Iterator> __traits_type;
936
937 public:
938 typedef _Iterator iterator_type;
939 typedef typename __traits_type::iterator_category iterator_category;
940 typedef typename __traits_type::value_type value_type;
941 typedef typename __traits_type::difference_type difference_type;
942 // NB: DR 680.
943 typedef _Iterator pointer;
944 typedef value_type&& reference;
945
946 move_iterator()
947 : _M_current() { }
948
949 explicit
950 move_iterator(iterator_type __i)
951 : _M_current(__i) { }
952
953 template<typename _Iter>
954 move_iterator(const move_iterator<_Iter>& __i)
955 : _M_current(__i.base()) { }
956
957 iterator_type
958 base() const
959 { return _M_current; }
960
961 reference
962 operator*() const
963 { return std::move(*_M_current); }
964
965 pointer
966 operator->() const
967 { return _M_current; }
968
969 move_iterator&
970 operator++()
971 {
972 ++_M_current;
973 return *this;
974 }
975
976 move_iterator
977 operator++(int)
978 {
979 move_iterator __tmp = *this;
980 ++_M_current;
981 return __tmp;
982 }
983
984 move_iterator&
985 operator--()
986 {
987 --_M_current;
988 return *this;
989 }
990
991 move_iterator
992 operator--(int)
993 {
994 move_iterator __tmp = *this;
995 --_M_current;
996 return __tmp;
997 }
998
999 move_iterator
1000 operator+(difference_type __n) const
1001 { return move_iterator(_M_current + __n); }
1002
1003 move_iterator&
1004 operator+=(difference_type __n)
1005 {
1006 _M_current += __n;
1007 return *this;
1008 }
1009
1010 move_iterator
1011 operator-(difference_type __n) const
1012 { return move_iterator(_M_current - __n); }
1013
1014 move_iterator&
1015 operator-=(difference_type __n)
1016 {
1017 _M_current -= __n;
1018 return *this;
1019 }
1020
1021 reference
1022 operator[](difference_type __n) const
1023 { return std::move(_M_current[__n]); }
1024 };
1025
1026 // Note: See __normal_iterator operators note from Gaby to understand
1027 // why there are always 2 versions for most of the move_iterator
1028 // operators.
1029 template<typename _IteratorL, typename _IteratorR>
1030 inline bool
1031 operator==(const move_iterator<_IteratorL>& __x,
1032 const move_iterator<_IteratorR>& __y)
1033 { return __x.base() == __y.base(); }
1034
1035 template<typename _Iterator>
1036 inline bool
1037 operator==(const move_iterator<_Iterator>& __x,
1038 const move_iterator<_Iterator>& __y)
1039 { return __x.base() == __y.base(); }
1040
1041 template<typename _IteratorL, typename _IteratorR>
1042 inline bool
1043 operator!=(const move_iterator<_IteratorL>& __x,
1044 const move_iterator<_IteratorR>& __y)
1045 { return !(__x == __y); }
1046
1047 template<typename _Iterator>
1048 inline bool
1049 operator!=(const move_iterator<_Iterator>& __x,
1050 const move_iterator<_Iterator>& __y)
1051 { return !(__x == __y); }
1052
1053 template<typename _IteratorL, typename _IteratorR>
1054 inline bool
1055 operator<(const move_iterator<_IteratorL>& __x,
1056 const move_iterator<_IteratorR>& __y)
1057 { return __x.base() < __y.base(); }
1058
1059 template<typename _Iterator>
1060 inline bool
1061 operator<(const move_iterator<_Iterator>& __x,
1062 const move_iterator<_Iterator>& __y)
1063 { return __x.base() < __y.base(); }
1064
1065 template<typename _IteratorL, typename _IteratorR>
1066 inline bool
1067 operator<=(const move_iterator<_IteratorL>& __x,
1068 const move_iterator<_IteratorR>& __y)
1069 { return !(__y < __x); }
1070
1071 template<typename _Iterator>
1072 inline bool
1073 operator<=(const move_iterator<_Iterator>& __x,
1074 const move_iterator<_Iterator>& __y)
1075 { return !(__y < __x); }
1076
1077 template<typename _IteratorL, typename _IteratorR>
1078 inline bool
1079 operator>(const move_iterator<_IteratorL>& __x,
1080 const move_iterator<_IteratorR>& __y)
1081 { return __y < __x; }
1082
1083 template<typename _Iterator>
1084 inline bool
1085 operator>(const move_iterator<_Iterator>& __x,
1086 const move_iterator<_Iterator>& __y)
1087 { return __y < __x; }
1088
1089 template<typename _IteratorL, typename _IteratorR>
1090 inline bool
1091 operator>=(const move_iterator<_IteratorL>& __x,
1092 const move_iterator<_IteratorR>& __y)
1093 { return !(__x < __y); }
1094
1095 template<typename _Iterator>
1096 inline bool
1097 operator>=(const move_iterator<_Iterator>& __x,
1098 const move_iterator<_Iterator>& __y)
1099 { return !(__x < __y); }
1100
1101 // DR 685.
1102 template<typename _IteratorL, typename _IteratorR>
1103 inline auto
1104 operator-(const move_iterator<_IteratorL>& __x,
1105 const move_iterator<_IteratorR>& __y)
1106 -> decltype(__x.base() - __y.base())
1107 { return __x.base() - __y.base(); }
1108
1109 template<typename _Iterator>
1110 inline auto
1111 operator-(const move_iterator<_Iterator>& __x,
1112 const move_iterator<_Iterator>& __y)
1113 -> decltype(__x.base() - __y.base())
1114 { return __x.base() - __y.base(); }
1115
1116 template<typename _Iterator>
1117 inline move_iterator<_Iterator>
1118 operator+(typename move_iterator<_Iterator>::difference_type __n,
1119 const move_iterator<_Iterator>& __x)
1120 { return __x + __n; }
1121
1122 template<typename _Iterator>
1123 inline move_iterator<_Iterator>
1124 make_move_iterator(_Iterator __i)
1125 { return move_iterator<_Iterator>(__i); }
1126
1127 template<typename _Iterator, typename _ReturnType
1128 = typename conditional<__move_if_noexcept_cond
1129 <typename iterator_traits<_Iterator>::value_type>::value,
1130 _Iterator, move_iterator<_Iterator>>::type>
1131 inline _ReturnType
1132 __make_move_if_noexcept_iterator(_Iterator __i)
1133 { return _ReturnType(__i); }
1134
1135 // @} group iterators
1136
1137_GLIBCXX_END_NAMESPACE_VERSION
1138} // namespace
1139
1140#define _GLIBCXX_MAKE_MOVE_ITERATOR(_Iter)std::make_move_iterator(_Iter) std::make_move_iterator(_Iter)
1141#define _GLIBCXX_MAKE_MOVE_IF_NOEXCEPT_ITERATOR(_Iter)std::__make_move_if_noexcept_iterator(_Iter) \
1142 std::__make_move_if_noexcept_iterator(_Iter)
1143#else
1144#define _GLIBCXX_MAKE_MOVE_ITERATOR(_Iter)std::make_move_iterator(_Iter) (_Iter)
1145#define _GLIBCXX_MAKE_MOVE_IF_NOEXCEPT_ITERATOR(_Iter)std::__make_move_if_noexcept_iterator(_Iter) (_Iter)
1146#endif // C++11
1147
1148#endif