Bug Summary

File:alld2/home/sdobbs/Software/jana/jana_0.8.2/Linux_CentOS7.7-x86_64-gcc4.8.5/include/JANA/JEventLoop.h
Warning:line 398, column 7
Null pointer passed to 2nd parameter expecting 'nonnull'

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-unknown-linux-gnu -analyze -disable-free -main-file-name DEventWriterHDDM.cc -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -mrelocation-model pic -pic-level 2 -fhalf-no-semantic-interposition -mframe-pointer=none -fmath-errno -fno-rounding-math -mconstructor-aliases -munwind-tables -target-cpu x86-64 -tune-cpu generic -fno-split-dwarf-inlining -debugger-tuning=gdb -resource-dir /w/halld-scifs17exp/home/sdobbs/clang/llvm-project/install/lib/clang/12.0.0 -D HAVE_CCDB -D HAVE_RCDB -D HAVE_EVIO -D HAVE_TMVA=1 -D RCDB_MYSQL=1 -D RCDB_SQLITE=1 -D SQLITE_USE_LEGACY_STRUCT=ON -I .Linux_CentOS7.7-x86_64-gcc4.8.5/libraries/HDDM -I libraries/HDDM -I . -I libraries -I libraries/include -I /w/halld-scifs17exp/home/sdobbs/clang/halld_recon/Linux_CentOS7.7-x86_64-gcc4.8.5/include -I external/xstream/include -I /usr/include/tirpc -I /group/halld/Software/builds/Linux_CentOS7.7-x86_64-gcc4.8.5/root/root-6.08.06/include -I /w/halld-scifs17exp/halld2/home/sdobbs/Software/jana/jana_0.8.2/Linux_CentOS7.7-x86_64-gcc4.8.5/include -I /group/halld/Software/builds/Linux_CentOS7.7-x86_64-gcc4.8.5/ccdb/ccdb_1.06.06/include -I /group/halld/Software/builds/Linux_CentOS7.7-x86_64-gcc4.8.5/rcdb/rcdb_0.06.00/cpp/include -I /usr/include/mysql -I /group/halld/Software/builds/Linux_CentOS7.7-x86_64-gcc4.8.5/sqlitecpp/SQLiteCpp-2.2.0^bs130/include -I /group/halld/Software/builds/Linux_CentOS7.7-x86_64-gcc4.8.5/sqlite/sqlite-3.13.0^bs130/include -I /group/halld/Software/builds/Linux_CentOS7.7-x86_64-gcc4.8.5/hdds/hdds-4.9.0/Linux_CentOS7.7-x86_64-gcc4.8.5/src -I /group/halld/Software/builds/Linux_CentOS7.7-x86_64-gcc4.8.5/xerces-c/xerces-c-3.1.4/include -I /group/halld/Software/builds/Linux_CentOS7.7-x86_64-gcc4.8.5/evio/evio-4.4.6/Linux-x86_64/include -internal-isystem /usr/lib/gcc/x86_64-redhat-linux/4.8.5/../../../../include/c++/4.8.5 -internal-isystem /usr/lib/gcc/x86_64-redhat-linux/4.8.5/../../../../include/c++/4.8.5/x86_64-redhat-linux -internal-isystem /usr/lib/gcc/x86_64-redhat-linux/4.8.5/../../../../include/c++/4.8.5/backward -internal-isystem /usr/local/include -internal-isystem /w/halld-scifs17exp/home/sdobbs/clang/llvm-project/install/lib/clang/12.0.0/include -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -std=c++11 -fdeprecated-macro -fdebug-compilation-dir /home/sdobbs/work/clang/halld_recon/src -ferror-limit 19 -fgnuc-version=4.2.1 -fcxx-exceptions -fexceptions -vectorize-loops -vectorize-slp -analyzer-output=html -faddrsig -o /tmp/scan-build-2021-01-21-110224-160369-1 -x c++ libraries/HDDM/DEventWriterHDDM.cc

libraries/HDDM/DEventWriterHDDM.cc

1#include "DEventWriterHDDM.h"
2
3#include <DANA/DApplication.h>
4#include <JANA/JCalibration.h>
5
6int& DEventWriterHDDM::Get_NumEventWriterThreads(void) const
7{
8 // must be read/used entirely in "HDDMWriter" lock
9 static int locNumEventWriterThreads = 0;
10 return locNumEventWriterThreads;
11}
12
13map<string, pair<ofstream*, hddm_s::ostream*> >& DEventWriterHDDM::Get_HDDMOutputFilePointers(void) const
14{
15 // must be read/used entirely in "HDDMWriter" lock
16 // cannot do individual file locks, because the map itself can be modified
17 static map<string, pair<ofstream*, hddm_s::ostream*> > locHDDMOutputFilePointers;
18 return locHDDMOutputFilePointers;
19}
20
21DEventWriterHDDM::DEventWriterHDDM(JEventLoop* locEventLoop, string locOutputFileBaseName) : dOutputFileBaseName(locOutputFileBaseName)
22{
23 japp->WriteLock("HDDMWriter");
24 {
25 ++Get_NumEventWriterThreads();
26 }
27 japp->Unlock("HDDMWriter");
28
29 HDDM_USE_COMPRESSION = true;
30 string locCompressionString = "Turn on/off compression of the output HDDM stream. Set to \"0\" to turn off (it's on by default)";
31 gPARMS->SetDefaultParameter("HDDM:USE_COMPRESSION", HDDM_USE_COMPRESSION, locCompressionString);
32
33 HDDM_USE_INTEGRITY_CHECKS = true;
34 string locIntegrityString = "Turn on/off automatic integrity checking on the output HDDM stream. Set to \"0\" to turn off (it's on by default)";
35 gPARMS->SetDefaultParameter("HDDM:USE_INTEGRITY_CHECKS", HDDM_USE_INTEGRITY_CHECKS, locIntegrityString);
36
37 HDDM_DATA_VERSION_STRING = "";
38 gPARMS->SetDefaultParameter("HDDM:DATAVERSIONSTRING", HDDM_DATA_VERSION_STRING, "");
39
40 CCDB_CONTEXT_STRING = "";
41 // if we can get the calibration context from the DANA interface, then save this as well
42 DApplication *dapp = dynamic_cast<DApplication*>(locEventLoop->GetJApplication());
43 if (dapp) {
44 JEvent& event = locEventLoop->GetJEvent();
45 JCalibration *jcalib = dapp->GetJCalibration(event.GetRunNumber());
46 if (jcalib) {
47 CCDB_CONTEXT_STRING = jcalib->GetContext();
48 }
49 }
50
51 CDC_TAG = "Calib";
52 gPARMS->SetDefaultParameter("HDDMOUT:CDCTAG", CDC_TAG, "Tag (string) to use when selecting CDC hits to read out.");
53
54 FDC_TAG = "";
55 gPARMS->SetDefaultParameter("HDDMOUT:FDCTAG", FDC_TAG, "Tag (string) to use when selecting FDC hits to read out.");
56
57 TAGM_TAG = "Calib";
58 gPARMS->SetDefaultParameter("HDDMOUT:TAGMTAG", TAGM_TAG, "Tag (string) to use when selecting TAGM hits to read out.");
59
60 TAGH_TAG = "Calib";
61 gPARMS->SetDefaultParameter("HDDMOUT:TAGHTAG", TAGH_TAG, "Tag (string) to use when selecting TAGH hits to read out.");
62}
63
64bool DEventWriterHDDM::Write_HDDMEvent(JEventLoop* locEventLoop, string locOutputFileNameSubString) const
65{
66
67 vector<const DCDCHit*> CDCHits;
68 vector<const DTOFHit*> TOFHits;
69 vector<const DFCALHit*> FCALHits;
70 vector<const DCCALHit*> CCALHits;
71 vector<const DSCHit*> SCHits;
72 vector<const DBCALDigiHit*> BCALDigiHits;
73 vector<const DBCALTDCDigiHit*> BCALTDCDigiHits;
74 vector<const DPSHit*> PSHits;
75 vector<const DPSCHit*> PSCHits;
76 vector<const DFDCHit*> FDCHits;
77 vector<const DTAGHHit*> TAGHHits;
78 vector<const DTAGMHit*> TAGMHits;
79 vector<const DTPOLHit*> TPOLHits;
80 vector<const DRFTime*> RFtimes;
81 vector<const DDIRCPmtHit*> DIRCPmtHits;
82
83 locEventLoop->Get(CDCHits, CDC_TAG.c_str());
1
Calling 'JEventLoop::Get'
84 locEventLoop->Get(FDCHits, FDC_TAG.c_str());
85 locEventLoop->Get(TOFHits);
86 locEventLoop->Get(FCALHits);
87 locEventLoop->Get(CCALHits);
88 locEventLoop->Get(BCALDigiHits);
89 locEventLoop->Get(BCALTDCDigiHits);
90 locEventLoop->Get(SCHits);
91 locEventLoop->Get(PSHits);
92 locEventLoop->Get(PSCHits);
93 locEventLoop->Get(TAGHHits, TAGH_TAG.c_str());
94 locEventLoop->Get(TAGMHits, TAGM_TAG.c_str());
95 locEventLoop->Get(TPOLHits);
96 locEventLoop->Get(RFtimes);
97 locEventLoop->Get(DIRCPmtHits);
98
99 if(CDCHits.size()== uint(0) && TOFHits.size()==uint(0) && FCALHits.size()==uint(0) && BCALDigiHits.size()==uint(0) && BCALTDCDigiHits.size()==uint(0) && SCHits.size()==uint(0) && PSHits.size()==uint(0) && PSCHits.size()==uint(0) && FDCHits.size()==uint(0) && TAGHHits.size()==uint(0) && TAGMHits.size()==uint(0) && TPOLHits.size()==uint(0) && RFtimes.size()==uint(0) && DIRCPmtHits.size()==uint(0) && CCALHits.size()==uint(0))
100 {
101 return false;
102 }
103
104 //create an HDDM record to store the Events' hits and set the Event/Run Number
105 hddm_s::HDDM* record = new hddm_s::HDDM;
106 record->addPhysicsEvents();
107 hddm_s::PhysicsEvent* pe = &record->getPhysicsEvent();
108 pe->setEventNo(locEventLoop->GetJEvent().GetEventNumber());
109 pe->setRunNo(locEventLoop->GetJEvent().GetRunNumber());
110 //add a HitView which is necessary to create and save all of the data
111 pe->addHitViews();
112 hddm_s::HitView* hitv = &pe->getHitView();
113
114
115 //Because HDDM groups hits by sub-unit of each detector we loop through the hits in each sub-dector and need to see if a sub-unit exists
116 //in hddm so as to avoid duplication of sub-units in HDDM
117 //====================================TPOL================================================
118 for(uint i=0;i<TPOLHits.size();++i)
119 {
120 if(i==0)//if the TPOL has hits then on the first hit we need to build the TPOL
121 {
122 hitv->addTripletPolarimeters();
123 }
124
125 bool found=false;
126
127 //get sectors. We get the iterator outside the for loop so when the loop is broken the iterator is at the sector that
128 //has been hit, making adding hits to it trivial
129 hddm_s::TpolSectorList* TPOL_SectorList = &hitv->getTripletPolarimeter().getTpolSectors();
130 hddm_s::TpolSectorList::iterator sectorIterator = TPOL_SectorList->begin();
131
132 //loop over the unique sectors already created in the HDDM framework
133 for(sectorIterator = TPOL_SectorList->begin(); sectorIterator != TPOL_SectorList->end(); sectorIterator++)
134 {
135 //look to see if the same sub-unit of the sub-detector is hit again. At worst this TPOLHit is new and all sectors already hit must be looped over
136 if(int(TPOLHits[i]->ring) == sectorIterator->getRing() && TPOLHits[i]->sector == sectorIterator->getSector() )
137 {
138 found=true;//we found it!
139 break;//you can stop looping now to shorten the time and leave the iterator at the right spot
140 }
141 }
142
143 //this part hasn't been hit yet. We need to create it to hold the hit(s)
144 if(found==false)
145 {
146 hitv->getTripletPolarimeter().addTpolSectors();//currently the iterator is at "end", which is exactly where we want to add it
147 sectorIterator = TPOL_SectorList->end()-1;//this might be a little redundant but the newly made sector is at end-1 so we set the iterator here
148 sectorIterator->setRing(TPOLHits[i]->ring);//set the unique identifiers for the new sector
149 sectorIterator->setSector(TPOLHits[i]->sector);
150 }
151 //Now that we either created the sub-unit or found the sub-unit we add a hit to it
152 sectorIterator->addTpolHits();//either the iterator was at the sector that this hit belongs to or it is at the newly created sector
153 hddm_s::TpolHitList* TPOL_HitList = &sectorIterator->getTpolHits();
154 hddm_s::TpolHitList::iterator TPOL_HitIterator = TPOL_HitList->end()-1;//as above we ensure we are at the last element
155 TPOL_HitIterator->setT(TPOLHits[i]->t);//and set the the proper values for the newly formed hit
156 TPOL_HitIterator->setDE(TPOLHits[i]->dE);
157
158 }
159
160
161 //========================================TAGGER===========================================================
162
163 if(TAGHHits.size() != uint(0) || TAGMHits.size() != uint(0) )//If either the TAGH or TAGM have hits create the Tagger
164 {
165 hitv->addTaggers();
166 }
167
168 //hodoscope
169 for(uint i=0; i<TAGHHits.size(); ++i)
170 {
171 bool found=false;
172 //look to see if the same sub-unit of the sub-detector is hit again
173 hddm_s::HodoChannelList* TAGH_ChannelList = &hitv->getTagger().getHodoChannels();
174 hddm_s::HodoChannelList::iterator TAGH_ChannelIterator = TAGH_ChannelList->begin();
175
176 //look to see if the same sub-unit of the sub-detector is hit again
177 for(TAGH_ChannelIterator=TAGH_ChannelList->begin(); TAGH_ChannelIterator != TAGH_ChannelList->end(); TAGH_ChannelIterator++)
178 {
179
180 if(int(TAGHHits[i]->counter_id) == TAGH_ChannelIterator->getCounterId() )
181 {
182 found=true;
183 break;
184 }
185 }
186
187 if(found==false)
188 {
189
190 hitv->getTagger().addHodoChannels();
191 TAGH_ChannelIterator = TAGH_ChannelList->end()-1;
192 TAGH_ChannelIterator->setCounterId(TAGHHits[i]->counter_id);
193 TAGH_ChannelIterator->setE(TAGHHits[i]->E);
194 }
195
196 //Add hits
197 TAGH_ChannelIterator->addTaggerHits();
198 hddm_s::TaggerHitList* TAGGER_HitList = &TAGH_ChannelIterator->getTaggerHits();
199 hddm_s::TaggerHitList::iterator TAGGER_HitIterator = TAGGER_HitList->end()-1;
200 TAGGER_HitIterator->setNpe(TAGHHits[i]->npe_fadc);
201 TAGGER_HitIterator->setT(TAGHHits[i]->t);
202 TAGGER_HitIterator->setTADC(TAGHHits[i]->time_fadc);
203
204 }
205
206 //microscope
207 for(uint i=0;i<TAGMHits.size();++i)
208 {
209 bool found=false;
210
211 //look to see if the same sub-unit of the sub-detector is hit again
212 hddm_s::MicroChannelList* TAGM_ChannelList= &hitv->getTagger().getMicroChannels();
213 hddm_s::MicroChannelList::iterator TAGM_ChannelIterator=TAGM_ChannelList->begin();
214
215 for(TAGM_ChannelIterator=TAGM_ChannelList->begin(); TAGM_ChannelIterator != TAGM_ChannelList->end(); TAGM_ChannelIterator++)
216 {
217 if(int(TAGMHits[i]->column) == TAGM_ChannelIterator->getColumn() && int(TAGMHits[i]->row) == TAGM_ChannelIterator->getRow() )
218 {
219 found = true;
220 break;
221 }
222 }
223
224 if(found == false)
225 {
226 hitv->getTagger().addMicroChannels();
227 if(TAGMHits[i]->column == 0 && TAGMHits[i]->row == 0)
228 {
229 std::cout<<"I found one in the TAGM!"<<std::endl;
230 }
231 TAGM_ChannelIterator = TAGM_ChannelList->end()-1;
232 TAGM_ChannelIterator->setColumn(TAGMHits[i]->column);
233 TAGM_ChannelIterator->setRow(TAGMHits[i]->row);
234 TAGM_ChannelIterator->setE(TAGMHits[i]->E);
235 }
236
237 TAGM_ChannelIterator->addTaggerHits();
238 hddm_s::TaggerHitList* TAGGER_HitList = &TAGM_ChannelIterator->getTaggerHits();
239 hddm_s::TaggerHitList::iterator TAGGER_HitIterator = TAGGER_HitList->end()-1;
240 TAGGER_HitIterator->setNpe(TAGMHits[i]->npix_fadc);
241 TAGGER_HitIterator->setT(TAGMHits[i]->t);
242 TAGGER_HitIterator->setTADC(TAGMHits[i]->time_fadc);
243
244 }
245
246
247
248 //====================================FDC==========================================
249
250 for(uint i=0;i<FDCHits.size();++i)
251 {
252 //if there is at least 1 FDC hit we need an FDC
253 if(i==0)
254 {
255 hitv->addForwardDCs();
256 }
257 //look for the chamber by layer/module (before searching for same strip/wire we must see if the chamber exists already
258 bool foundChamber=false;
259 hddm_s::FdcChamberList* FDC_ChamberList = &hitv->getForwardDC().getFdcChambers();
260 hddm_s::FdcChamberList::iterator FDC_ChamberIterator = FDC_ChamberList->begin();
261
262 for(FDC_ChamberIterator = FDC_ChamberList->begin(); FDC_ChamberIterator != FDC_ChamberList->end(); FDC_ChamberIterator++)
263 {
264 //it is important to note that in HDDM the Layer that is saved represents the clocking of the chamber. 1=0 degrees 2=60 3=120
265 //in evio Layer is 1-3 where 1/3 are the cathode strips and 2 is the anode wire plane
266 //the clocking can be calculated by accessing the glayer and using a little modular arithmatic
267 if(((FDCHits[i]->gLayer-1)%3)+1 == FDC_ChamberIterator->getLayer() && FDCHits[i]->module == FDC_ChamberIterator->getModule() )
268 {
269 foundChamber = true;
270 break;
271 }
272 }
273
274 if(foundChamber == false)
275 {
276
277 hitv->getForwardDC().addFdcChambers();
278 FDC_ChamberIterator = FDC_ChamberList->end()-1;
279 FDC_ChamberIterator->setLayer(((FDCHits[i]->gLayer-1)%3)+1); //This will be dumped as the clocking and is not expected to match the Layer dumped from evio
280 FDC_ChamberIterator->setModule(FDCHits[i]->module);
281
282 }
283 //now that we found the chamber (or created a new one) we need to see if it was a cathode or anode hit and see if it too is new
284 if(FDCHits[i]->type == DFDCHit::AnodeWire)
285 {
286
287 //search either the wires or strips depending on the above
288 bool found=false;
289
290 hddm_s::FdcAnodeWireList* FDC_AnodeWireList= &FDC_ChamberIterator->getFdcAnodeWires();
291 hddm_s::FdcAnodeWireList::iterator FDC_AnodeWireIterator = FDC_AnodeWireList->begin();
292
293 for(FDC_AnodeWireIterator = FDC_AnodeWireList->begin(); FDC_AnodeWireIterator != FDC_AnodeWireList->end(); FDC_AnodeWireIterator++)
294 {
295 if(int(FDCHits[i]->element) == FDC_AnodeWireIterator->getWire() )
296 {
297 found=true;
298 break;
299 }
300 }
301
302 if(found == false)
303 {
304 FDC_ChamberIterator->addFdcAnodeWires();
305 FDC_AnodeWireIterator = FDC_AnodeWireList->end()-1;
306 FDC_AnodeWireIterator->setWire(FDCHits[i]->element);
307 }
308
309 FDC_AnodeWireIterator->addFdcAnodeHits();
310 hddm_s::FdcAnodeHitList* FDC_AnodeWireHitList = &FDC_AnodeWireIterator->getFdcAnodeHits();
311 hddm_s::FdcAnodeHitList::iterator FDC_AnodeWireHitIterator = FDC_AnodeWireHitList->end()-1;
312 FDC_AnodeWireHitIterator->setT(FDCHits[i]->t);
313 FDC_AnodeWireHitIterator->setDE(0);//FDC does not have fADCs on the anodes
314
315 }
316 else//this is a cathode hit. Agnostic about being half length or not
317 {
318 bool found=false;
319
320 hddm_s::FdcCathodeStripList* FDC_CathodeStripList = &FDC_ChamberIterator->getFdcCathodeStrips();
321 hddm_s::FdcCathodeStripList::iterator FDC_CathodeStripIterator = FDC_CathodeStripList->begin();
322 //look in the chamber to see if the cathode has already been hit
323 for(FDC_CathodeStripIterator = FDC_CathodeStripList->begin(); FDC_CathodeStripIterator != FDC_CathodeStripList->end(); FDC_CathodeStripIterator++)
324 {
325 if(int(FDCHits[i]->element) == FDC_CathodeStripIterator->getStrip() && FDCHits[i]->plane == FDC_CathodeStripIterator->getPlane() )
326 {
327 found = true;
328 break;
329 }
330 }
331
332 if(found == false)
333 {
334
335 FDC_ChamberIterator->addFdcCathodeStrips();
336 FDC_CathodeStripIterator=FDC_CathodeStripList->end()-1;
337 FDC_CathodeStripIterator->setStrip(FDCHits[i]->element);
338 FDC_CathodeStripIterator->setPlane(FDCHits[i]->plane);
339
340 }
341
342 FDC_CathodeStripIterator->addFdcCathodeHits();
343 hddm_s::FdcCathodeHitList* FDC_CathodeStripHitList = &FDC_CathodeStripIterator->getFdcCathodeHits();
344 hddm_s::FdcCathodeHitList::iterator FDC_CathodeStripHitIterator = FDC_CathodeStripHitList->end()-1;
345 FDC_CathodeStripHitIterator->setT(FDCHits[i]->t);
346 FDC_CathodeStripHitIterator->setQ(FDCHits[i]->q);
347 FDC_CathodeStripHitIterator->addFdcDigihits();
348 FDC_CathodeStripHitIterator->getFdcDigihits().begin()->setPeakAmp(FDCHits[i]->pulse_height);
349
350 }
351
352 }
353
354
355
356 //===============================================PS=============================================
357 //in hddm the PS is in two parts PSFine and PSCoarse
358 for(uint i=0; i<PSHits.size(); ++i)//Do the fine hits first
359 {
360 if(i == 0)
361 {
362 hitv->addPairSpectrometerFines(); //only create PS Fine Tiles if there is a hit in the
363 }
364 bool found=false;
365
366 hddm_s::PsTileList* PS_TileList = &hitv->getPairSpectrometerFine().getPsTiles();
367 hddm_s::PsTileList::iterator PS_TileIterator = PS_TileList->begin();
368
369 //check for the same PS tile is hit
370 for(PS_TileIterator = PS_TileList->begin(); PS_TileIterator != PS_TileList->end(); PS_TileIterator++)
371 {
372 if(int(PSHits[i]->arm) == PS_TileIterator->getArm() && PSHits[i]->column == PS_TileIterator->getColumn() )
373 {
374 found=true;
375 break;
376 }
377 }
378
379 if(found == false)
380 {
381
382 hitv->getPairSpectrometerFine().addPsTiles();
383 PS_TileIterator = PS_TileList->end()-1;
384 PS_TileIterator->setArm(PSHits[i]->arm);
385 PS_TileIterator->setColumn(PSHits[i]->column);
386 }
387
388 PS_TileIterator->addPsHits();
389 hddm_s::PsHitList* PS_HitList = &PS_TileIterator->getPsHits();
390 hddm_s::PsHitList::iterator PS_HitIterator = PS_HitList->end()-1;
391 PS_HitIterator->setT(PSHits[i]->t);
392 PS_HitIterator->setDE(PSHits[i]->E);
393
394 }
395 //--------------------COARSE------------------------------------------
396 for(uint i=0;i<PSCHits.size();++i)//repeat for the coarse hits
397 {
398 if(i==0)
399 {
400 hitv->addPairSpectrometerCoarses();
401 }
402
403 bool found=false;
404
405 hddm_s::PscPaddleList* PS_PaddleList = &hitv->getPairSpectrometerCoarse().getPscPaddles();
406 hddm_s::PscPaddleList::iterator PS_PaddleIterator = PS_PaddleList->begin();
407
408 for(PS_PaddleIterator = PS_PaddleList->begin(); PS_PaddleIterator != PS_PaddleList->end(); PS_PaddleIterator++)
409 {
410 if(int(PSCHits[i]->arm) == PS_PaddleIterator->getArm() && PSCHits[i]->module == PS_PaddleIterator->getModule() )
411 {
412 found = true;
413 break;
414 }
415 }
416
417 if(found == false)
418 {
419 hitv->getPairSpectrometerCoarse().addPscPaddles();
420 PS_PaddleIterator = PS_PaddleList->end()-1;
421 PS_PaddleIterator->setArm(PSCHits[i]->arm);
422 PS_PaddleIterator->setModule(PSCHits[i]->module);
423 }
424
425 PS_PaddleIterator->addPscHits();
426 hddm_s::PscHitList* PSC_HitList = &PS_PaddleIterator->getPscHits();
427 hddm_s::PscHitList::iterator pschitit = PSC_HitList->end()-1;
428 pschitit->setT(PSCHits[i]->t);
429
430 }
431
432
433
434 //================================================Start Counter======================================
435
436 for(uint i=0; i<SCHits.size(); ++i)
437 {
438 if(i == 0)
439 {
440 hitv->addStartCntrs();//if we have a hit add a start counter
441 }
442 bool found=false;
443
444 hddm_s::StcPaddleList* SC_CounterList = &hitv->getStartCntr().getStcPaddles();
445 hddm_s::StcPaddleList::iterator SC_CounterIterator = SC_CounterList->begin();
446
447 //see if the sector has already been hit
448 for(SC_CounterIterator = SC_CounterList->begin(); SC_CounterIterator != SC_CounterList->end(); SC_CounterIterator++)
449 {
450 if(SCHits[i]->sector == SC_CounterIterator->getSector() )
451 {
452 found = true;
453 break;
454 }
455 }
456
457 if(found == false)
458 {
459 hitv->getStartCntr().addStcPaddles();
460 SC_CounterIterator=SC_CounterList->end()-1;
461 SC_CounterIterator->setSector(SCHits[i]->sector);
462 }
463
464 SC_CounterIterator->addStcHits();
465 hddm_s::StcHitList* schitl = &SC_CounterIterator->getStcHits();
466 hddm_s::StcHitList::iterator schitit = schitl->end()-1;
467 schitit->setT(SCHits[i]->t);
468 schitit->setDE(SCHits[i]->dE);
469 schitit->addStcDigihits();
470 schitit->getStcDigihits().begin()->setPeakAmp(SCHits[i]->pulse_height);
471 }
472
473
474 //============================================BCAL=========================================
475
476 //The BCAL is unique in that it needs the DigiHits put in HDDM ADC/TDC done separately
477 if(BCALDigiHits.size() != uint(0) || BCALTDCDigiHits.size() != uint(0) )
478 {
479 hitv->addBarrelEMcals(); //still only need one BCAL if we have a hit of some kind
480 }
481 //-------------------------------ADC--------------------------
482 for(uint i=0; i<BCALDigiHits.size(); ++i)
483 {
484 bool found = false;
485
486 hddm_s::BcalCellList* BCAL_CellList= &hitv->getBarrelEMcal().getBcalCells();
487 hddm_s::BcalCellList::iterator BCAL_CellIterator=BCAL_CellList->begin();
488
489 //note: these cells being searched are the same ones searched for TDCs
490 for(BCAL_CellIterator = BCAL_CellList->begin(); BCAL_CellIterator != BCAL_CellList->end(); BCAL_CellIterator++)
491 {
492 if(BCALDigiHits[i]->sector == BCAL_CellIterator->getSector() && BCALDigiHits[i]->layer == BCAL_CellIterator->getLayer() && BCALDigiHits[i]->module == BCAL_CellIterator->getModule() )
493 {
494 found = true;
495 break;
496 }
497 }
498
499 if(found == false)
500 {
501 hitv->getBarrelEMcal().addBcalCells();
502 BCAL_CellIterator = BCAL_CellList->end()-1;
503 BCAL_CellIterator->setLayer(BCALDigiHits[i]->layer);
504 BCAL_CellIterator->setSector(BCALDigiHits[i]->sector);
505 BCAL_CellIterator->setModule(BCALDigiHits[i]->module);
506 }
507
508 BCAL_CellIterator->addBcalfADCDigiHits();
509 hddm_s::BcalfADCDigiHitList* BCAL_FADCDigiHitList = &BCAL_CellIterator->getBcalfADCDigiHits();
510 hddm_s::BcalfADCDigiHitList::iterator BCAL_FADCDigiHitIterator = BCAL_FADCDigiHitList->end()-1;
511 BCAL_FADCDigiHitIterator->setEnd(BCALDigiHits[i]->end);
512 BCAL_FADCDigiHitIterator->setPulse_time(BCALDigiHits[i]->pulse_time);
513 BCAL_FADCDigiHitIterator->setPulse_integral(BCALDigiHits[i]->pulse_integral);
514 BCAL_FADCDigiHitIterator->addBcalfADCPeaks();
515 BCAL_FADCDigiHitIterator->getBcalfADCPeaks().begin()->setPeakAmp(BCALDigiHits[i]->pulse_peak);
516 }
517
518 //------------------------TDC-----------------------------
519 for(uint i=0; i<BCALTDCDigiHits.size(); ++i)
520 {
521 bool found = false;
522
523 hddm_s::BcalCellList* BCAL_CellList = &hitv->getBarrelEMcal().getBcalCells();
524 hddm_s::BcalCellList::iterator BCAL_CellIterator = BCAL_CellList->begin();
525
526 for(BCAL_CellIterator = BCAL_CellList->begin(); BCAL_CellIterator != BCAL_CellList->end(); BCAL_CellIterator++)
527 {
528 if(BCALTDCDigiHits[i]->sector == uint(BCAL_CellIterator->getSector()) && BCALTDCDigiHits[i]->layer == uint(BCAL_CellIterator->getLayer()) && BCALTDCDigiHits[i]->module == uint(BCAL_CellIterator->getModule()) )
529 {
530 found = true;
531 break;
532 }
533 }
534
535 if(found == false)
536 {
537 hitv->getBarrelEMcal().addBcalCells();
538 BCAL_CellIterator = BCAL_CellList->end()-1;
539 BCAL_CellIterator->setLayer(BCALTDCDigiHits[i]->layer);
540 BCAL_CellIterator->setSector(BCALTDCDigiHits[i]->sector);
541 BCAL_CellIterator->setModule(BCALTDCDigiHits[i]->module);
542
543 }
544
545 BCAL_CellIterator->addBcalTDCDigiHits();
546 hddm_s::BcalTDCDigiHitList* BCAL_TDCDigiHitList = &BCAL_CellIterator->getBcalTDCDigiHits();
547 hddm_s::BcalTDCDigiHitList::iterator BCAL_TDCDigiHitIterator = BCAL_TDCDigiHitList->end()-1;
548 BCAL_TDCDigiHitIterator->setEnd(BCALTDCDigiHits[i]->end);
549 BCAL_TDCDigiHitIterator->setTime(BCALTDCDigiHits[i]->time);
550 }
551
552
553 //========================================FCAL=========================================================
554
555 for(uint i=0; i<FCALHits.size(); ++i)
556 {
557 if(i == 0)
558 {
559 hitv->addForwardEMcals();
560 }
561 bool found = false;
562 //FCAL only has one hit per block per event so we need not search
563 hddm_s::FcalBlockList* FCAL_BlockList = &hitv->getForwardEMcal().getFcalBlocks();
564 hddm_s::FcalBlockList::iterator FCAL_BlockIterator = FCAL_BlockList->begin();
565
566 for(FCAL_BlockIterator = FCAL_BlockList->begin(); FCAL_BlockIterator != FCAL_BlockList->end(); FCAL_BlockIterator++)
567 {
568 if(FCALHits[i]->row==FCAL_BlockIterator->getRow() && FCALHits[i]->column==FCAL_BlockIterator->getColumn())
569 {
570 found=true;
571 break;
572 }
573 }
574
575 if(found==false)
576 {
577 hitv->getForwardEMcal().addFcalBlocks();
578 FCAL_BlockIterator=FCAL_BlockList->end()-1;
579 FCAL_BlockIterator->setColumn(FCALHits[i]->column);
580 FCAL_BlockIterator->setRow(FCALHits[i]->row);
581 }
582
583
584 FCAL_BlockIterator->addFcalHits();
585 hddm_s::FcalHitList* FCAL_HitList = &FCAL_BlockIterator->getFcalHits();
586 hddm_s::FcalHitList::iterator FCAL_HitIterator = FCAL_HitList->end()-1;
587 FCAL_HitIterator->setT(FCALHits[i]->t);
588 FCAL_HitIterator->setE(FCALHits[i]->E);
589 FCAL_HitIterator->addFcalDigihits();
590 FCAL_HitIterator->getFcalDigihits().begin()->setIntegralOverPeak(FCALHits[i]->intOverPeak);
591 }
592
593
594
595 //========================================CCAL=========================================================
596
597 for(uint i=0; i<CCALHits.size(); ++i)
598 {
599 if(i == 0)
600 {
601 hitv->addComptonEMcals();
602 }
603 bool found = false;
604 //CCAL only has one hit per block per event so we need not search
605 hddm_s::CcalBlockList* CCAL_BlockList = &hitv->getComptonEMcal().getCcalBlocks();
606 hddm_s::CcalBlockList::iterator CCAL_BlockIterator = CCAL_BlockList->begin();
607
608 for(CCAL_BlockIterator = CCAL_BlockList->begin(); CCAL_BlockIterator != CCAL_BlockList->end(); CCAL_BlockIterator++)
609 {
610 if(CCALHits[i]->row==CCAL_BlockIterator->getRow() && CCALHits[i]->column==CCAL_BlockIterator->getColumn())
611 {
612 found=true;
613 break;
614 }
615 }
616
617 if(found==false)
618 {
619 hitv->getComptonEMcal().addCcalBlocks();
620 CCAL_BlockIterator=CCAL_BlockList->end()-1;
621 CCAL_BlockIterator->setColumn(CCALHits[i]->column);
622 CCAL_BlockIterator->setRow(CCALHits[i]->row);
623 }
624
625
626 CCAL_BlockIterator->addCcalHits();
627 hddm_s::CcalHitList* CCAL_HitList = &CCAL_BlockIterator->getCcalHits();
628 hddm_s::CcalHitList::iterator CCAL_HitIterator = CCAL_HitList->end()-1;
629 CCAL_HitIterator->setT(CCALHits[i]->t);
630 CCAL_HitIterator->setE(CCALHits[i]->E);
631
632
633 }
634
635
636
637 //=============================================TOF=====================================================
638
639 for(uint i=0; i<TOFHits.size(); ++i)
640 {
641
642 if(i == 0)
643 {
644 hitv->addForwardTOFs();//if we have a hit add the TOF
645 }
646
647 bool found = false;
648 //gotta look for the same plane/bar
649 hddm_s::FtofCounterList* TOF_CounterList = &hitv->getForwardTOF().getFtofCounters();
650 hddm_s::FtofCounterList::iterator TOF_CounterIterator = TOF_CounterList->begin();
651
652 for(TOF_CounterIterator = TOF_CounterList->begin(); TOF_CounterIterator != TOF_CounterList->end(); TOF_CounterIterator++)
653 {
654 if(TOFHits[i]->bar==TOF_CounterIterator->getBar() && TOFHits[i]->plane==TOF_CounterIterator->getPlane())
655 {
656 found=true;
657 break;
658 }
659 }
660
661 if(found==false)
662 {
663 hitv->getForwardTOF().addFtofCounters();
664 TOF_CounterIterator=TOF_CounterList->end()-1;
665 TOF_CounterIterator->setPlane(TOFHits[i]->plane);
666 TOF_CounterIterator->setBar(TOFHits[i]->bar);
667
668 }
669
670 TOF_CounterIterator->addFtofHits();
671 hddm_s::FtofHitList* ftofhitl=&TOF_CounterIterator->getFtofHits();
672 hddm_s::FtofHitList::iterator ftofhitit=ftofhitl->end()-1;
673 ftofhitit->setEnd(TOFHits[i]->end);
674 ftofhitit->setT(TOFHits[i]->t);//walk corrected time
675 ftofhitit->setDE(TOFHits[i]->dE);
676 ftofhitit->addFtofDigihits();
677 ftofhitit->getFtofDigihits().begin()->setPeakAmp(TOFHits[i]->Amp);
678 }
679
680
681 //============================CDC=============================================
682
683 for(uint i=0; i<CDCHits.size(); ++i)
684 {
685 if(i == 0)
686 {
687 hitv->addCentralDCs(); //if we have a hit then add the CDC
688 }
689 //CDC only has one hit per block per event so we need not search
690 hitv->getCentralDC().addCdcStraws();
691
692 hddm_s::CdcStrawList* CDC_StrawList = &hitv->getCentralDC().getCdcStraws();
693 hddm_s::CdcStrawList::iterator CDC_StrawIterator = CDC_StrawList->end()-1;
694 CDC_StrawIterator->setRing(CDCHits[i]->ring);
695 CDC_StrawIterator->setStraw(CDCHits[i]->straw);
696
697 CDC_StrawIterator->addCdcStrawHits();
698 hddm_s::CdcStrawHitList* strawhitl = &CDC_StrawIterator->getCdcStrawHits();
699 hddm_s::CdcStrawHitList::iterator cdcstrawhitit = strawhitl->end()-1;
700 cdcstrawhitit->setQ(CDCHits[i]->q);
701 cdcstrawhitit->setT(CDCHits[i]->t);
702 cdcstrawhitit->addCdcDigihits();
703 cdcstrawhitit->getCdcDigihits().begin()->setPeakAmp(CDCHits[i]->amp);
704 cdcstrawhitit->addCdcHitQFs();
705 cdcstrawhitit->getCdcHitQFs().begin()->setQF(CDCHits[i]->QF);
706 }
707
708 //========================================RFtime=======================================================
709
710 for(uint i=0; i<RFtimes.size(); ++i)
711 {
712 hddm_s::RFtimeList nextRF = hitv->addRFtimes();
713 nextRF(0).setJtag(RFtimes[i]->GetTag());
714 nextRF(0).setTsync(RFtimes[i]->dTime);
715 }
716
717 std::vector<std::string> RFtags = {"TOF", "FDC", "PSC", "TAGH"};
718 hddm_s::RFtimeList mainRF = hitv->getRFtimes();
719 if(mainRF.size() > 0)
720 {
721 for(uint it=0; it < RFtags.size(); ++it)
722 {
723 vector<const DRFTime*> RFsubsys;
724 locEventLoop->Get(RFsubsys, RFtags[it].c_str());
725 for(uint i=0; i < RFsubsys.size(); ++i)
726 {
727 hddm_s::RFsubsystemList nextRF = mainRF(0).addRFsubsystems();
728 nextRF(0).setJtag(RFsubsys[i]->GetTag());
729 nextRF(0).setTsync(RFsubsys[i]->dTime);
730 }
731 }
732 }
733
734 //========================================DIRC=======================================================
735
736 for(uint i=0; i<DIRCPmtHits.size(); ++i) {
737 if(i == 0) {
738 hitv->addDIRCs(); //if we have a hit then add the DIRC
739 }
740
741
742 hddm_s::DircPmtHitList *pmtHits = &hitv->getDIRC().getDircPmtHits();
743 hddm_s::DircPmtHitList::iterator iter;
744
745 hitv->getDIRC().addDircPmtHits();
746 iter=pmtHits->end()-1;
747 iter->setCh(DIRCPmtHits[i]->ch);
748 iter->setT(DIRCPmtHits[i]->t);
749 }
750
751 //*fout << *record; //stream the new record into the file
752
753 // write the resulting record to the output stream
754 string locOutputFileName = Get_OutputFileName(locOutputFileNameSubString);
755 bool locWriteStatus = Write_HDDMEvent(locOutputFileName, *record);
756 delete record;
757
758 CDCHits.clear();
759 TOFHits.clear();
760 FCALHits.clear();
761 CCALHits.clear();
762 SCHits.clear();
763 BCALDigiHits.clear();
764 BCALTDCDigiHits.clear();
765 PSHits.clear();
766 PSCHits.clear();
767 FDCHits.clear();
768 TAGHHits.clear();
769 TAGMHits.clear();
770 TPOLHits.clear();
771 RFtimes.clear();
772 DIRCPmtHits.clear();
773
774 return locWriteStatus;
775}
776
777string DEventWriterHDDM::Get_OutputFileName(string locOutputFileNameSubString) const
778{
779 string locOutputFileName = dOutputFileBaseName;
780 if (locOutputFileNameSubString != "")
781 locOutputFileName += string("_") + locOutputFileNameSubString;
782 return (locOutputFileName + string(".hddm"));
783}
784
785bool DEventWriterHDDM::Write_HDDMEvent(string locOutputFileName, hddm_s::HDDM& locRecord) const
786{
787 japp->WriteLock("HDDMWriter");
788 {
789 //check to see if the HDDM file is open
790 if(Get_HDDMOutputFilePointers().find(locOutputFileName) != Get_HDDMOutputFilePointers().end())
791 {
792 //open: get pointer, write event
793 hddm_s::ostream* locOutputHDDMFileStream = Get_HDDMOutputFilePointers()[locOutputFileName].second;
794 japp->Unlock("HDDMWriter");
795 *(locOutputHDDMFileStream) << locRecord;
796 return true;
797 }
798
799 //not open: open it
800 pair<ofstream*, hddm_s::ostream*> locHDDMFilePointers(NULL__null, NULL__null);
801 locHDDMFilePointers.first = new ofstream(locOutputFileName.c_str());
802 if(!locHDDMFilePointers.first->is_open())
803 {
804 //failed to open
805 delete locHDDMFilePointers.first;
806 japp->Unlock("HDDMWriter");
807 return false;
808 }
809 locHDDMFilePointers.second = new hddm_s::ostream(*locHDDMFilePointers.first);
810
811 // enable on-the-fly bzip2 compression on output stream
812 if(HDDM_USE_COMPRESSION)
813 {
814 jout << " Enabling bz2 compression of output HDDM file stream" << std::endl;
815 locHDDMFilePointers.second->setCompression(hddm_s::k_bz2_compression);
816 }
817 else
818 jout << " HDDM compression disabled" << std::endl;
819
820 // enable a CRC data integrity check at the end of each event record
821 if(HDDM_USE_INTEGRITY_CHECKS)
822 {
823 jout << " Enabling CRC data integrity check in output HDDM file stream" << std::endl;
824 locHDDMFilePointers.second->setIntegrityChecks(hddm_s::k_crc32_integrity);
825 }
826 else
827 jout << " HDDM integrity checks disabled" << std::endl;
828
829
830 //write the event
831 *(locHDDMFilePointers.second) << locRecord;
832
833 //store the stream pointers
834 Get_HDDMOutputFilePointers()[locOutputFileName] = locHDDMFilePointers;
835 }
836 japp->Unlock("HDDMWriter");
837
838 return true;
839}
840
841DEventWriterHDDM::~DEventWriterHDDM(void)
842{
843 japp->WriteLock("HDDMWriter");
844 {
845 --Get_NumEventWriterThreads();
846 if(Get_NumEventWriterThreads() > 0)
847 {
848 japp->Unlock("HDDMWriter");
849 return; //not the last thread writing to HDDM files
850 }
851
852 //last thread writing to HDDM files: close all files and free all memory
853 map<string, pair<ofstream*, hddm_s::ostream*> >::iterator locIterator;
854 for(locIterator = Get_HDDMOutputFilePointers().begin(); locIterator != Get_HDDMOutputFilePointers().end(); ++locIterator)
855 {
856 string locOutputFileName = locIterator->first;
857 if (locIterator->second.second != NULL__null)
858 delete locIterator->second.second;
859 if (locIterator->second.first != NULL__null)
860 delete locIterator->second.first;
861 std::cout << "Closed HDDM file " << locOutputFileName << std::endl;
862 }
863 Get_HDDMOutputFilePointers().clear();
864 }
865 japp->Unlock("HDDMWriter");
866}
867
868int32_t DEventWriterHDDM::Convert_UnsignedIntToSigned(uint32_t locUnsignedInt) const
869{
870 //Convert uint32_t to int32_t
871 //Scheme:
872 //If bit 32 is zero, then the int32_t is the same as the uint32_t: Positive or zero
873 //If bit 32 is one, and at least one other bit is 1, then the int32_t is -1 * uint32_t (after stripping the top bit)
874 //If bit 32 is one, and all other bits are zero, then the int32_t is the minimum int: -(2^31)
875 if((locUnsignedInt & 0x80000000) == 0)
876 return int32_t(locUnsignedInt); //bit 32 is zero: positive or zero
877
878 //bit 32 is 1. see if there is another bit set
879 int32_t locTopBitStripped = int32_t(locUnsignedInt & uint32_t(0x7FFFFFFF)); //strip the top bit
880 if(locTopBitStripped == 0)
881 return numeric_limits<int32_t>::min(); //no other bit is set: minimum int
882 return -1*locTopBitStripped; //return the negative
883}

/w/halld-scifs17exp/halld2/home/sdobbs/Software/jana/jana_0.8.2/Linux_CentOS7.7-x86_64-gcc4.8.5/include/JANA/JEventLoop.h

1// $Id: JEventLoop.h 1763 2006-05-10 14:29:25Z davidl $
2//
3// File: JEventLoop.h
4// Created: Wed Jun 8 12:30:51 EDT 2005
5// Creator: davidl (on Darwin wire129.jlab.org 7.8.0 powerpc)
6//
7
8#ifndef _JEventLoop_
9#define _JEventLoop_
10
11#include <sys/time.h>
12
13#include <vector>
14#include <list>
15#include <string>
16#include <utility>
17#include <typeinfo>
18#include <string.h>
19#include <map>
20#include <utility>
21using std::vector;
22using std::list;
23using std::string;
24using std::type_info;
25
26#include <JANA/jerror.h>
27#include <JANA/JObject.h>
28#include <JANA/JException.h>
29#include <JANA/JEvent.h>
30#include <JANA/JThread.h>
31#include <JANA/JFactory_base.h>
32#include <JANA/JCalibration.h>
33#include <JANA/JGeometry.h>
34#include <JANA/JResourceManager.h>
35#include <JANA/JStreamLog.h>
36
37// The following is here just so we can use ROOT's THtml class to generate documentation.
38#include "cint.h"
39
40
41// Place everything in JANA namespace
42namespace jana{
43
44
45template<class T> class JFactory;
46class JApplication;
47class JEventProcessor;
48
49
50class JEventLoop{
51 public:
52
53 friend class JApplication;
54
55 enum data_source_t{
56 DATA_NOT_AVAILABLE = 1,
57 DATA_FROM_CACHE,
58 DATA_FROM_SOURCE,
59 DATA_FROM_FACTORY
60 };
61
62 typedef struct{
63 string caller_name;
64 string caller_tag;
65 string callee_name;
66 string callee_tag;
67 double start_time;
68 double end_time;
69 data_source_t data_source;
70 }call_stack_t;
71
72 typedef struct{
73 const char* factory_name;
74 string tag;
75 const char* filename;
76 int line;
77 }error_call_stack_t;
78
79 JEventLoop(JApplication *app); ///< Constructor
80 virtual ~JEventLoop(); ////< Destructor
81 virtual const char* className(void){return static_className();}
82 static const char* static_className(void){return "JEventLoop";}
83
84 JApplication* GetJApplication(void) const {return app;} ///< Get pointer to the JApplication object
85 void RefreshProcessorListFromJApplication(void); ///< Re-copy the list of JEventProcessors from JApplication
86 virtual jerror_t AddFactory(JFactory_base* factory); ///< Add a factory
87 jerror_t RemoveFactory(JFactory_base* factory); ///< Remove a factory
88 JFactory_base* GetFactory(const string data_name, const char *tag="", bool allow_deftag=true); ///< Get a specific factory pointer
89 vector<JFactory_base*> GetFactories(void) const {return factories;} ///< Get all factory pointers
90 void GetFactoryNames(vector<string> &factorynames); ///< Get names of all factories in name:tag format
91 void GetFactoryNames(map<string,string> &factorynames); ///< Get names of all factories in map with key=name, value=tag
92 map<string,string> GetDefaultTags(void) const {return default_tags;}
93 jerror_t ClearFactories(void); ///< Reset all factories in preparation for next event.
94 jerror_t PrintFactories(int sparsify=0); ///< Print a list of all factories.
95 jerror_t Print(const string data_name, const char *tag=""); ///< Print the data of the given type
96
97 JCalibration* GetJCalibration();
98 template<class T> bool GetCalib(string namepath, map<string,T> &vals);
99 template<class T> bool GetCalib(string namepath, vector<T> &vals);
100 template<class T> bool GetCalib(string namepath, T &val);
101
102 JGeometry* GetJGeometry();
103 template<class T> bool GetGeom(string namepath, map<string,T> &vals);
104 template<class T> bool GetGeom(string namepath, T &val);
105
106 JResourceManager* GetJResourceManager(void);
107 string GetResource(string namepath);
108 template<class T> bool GetResource(string namepath, T vals, int event_number=0);
109
110 void Initialize(void); ///< Do initializations just before event processing starts
111 jerror_t Loop(void); ///< Loop over events
112 jerror_t OneEvent(uint64_t event_number); ///< Process a specific single event (if source supports it)
113 jerror_t OneEvent(void); ///< Process a single event
114 inline void Pause(void){pause = 1;} ///< Pause event processing
115 inline void Resume(void){pause = 0;} ///< Resume event processing
116 inline void Quit(void){quit = 1;} ///< Clean up and exit the event loop
117 inline bool GetQuit(void) const {return quit;}
118 void QuitProgram(void);
119
120 // Support for random access of events
121 bool HasRandomAccess(void);
122 void AddToEventQueue(uint64_t event_number){ next_events_to_process.push_back(event_number); }
123 void AddToEventQueue(list<uint64_t> &event_numbers) { next_events_to_process.insert(next_events_to_process.end(), event_numbers.begin(), event_numbers.end()); }
124 list<uint64_t> GetEventQueue(void){ return next_events_to_process; }
125 void ClearEventQueue(void){ next_events_to_process.clear(); }
126
127 template<class T> JFactory<T>* GetSingle(const T* &t, const char *tag="", bool exception_if_not_one=true); ///< Get pointer to first data object from (source or factory).
128 template<class T> JFactory<T>* Get(vector<const T*> &t, const char *tag="", bool allow_deftag=true); ///< Get data object pointers from (source or factory)
129 template<class T> JFactory<T>* GetFromFactory(vector<const T*> &t, const char *tag="", data_source_t &data_source=null_data_source, bool allow_deftag=true); ///< Get data object pointers from factory
130 template<class T> jerror_t GetFromSource(vector<const T*> &t, JFactory_base *factory=NULL__null); ///< Get data object pointers from source.
131 inline JEvent& GetJEvent(void){return event;} ///< Get pointer to the current JEvent object.
132 inline void SetJEvent(JEvent *event){this->event = *event;} ///< Set the JEvent pointer.
133 inline void SetAutoFree(int auto_free){this->auto_free = auto_free;} ///< Set the Auto-Free flag on/off
134 inline pthread_t GetPThreadID(void) const {return pthread_id;} ///< Get the pthread of the thread to which this JEventLoop belongs
135 double GetInstantaneousRate(void) const {return rate_instantaneous;} ///< Get the current event processing rate
136 double GetIntegratedRate(void) const {return rate_integrated;} ///< Get the current event processing rate
137 double GetLastEventProcessingTime(void) const {return delta_time_single;}
138 unsigned int GetNevents(void) const {return Nevents;}
139
140 inline bool CheckEventBoundary(uint64_t event_numberA, uint64_t event_numberB);
141
142 inline bool GetCallStackRecordingStatus(void){ return record_call_stack; }
143 inline void DisableCallStackRecording(void){ record_call_stack = false; }
144 inline void EnableCallStackRecording(void){ record_call_stack = true; }
145 inline void CallStackStart(JEventLoop::call_stack_t &cs, const string &caller_name, const string &caller_tag, const string callee_name, const string callee_tag);
146 inline void CallStackEnd(JEventLoop::call_stack_t &cs);
147 inline vector<call_stack_t> GetCallStack(void){return call_stack;} ///< Get the current factory call stack
148 inline void AddToCallStack(call_stack_t &cs){if(record_call_stack) call_stack.push_back(cs);} ///< Add specified item to call stack record but only if record_call_stack is true
149 inline void AddToErrorCallStack(error_call_stack_t &cs){error_call_stack.push_back(cs);} ///< Add layer to the factory call stack
150 inline vector<error_call_stack_t> GetErrorCallStack(void){return error_call_stack;} ///< Get the current factory error call stack
151 void PrintErrorCallStack(void); ///< Print the current factory call stack
152
153 const JObject* FindByID(JObject::oid_t id); ///< Find a data object by its identifier.
154 template<class T> const T* FindByID(JObject::oid_t id); ///< Find a data object by its type and identifier
155 JFactory_base* FindOwner(const JObject *t); ///< Find the factory that owns a data object by pointer
156 JFactory_base* FindOwner(JObject::oid_t id); ///< Find a factory that owns a data object by identifier
157
158 // User defined references
159 template<class T> void SetRef(T *t); ///< Add a user reference to this JEventLoop (must be a pointer)
160 template<class T> T* GetRef(void); ///< Get a user-defined reference of a specific type
161 template<class T> vector<T*> GetRefsT(void); ///< Get all user-defined refrences of a specicif type
162 vector<pair<const char*, void*> > GetRefs(void){ return user_refs; } ///< Get copy of full list of user-defined references
163 template<class T> void RemoveRef(T *t); ///< Remove user reference from list
164
165 // Convenience methods wrapping JEvent methods of same name
166 uint64_t GetStatus(void){return event.GetStatus();}
167 bool GetStatusBit(uint32_t bit){return event.GetStatusBit(bit);}
168 bool SetStatusBit(uint32_t bit, bool val=true){return event.SetStatusBit(bit, val);}
169 bool ClearStatusBit(uint32_t bit){return event.ClearStatusBit(bit);}
170 void ClearStatus(void){event.ClearStatus();}
171 void SetStatusBitDescription(uint32_t bit, string description){event.SetStatusBitDescription(bit, description);}
172 string GetStatusBitDescription(uint32_t bit){return event.GetStatusBitDescription(bit);}
173 void GetStatusBitDescriptions(map<uint32_t, string> &status_bit_descriptions){return event.GetStatusBitDescriptions(status_bit_descriptions);}
174 string StatusWordToString(void);
175
176 private:
177 JEvent event;
178 vector<JFactory_base*> factories;
179 vector<JEventProcessor*> processors;
180 vector<error_call_stack_t> error_call_stack;
181 vector<call_stack_t> call_stack;
182 JApplication *app;
183 JThread *jthread;
184 bool initialized;
185 bool print_parameters_called;
186 int pause;
187 int quit;
188 int auto_free;
189 pthread_t pthread_id;
190 map<string, string> default_tags;
191 vector<pair<string,string> > auto_activated_factories;
192 bool record_call_stack;
193 string caller_name;
194 string caller_tag;
195 vector<uint64_t> event_boundaries;
196 int32_t event_boundaries_run; ///< Run number boundaries were retrieved from (possbily 0)
197 list<uint64_t> next_events_to_process;
198
199 uint64_t Nevents; ///< Total events processed (this thread)
200 uint64_t Nevents_rate; ///< Num. events accumulated for "instantaneous" rate
201 double delta_time_single; ///< Time spent processing last event
202 double delta_time_rate; ///< Integrated time accumulated "instantaneous" rate (partial number of events)
203 double delta_time; ///< Total time spent processing events (this thread)
204 double rate_instantaneous; ///< Latest instantaneous rate
205 double rate_integrated; ///< Rate integrated over all events
206
207 static data_source_t null_data_source;
208
209 vector<pair<const char*, void*> > user_refs;
210};
211
212
213// The following is here just so we can use ROOT's THtml class to generate documentation.
214#ifdef G__DICTIONARY
215typedef JEventLoop::call_stack_t call_stack_t;
216typedef JEventLoop::error_call_stack_t error_call_stack_t;
217#endif
218
219#if !defined(__CINT__) && !defined(__CLING__)
220
221//-------------
222// GetSingle
223//-------------
224template<class T>
225JFactory<T>* JEventLoop::GetSingle(const T* &t, const char *tag, bool exception_if_not_one)
226{
227 /// This is a convenience method that can be used to get a pointer to the single
228 /// object of type T from the specified factory. It simply calls the Get(vector<...>) method
229 /// and copies the first pointer into "t" (or NULL if something other than 1 object is returned).
230 ///
231 /// This is intended to address the common situation in which there is an interest
232 /// in the event if and only if there is exactly 1 object of type T. If the event
233 /// has no objects of that type or more than 1 object of that type (for the specified
234 /// factory) then an exception of type "unsigned long" is thrown with the value
235 /// being the number of objects of type T. You can supress the exception by setting
236 /// exception_if_not_one to false. In that case, you will have to check if t==NULL to
237 /// know if the call succeeded.
238 vector<const T*> v;
239 JFactory<T> *fac = Get(v, tag);
240
241 if(v.size()!=1){
242 t = NULL__null;
243 if(exception_if_not_one) throw v.size();
244 }
245
246 t = v[0];
247
248 return fac;
249}
250
251//-------------
252// Get
253//-------------
254template<class T>
255JFactory<T>* JEventLoop::Get(vector<const T*> &t, const char *tag, bool allow_deftag)
256{
257 /// Retrieve or generate the array of objects of
258 /// type T for the curent event being processed
259 /// by this thread.
260 ///
261 /// By default, preference is given to reading the
262 /// objects from the data source(e.g. file) before generating
263 /// them in the factory. A flag exists in the factory
264 /// however to change this so that the factory is
265 /// given preference.
266 ///
267 /// Note that regardless of the setting of this flag,
268 /// the data are only either read in or generated once.
269 /// Ownership of the objects will always be with the
270 /// factory so subsequent calls will always return pointers to
271 /// the same data.
272 ///
273 /// If the factory is called on to generate the data,
274 /// it is done by calling the factory's Get() method
275 /// which, in turn, calls the evnt() method.
276 ///
277 /// First, we just call the GetFromFactory() method.
278 /// It will make the initial decision as to whether
279 /// it should look in the source first or not. If
280 /// it returns NULL, then the factory couldn't be
281 /// found so we automatically try the file.
282 ///
283 /// Note that if no factory exists to hold the objects
284 /// from the file, one can be created automatically
285 /// providing the <i>JANA:AUTOFACTORYCREATE</i>
286 /// configuration parameter is set.
287
288 // Check if a tag was specified for this data type to use for the
289 // default.
290 const char *mytag = tag==NULL__null ? "":tag; // protection against NULL tags
2
Assuming 'tag' is not equal to NULL
3
'?' condition is false
291 if(strlen(mytag)==0 && allow_deftag
4.1
'allow_deftag' is true
4.1
'allow_deftag' is true
4.1
'allow_deftag' is true
){
4
Assuming the condition is true
5
Taking true branch
292 map<string, string>::const_iterator iter = default_tags.find(T::static_className());
293 if(iter!=default_tags.end())tag = iter->second.c_str();
6
Assuming the condition is true
7
Taking true branch
8
Value assigned to 'tag'
294 }
295
296
297 // If we are trying to keep track of the call stack then we
298 // need to add a new call_stack_t object to the the list
299 // and initialize it with the start time and caller/callee
300 // info.
301 call_stack_t cs;
302
303 // Optionally record starting info of call stack entry
304 if(record_call_stack) CallStackStart(cs, caller_name, caller_tag, T::static_className(), tag);
9
Assuming field 'record_call_stack' is false
10
Taking false branch
305
306 // Get the data (or at least try to)
307 JFactory<T>* factory=NULL__null;
308 try{
309 factory = GetFromFactory(t, tag, cs.data_source, allow_deftag);
11
Passing value via 2nd parameter 'tag'
12
Calling 'JEventLoop::GetFromFactory'
310 if(!factory){
311 // No factory exists for this type and tag. It's possible
312 // that the source may be able to provide the objects
313 // but it will need a place to put them. We can create a
314 // dumb JFactory just to hold the data in case the source
315 // can provide the objects. Before we do though, make sure
316 // the user condones this via the presence of the
317 // "JANA:AUTOFACTORYCREATE" config parameter.
318 string p;
319 try{
320 gPARMS->GetParameter("JANA:AUTOFACTORYCREATE", p);
321 }catch(...){}
322 if(p.size()==0){
323 jout<<std::endl;
324 _DBG__std::cerr<<"/w/halld-scifs17exp/halld2/home/sdobbs/Software/jana/jana_0.8.2/Linux_CentOS7.7-x86_64-gcc4.8.5/include/JANA/JEventLoop.h"
<<":"<<324<<std::endl
;
325 jout<<"No factory of type \""<<T::static_className()<<"\" with tag \""<<tag<<"\" exists."<<std::endl;
326 jout<<"If you are reading objects from a file, I can auto-create a factory"<<std::endl;
327 jout<<"of the appropriate type to hold the objects, but this feature is turned"<<std::endl;
328 jout<<"off by default. To turn it on, set the \"JANA:AUTOFACTORYCREATE\""<<std::endl;
329 jout<<"configuration parameter. This can usually be done by passing the"<<std::endl;
330 jout<<"following argument to the program from the command line:"<<std::endl;
331 jout<<std::endl;
332 jout<<" -PJANA:AUTOFACTORYCREATE=1"<<std::endl;
333 jout<<std::endl;
334 jout<<"Note that since the most commonly expected occurance of this situation."<<std::endl;
335 jout<<"is an error, the program will now throw an exception so that the factory."<<std::endl;
336 jout<<"call stack can be printed."<<std::endl;
337 jout<<std::endl;
338 throw exception();
339 }else{
340 AddFactory(new JFactory<T>(tag));
341 jout<<__FILE__"/w/halld-scifs17exp/halld2/home/sdobbs/Software/jana/jana_0.8.2/Linux_CentOS7.7-x86_64-gcc4.8.5/include/JANA/JEventLoop.h"<<":"<<__LINE__341<<" Auto-created "<<T::static_className()<<":"<<tag<<" factory"<<std::endl;
342
343 // Now try once more. The GetFromFactory method will call
344 // GetFromSource since it's empty.
345 factory = GetFromFactory(t, tag, cs.data_source, allow_deftag);
346 }
347 }
348 }catch(exception &e){
349 // Uh-oh, an exception was thrown. Add us to the call stack
350 // and re-throw the exception
351 error_call_stack_t ecs;
352 ecs.factory_name = T::static_className();
353 ecs.tag = tag;
354 ecs.filename = NULL__null;
355 error_call_stack.push_back(ecs);
356 throw e;
357 }
358
359 // If recording the call stack, update the end_time field and add to stack
360 if(record_call_stack) CallStackEnd(cs);
361
362 return factory;
363}
364
365//-------------
366// GetFromFactory
367//-------------
368template<class T>
369JFactory<T>* JEventLoop::GetFromFactory(vector<const T*> &t, const char *tag, data_source_t &data_source, bool allow_deftag)
370{
371 // We need to find the factory providing data type T with
372 // tag given by "tag".
373 vector<JFactory_base*>::iterator iter=factories.begin();
374 JFactory<T> *factory = NULL__null;
375 string className(T::static_className());
376
377 // Check if a tag was specified for this data type to use for the
378 // default.
379 const char *mytag = tag==NULL__null ? "":tag; // protection against NULL tags
13
Assuming 'tag' is equal to NULL
14
Assuming pointer value is null
15
'?' condition is true
380 if(strlen(mytag)==0 && allow_deftag
15.1
'allow_deftag' is true
15.1
'allow_deftag' is true
15.1
'allow_deftag' is true
){
16
Taking true branch
381 map<string, string>::const_iterator iter = default_tags.find(className);
382 if(iter!=default_tags.end())tag = iter->second.c_str();
17
Assuming the condition is false
18
Taking false branch
383 }
384
385 for(; iter!=factories.end(); iter++){
19
Calling 'operator!=<jana::JFactory_base **, std::vector<jana::JFactory_base *>>'
22
Returning from 'operator!=<jana::JFactory_base **, std::vector<jana::JFactory_base *>>'
23
Loop condition is true. Entering loop body
386 // It turns out a long standing bug in g++ makes dynamic_cast return
387 // zero improperly when used on objects created on one side of
388 // a dynamically shared object (DSO) and the cast occurs on the
389 // other side. I saw bug reports ranging from 2001 to 2004. I saw
390 // saw it first-hand on LinuxEL4 using g++ 3.4.5. This is too bad
391 // since it is much more elegant (and safe) to use dynamic_cast.
392 // To avoid this problem which can occur with plugins, we check
393 // the name of the data classes are the same. (sigh)
394 //factory = dynamic_cast<JFactory<T> *>(*iter);
395 if(className == (*iter)->GetDataClassName())factory = (JFactory<T>*)(*iter);
24
Taking true branch
396 if(factory == NULL__null)continue;
25
Assuming 'factory' is not equal to NULL
26
Taking false branch
397 const char *factag = factory->Tag()==NULL__null ? "":factory->Tag();
27
Assuming the condition is true
28
'?' condition is true
398 if(!strcmp(factag, tag)){
29
Null pointer passed to 2nd parameter expecting 'nonnull'
399 break;
400 }else{
401 factory=NULL__null;
402 }
403 }
404
405 // If factory not found, just return now
406 if(!factory){
407 data_source = DATA_NOT_AVAILABLE;
408 return NULL__null;
409 }
410
411 // OK, we found the factory. If the evnt() routine has already
412 // been called, then just call the factory's Get() routine
413 // to return a copy of the existing data
414 if(factory->evnt_was_called()){
415 factory->CopyFrom(t);
416 data_source = DATA_FROM_CACHE;
417 return factory;
418 }
419
420 // Next option is to get the objects from the data source
421 if(factory->GetCheckSourceFirst()){
422 // If the object type/tag is found in the source, it
423 // will return NOERROR, even if there are zero instances
424 // of it. If it is not available in the source then it
425 // will return OBJECT_NOT_AVAILABLE.
426
427 jerror_t err = GetFromSource(t, factory);
428 if(err == NOERROR){
429 // A return value of NOERROR means the source had the objects
430 // even if there were zero of them.(If the source had no
431 // information about the objects OBJECT_NOT_AVAILABLE would
432 // have been returned.)
433 // The GetFromSource() call will eventually lead to a call to
434 // the GetObjects() method of the concrete class derived
435 // from JEventSource. That routine should copy the object
436 // pointers into the factory using the factory's CopyTo()
437 // method which also sets the evnt_called flag for the factory.
438 // Note also that the "t" vector is then filled with a call
439 // to the factory's CopyFrom() method in JEvent::GetObjects().
440 // All we need to do now is just set the factory pointers in
441 // the newly generated JObjects and return the factory pointer.
442
443 factory->SetFactoryPointers();
444 data_source = DATA_FROM_SOURCE;
445
446 return factory;
447 }
448 }
449
450 // OK. It looks like we have to have the factory make this.
451 // Get pointers to data from the factory.
452 factory->Get(t);
453 factory->SetFactoryPointers();
454 data_source = DATA_FROM_FACTORY;
455
456 return factory;
457}
458
459//-------------
460// GetFromSource
461//-------------
462template<class T>
463jerror_t JEventLoop::GetFromSource(vector<const T*> &t, JFactory_base *factory)
464{
465 /// This tries to get objects from the event source.
466 /// "factory" must be a valid pointer to a JFactory
467 /// object since that will take ownership of the objects
468 /// created by the source.
469 /// This should usually be called from JEventLoop::GetFromFactory
470 /// which is called from JEventLoop::Get. The latter will
471 /// create a dummy JFactory of the proper flavor and tag if
472 /// one does not already exist so if objects exist in the
473 /// file without a corresponding factory to create them, they
474 /// can still be used.
475 if(!factory)throw OBJECT_NOT_AVAILABLE;
476
477 return event.GetObjects(t, factory);
478}
479
480//-------------
481// CallStackStart
482//-------------
483inline void JEventLoop::CallStackStart(JEventLoop::call_stack_t &cs, const string &caller_name, const string &caller_tag, const string callee_name, const string callee_tag)
484{
485 /// This is used to fill initial info into a call_stack_t stucture
486 /// for recording the call stack. It should be matched with a call
487 /// to CallStackEnd. It is normally called from the Get() method
488 /// above, but may also be used by external actors to manipulate
489 /// the call stack (presumably for good and not evil).
490
491 struct itimerval tmr;
492 getitimer(ITIMER_PROFITIMER_PROF, &tmr);
493
494 cs.caller_name = this->caller_name;
495 cs.caller_tag = this->caller_tag;
496 this->caller_name = cs.callee_name = callee_name;
497 this->caller_tag = cs.callee_tag = callee_tag;
498 cs.start_time = tmr.it_value.tv_sec + tmr.it_value.tv_usec/1.0E6;
499}
500
501//-------------
502// CallStackEnd
503//-------------
504inline void JEventLoop::CallStackEnd(JEventLoop::call_stack_t &cs)
505{
506 /// Complete a call stack entry. This should be matched
507 /// with a previous call to CallStackStart which was
508 /// used to fill the cs structure.
509
510 struct itimerval tmr;
511 getitimer(ITIMER_PROFITIMER_PROF, &tmr);
512 cs.end_time = tmr.it_value.tv_sec + tmr.it_value.tv_usec/1.0E6;
513 caller_name = cs.caller_name;
514 caller_tag = cs.caller_tag;
515 call_stack.push_back(cs);
516}
517
518//-------------
519// CheckEventBoundary
520//-------------
521inline bool JEventLoop::CheckEventBoundary(uint64_t event_numberA, uint64_t event_numberB)
522{
523 /// Check whether the two event numbers span one or more boundaries
524 /// in the calibration/conditions database for the current run number.
525 /// Return true if they do and false if they don't. The first parameter
526 /// "event_numberA" is also checked if it lands on a boundary in which
527 /// case true is also returned. If event_numberB lands on a boundary,
528 /// but event_numberA does not, then false is returned.
529 ///
530 /// This method is not expected to be called by a user. It is, however called,
531 /// everytime a JFactory's Get() method is called.
532
533 // Make sure our copy of the boundaries is up to date
534 if(event.GetRunNumber()!=event_boundaries_run){
535 event_boundaries.clear(); // in case we can't get the JCalibration pointer
536 JCalibration *jcalib = GetJCalibration();
537 if(jcalib)jcalib->GetEventBoundaries(event_boundaries);
538 event_boundaries_run = event.GetRunNumber();
539 }
540
541 // Loop over boundaries
542 for(unsigned int i=0; i<event_boundaries.size(); i++){
543 uint64_t eb = event_boundaries[i];
544 if((eb - event_numberA)*(eb - event_numberB) < 0.0 || eb==event_numberA){ // think about it ....
545 // events span a boundary or is on a boundary. Return true
546 return true;
547 }
548 }
549
550 return false;
551}
552
553//-------------
554// FindByID
555//-------------
556template<class T>
557const T* JEventLoop::FindByID(JObject::oid_t id)
558{
559 /// This is a templated method that can be used in place
560 /// of the non-templated FindByID(oid_t) method if one knows
561 /// the class of the object with the specified id.
562 /// This method is faster than calling the non-templated
563 /// FindByID and dynamic_cast-ing the JObject since
564 /// this will only search the objects of factories that
565 /// produce the desired data type.
566 /// This method will cast the JObject pointer to one
567 /// of the specified type. To use this method,
568 /// a type is specified in the call as follows:
569 ///
570 /// const DMyType *t = loop->FindByID<DMyType>(id);
571
572 // Loop over factories looking for ones that provide
573 // specified data type.
574 for(unsigned int i=0; i<factories.size(); i++){
575 if(factories[i]->GetDataClassName() != T::static_className())continue;
576
577 // This factory provides data of type T. Search it for
578 // the object with the specified id.
579 const JObject *my_obj = factories[i]->GetByID(id);
580 if(my_obj)return dynamic_cast<const T*>(my_obj);
581 }
582
583 return NULL__null;
584}
585
586//-------------
587// GetCalib (map)
588//-------------
589template<class T>
590bool JEventLoop::GetCalib(string namepath, map<string,T> &vals)
591{
592 /// Get the JCalibration object from JApplication for the run number of
593 /// the current event and call its Get() method to get the constants.
594
595 // Note that we could do this by making "vals" a generic type T thus, combining
596 // this with the vector version below. However, doing this explicitly will make
597 // it easier for the user to understand how to call us.
598
599 vals.clear();
600
601 JCalibration *calib = GetJCalibration();
602 if(!calib){
603 _DBG_std::cerr<<"/w/halld-scifs17exp/halld2/home/sdobbs/Software/jana/jana_0.8.2/Linux_CentOS7.7-x86_64-gcc4.8.5/include/JANA/JEventLoop.h"
<<":"<<603<<" "
<<"Unable to get JCalibration object for run "<<event.GetRunNumber()<<std::endl;
604 return true;
605 }
606
607 return calib->Get(namepath, vals, event.GetEventNumber());
608}
609
610//-------------
611// GetCalib (vector)
612//-------------
613template<class T> bool JEventLoop::GetCalib(string namepath, vector<T> &vals)
614{
615 /// Get the JCalibration object from JApplication for the run number of
616 /// the current event and call its Get() method to get the constants.
617
618 vals.clear();
619
620 JCalibration *calib = GetJCalibration();
621 if(!calib){
622 _DBG_std::cerr<<"/w/halld-scifs17exp/halld2/home/sdobbs/Software/jana/jana_0.8.2/Linux_CentOS7.7-x86_64-gcc4.8.5/include/JANA/JEventLoop.h"
<<":"<<622<<" "
<<"Unable to get JCalibration object for run "<<event.GetRunNumber()<<std::endl;
623 return true;
624 }
625
626 return calib->Get(namepath, vals, event.GetEventNumber());
627}
628
629//-------------
630// GetCalib (single)
631//-------------
632template<class T> bool JEventLoop::GetCalib(string namepath, T &val)
633{
634 /// This is a convenience method for getting a single entry. It
635 /// simply calls the vector version and returns the first entry.
636 /// It returns true if the vector version returns true AND there
637 /// is at least one entry in the vector. No check is made for there
638 /// there being more than one entry in the vector.
639
640 vector<T> vals;
641 bool ret = GetCalib(namepath, vals);
642 if(vals.empty()) return true;
643 val = vals[0];
644
645 return ret;
646}
647
648//-------------
649// GetGeom (map)
650//-------------
651template<class T>
652bool JEventLoop::GetGeom(string namepath, map<string,T> &vals)
653{
654 /// Get the JGeometry object from JApplication for the run number of
655 /// the current event and call its Get() method to get the constants.
656
657 // Note that we could do this by making "vals" a generic type T thus, combining
658 // this with the vector version below. However, doing this explicitly will make
659 // it easier for the user to understand how to call us.
660
661 vals.clear();
662
663 JGeometry *geom = GetJGeometry();
664 if(!geom){
665 _DBG_std::cerr<<"/w/halld-scifs17exp/halld2/home/sdobbs/Software/jana/jana_0.8.2/Linux_CentOS7.7-x86_64-gcc4.8.5/include/JANA/JEventLoop.h"
<<":"<<665<<" "
<<"Unable to get JGeometry object for run "<<event.GetRunNumber()<<std::endl;
666 return true;
667 }
668
669 return geom->Get(namepath, vals);
670}
671
672//-------------
673// GetGeom (atomic)
674//-------------
675template<class T> bool JEventLoop::GetGeom(string namepath, T &val)
676{
677 /// Get the JCalibration object from JApplication for the run number of
678 /// the current event and call its Get() method to get the constants.
679
680 JGeometry *geom = GetJGeometry();
681 if(!geom){
682 _DBG_std::cerr<<"/w/halld-scifs17exp/halld2/home/sdobbs/Software/jana/jana_0.8.2/Linux_CentOS7.7-x86_64-gcc4.8.5/include/JANA/JEventLoop.h"
<<":"<<682<<" "
<<"Unable to get JGeometry object for run "<<event.GetRunNumber()<<std::endl;
683 return true;
684 }
685
686 return geom->Get(namepath, val);
687}
688
689//-------------
690// SetRef
691//-------------
692template<class T>
693void JEventLoop::SetRef(T *t)
694{
695 pair<const char*, void*> p(typeid(T).name(), (void*)t);
696 user_refs.push_back(p);
697}
698
699//-------------
700// GetResource
701//-------------
702template<class T> bool JEventLoop::GetResource(string namepath, T vals, int event_number)
703{
704 JResourceManager *resource_manager = GetJResourceManager();
705 if(!resource_manager){
706 string mess = string("Unable to get the JResourceManager object (namepath=\"")+namepath+"\")";
707 throw JException(mess);
708 }
709
710 return resource_manager->Get(namepath, vals, event_number);
711}
712
713//-------------
714// GetRef
715//-------------
716template<class T>
717T* JEventLoop::GetRef(void)
718{
719 /// Get a user-defined reference (a pointer)
720 for(unsigned int i=0; i<user_refs.size(); i++){
721 if(user_refs[i].first == typeid(T).name()) return (T*)user_refs[i].second;
722 }
723
724 return NULL__null;
725}
726
727//-------------
728// GetRefsT
729//-------------
730template<class T>
731vector<T*> JEventLoop::GetRefsT(void)
732{
733 vector<T*> refs;
734 for(unsigned int i=0; i<user_refs.size(); i++){
735 if(user_refs[i].first == typeid(T).name()){
736 refs.push_back((T*)user_refs[i].second);
737 }
738 }
739
740 return refs;
741}
742
743//-------------
744// RemoveRef
745//-------------
746template<class T>
747void JEventLoop::RemoveRef(T *t)
748{
749 vector<pair<const char*, void*> >::iterator iter;
750 for(iter=user_refs.begin(); iter!= user_refs.end(); iter++){
751 if(iter->second == (void*)t){
752 user_refs.erase(iter);
753 return;
754 }
755 }
756 _DBG_std::cerr<<"/w/halld-scifs17exp/halld2/home/sdobbs/Software/jana/jana_0.8.2/Linux_CentOS7.7-x86_64-gcc4.8.5/include/JANA/JEventLoop.h"
<<":"<<756<<" "
<<" Attempt to remove user reference not in event loop!" << std::endl;
757}
758
759
760#endif //__CINT__ __CLING__
761
762} // Close JANA namespace
763
764
765
766#endif // _JEventLoop_
767

/usr/lib/gcc/x86_64-redhat-linux/4.8.5/../../../../include/c++/4.8.5/bits/stl_iterator.h

1// Iterators -*- C++ -*-
2
3// Copyright (C) 2001-2013 Free Software Foundation, Inc.
4//
5// This file is part of the GNU ISO C++ Library. This library is free
6// software; you can redistribute it and/or modify it under the
7// terms of the GNU General Public License as published by the
8// Free Software Foundation; either version 3, or (at your option)
9// any later version.
10
11// This library is distributed in the hope that it will be useful,
12// but WITHOUT ANY WARRANTY; without even the implied warranty of
13// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14// GNU General Public License for more details.
15
16// Under Section 7 of GPL version 3, you are granted additional
17// permissions described in the GCC Runtime Library Exception, version
18// 3.1, as published by the Free Software Foundation.
19
20// You should have received a copy of the GNU General Public License and
21// a copy of the GCC Runtime Library Exception along with this program;
22// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
23// <http://www.gnu.org/licenses/>.
24
25/*
26 *
27 * Copyright (c) 1994
28 * Hewlett-Packard Company
29 *
30 * Permission to use, copy, modify, distribute and sell this software
31 * and its documentation for any purpose is hereby granted without fee,
32 * provided that the above copyright notice appear in all copies and
33 * that both that copyright notice and this permission notice appear
34 * in supporting documentation. Hewlett-Packard Company makes no
35 * representations about the suitability of this software for any
36 * purpose. It is provided "as is" without express or implied warranty.
37 *
38 *
39 * Copyright (c) 1996-1998
40 * Silicon Graphics Computer Systems, Inc.
41 *
42 * Permission to use, copy, modify, distribute and sell this software
43 * and its documentation for any purpose is hereby granted without fee,
44 * provided that the above copyright notice appear in all copies and
45 * that both that copyright notice and this permission notice appear
46 * in supporting documentation. Silicon Graphics makes no
47 * representations about the suitability of this software for any
48 * purpose. It is provided "as is" without express or implied warranty.
49 */
50
51/** @file bits/stl_iterator.h
52 * This is an internal header file, included by other library headers.
53 * Do not attempt to use it directly. @headername{iterator}
54 *
55 * This file implements reverse_iterator, back_insert_iterator,
56 * front_insert_iterator, insert_iterator, __normal_iterator, and their
57 * supporting functions and overloaded operators.
58 */
59
60#ifndef _STL_ITERATOR_H1
61#define _STL_ITERATOR_H1 1
62
63#include <bits/cpp_type_traits.h>
64#include <ext/type_traits.h>
65#include <bits/move.h>
66
67namespace std _GLIBCXX_VISIBILITY(default)__attribute__ ((__visibility__ ("default")))
68{
69_GLIBCXX_BEGIN_NAMESPACE_VERSION
70
71 /**
72 * @addtogroup iterators
73 * @{
74 */
75
76 // 24.4.1 Reverse iterators
77 /**
78 * Bidirectional and random access iterators have corresponding reverse
79 * %iterator adaptors that iterate through the data structure in the
80 * opposite direction. They have the same signatures as the corresponding
81 * iterators. The fundamental relation between a reverse %iterator and its
82 * corresponding %iterator @c i is established by the identity:
83 * @code
84 * &*(reverse_iterator(i)) == &*(i - 1)
85 * @endcode
86 *
87 * <em>This mapping is dictated by the fact that while there is always a
88 * pointer past the end of an array, there might not be a valid pointer
89 * before the beginning of an array.</em> [24.4.1]/1,2
90 *
91 * Reverse iterators can be tricky and surprising at first. Their
92 * semantics make sense, however, and the trickiness is a side effect of
93 * the requirement that the iterators must be safe.
94 */
95 template<typename _Iterator>
96 class reverse_iterator
97 : public iterator<typename iterator_traits<_Iterator>::iterator_category,
98 typename iterator_traits<_Iterator>::value_type,
99 typename iterator_traits<_Iterator>::difference_type,
100 typename iterator_traits<_Iterator>::pointer,
101 typename iterator_traits<_Iterator>::reference>
102 {
103 protected:
104 _Iterator current;
105
106 typedef iterator_traits<_Iterator> __traits_type;
107
108 public:
109 typedef _Iterator iterator_type;
110 typedef typename __traits_type::difference_type difference_type;
111 typedef typename __traits_type::pointer pointer;
112 typedef typename __traits_type::reference reference;
113
114 /**
115 * The default constructor value-initializes member @p current.
116 * If it is a pointer, that means it is zero-initialized.
117 */
118 // _GLIBCXX_RESOLVE_LIB_DEFECTS
119 // 235 No specification of default ctor for reverse_iterator
120 reverse_iterator() : current() { }
121
122 /**
123 * This %iterator will move in the opposite direction that @p x does.
124 */
125 explicit
126 reverse_iterator(iterator_type __x) : current(__x) { }
127
128 /**
129 * The copy constructor is normal.
130 */
131 reverse_iterator(const reverse_iterator& __x)
132 : current(__x.current) { }
133
134 /**
135 * A %reverse_iterator across other types can be copied if the
136 * underlying %iterator can be converted to the type of @c current.
137 */
138 template<typename _Iter>
139 reverse_iterator(const reverse_iterator<_Iter>& __x)
140 : current(__x.base()) { }
141
142 /**
143 * @return @c current, the %iterator used for underlying work.
144 */
145 iterator_type
146 base() const
147 { return current; }
148
149 /**
150 * @return A reference to the value at @c --current
151 *
152 * This requires that @c --current is dereferenceable.
153 *
154 * @warning This implementation requires that for an iterator of the
155 * underlying iterator type, @c x, a reference obtained by
156 * @c *x remains valid after @c x has been modified or
157 * destroyed. This is a bug: http://gcc.gnu.org/PR51823
158 */
159 reference
160 operator*() const
161 {
162 _Iterator __tmp = current;
163 return *--__tmp;
164 }
165
166 /**
167 * @return A pointer to the value at @c --current
168 *
169 * This requires that @c --current is dereferenceable.
170 */
171 pointer
172 operator->() const
173 { return &(operator*()); }
174
175 /**
176 * @return @c *this
177 *
178 * Decrements the underlying iterator.
179 */
180 reverse_iterator&
181 operator++()
182 {
183 --current;
184 return *this;
185 }
186
187 /**
188 * @return The original value of @c *this
189 *
190 * Decrements the underlying iterator.
191 */
192 reverse_iterator
193 operator++(int)
194 {
195 reverse_iterator __tmp = *this;
196 --current;
197 return __tmp;
198 }
199
200 /**
201 * @return @c *this
202 *
203 * Increments the underlying iterator.
204 */
205 reverse_iterator&
206 operator--()
207 {
208 ++current;
209 return *this;
210 }
211
212 /**
213 * @return A reverse_iterator with the previous value of @c *this
214 *
215 * Increments the underlying iterator.
216 */
217 reverse_iterator
218 operator--(int)
219 {
220 reverse_iterator __tmp = *this;
221 ++current;
222 return __tmp;
223 }
224
225 /**
226 * @return A reverse_iterator that refers to @c current - @a __n
227 *
228 * The underlying iterator must be a Random Access Iterator.
229 */
230 reverse_iterator
231 operator+(difference_type __n) const
232 { return reverse_iterator(current - __n); }
233
234 /**
235 * @return *this
236 *
237 * Moves the underlying iterator backwards @a __n steps.
238 * The underlying iterator must be a Random Access Iterator.
239 */
240 reverse_iterator&
241 operator+=(difference_type __n)
242 {
243 current -= __n;
244 return *this;
245 }
246
247 /**
248 * @return A reverse_iterator that refers to @c current - @a __n
249 *
250 * The underlying iterator must be a Random Access Iterator.
251 */
252 reverse_iterator
253 operator-(difference_type __n) const
254 { return reverse_iterator(current + __n); }
255
256 /**
257 * @return *this
258 *
259 * Moves the underlying iterator forwards @a __n steps.
260 * The underlying iterator must be a Random Access Iterator.
261 */
262 reverse_iterator&
263 operator-=(difference_type __n)
264 {
265 current += __n;
266 return *this;
267 }
268
269 /**
270 * @return The value at @c current - @a __n - 1
271 *
272 * The underlying iterator must be a Random Access Iterator.
273 */
274 reference
275 operator[](difference_type __n) const
276 { return *(*this + __n); }
277 };
278
279 //@{
280 /**
281 * @param __x A %reverse_iterator.
282 * @param __y A %reverse_iterator.
283 * @return A simple bool.
284 *
285 * Reverse iterators forward many operations to their underlying base()
286 * iterators. Others are implemented in terms of one another.
287 *
288 */
289 template<typename _Iterator>
290 inline bool
291 operator==(const reverse_iterator<_Iterator>& __x,
292 const reverse_iterator<_Iterator>& __y)
293 { return __x.base() == __y.base(); }
294
295 template<typename _Iterator>
296 inline bool
297 operator<(const reverse_iterator<_Iterator>& __x,
298 const reverse_iterator<_Iterator>& __y)
299 { return __y.base() < __x.base(); }
300
301 template<typename _Iterator>
302 inline bool
303 operator!=(const reverse_iterator<_Iterator>& __x,
304 const reverse_iterator<_Iterator>& __y)
305 { return !(__x == __y); }
306
307 template<typename _Iterator>
308 inline bool
309 operator>(const reverse_iterator<_Iterator>& __x,
310 const reverse_iterator<_Iterator>& __y)
311 { return __y < __x; }
312
313 template<typename _Iterator>
314 inline bool
315 operator<=(const reverse_iterator<_Iterator>& __x,
316 const reverse_iterator<_Iterator>& __y)
317 { return !(__y < __x); }
318
319 template<typename _Iterator>
320 inline bool
321 operator>=(const reverse_iterator<_Iterator>& __x,
322 const reverse_iterator<_Iterator>& __y)
323 { return !(__x < __y); }
324
325 template<typename _Iterator>
326 inline typename reverse_iterator<_Iterator>::difference_type
327 operator-(const reverse_iterator<_Iterator>& __x,
328 const reverse_iterator<_Iterator>& __y)
329 { return __y.base() - __x.base(); }
330
331 template<typename _Iterator>
332 inline reverse_iterator<_Iterator>
333 operator+(typename reverse_iterator<_Iterator>::difference_type __n,
334 const reverse_iterator<_Iterator>& __x)
335 { return reverse_iterator<_Iterator>(__x.base() - __n); }
336
337 // _GLIBCXX_RESOLVE_LIB_DEFECTS
338 // DR 280. Comparison of reverse_iterator to const reverse_iterator.
339 template<typename _IteratorL, typename _IteratorR>
340 inline bool
341 operator==(const reverse_iterator<_IteratorL>& __x,
342 const reverse_iterator<_IteratorR>& __y)
343 { return __x.base() == __y.base(); }
344
345 template<typename _IteratorL, typename _IteratorR>
346 inline bool
347 operator<(const reverse_iterator<_IteratorL>& __x,
348 const reverse_iterator<_IteratorR>& __y)
349 { return __y.base() < __x.base(); }
350
351 template<typename _IteratorL, typename _IteratorR>
352 inline bool
353 operator!=(const reverse_iterator<_IteratorL>& __x,
354 const reverse_iterator<_IteratorR>& __y)
355 { return !(__x == __y); }
356
357 template<typename _IteratorL, typename _IteratorR>
358 inline bool
359 operator>(const reverse_iterator<_IteratorL>& __x,
360 const reverse_iterator<_IteratorR>& __y)
361 { return __y < __x; }
362
363 template<typename _IteratorL, typename _IteratorR>
364 inline bool
365 operator<=(const reverse_iterator<_IteratorL>& __x,
366 const reverse_iterator<_IteratorR>& __y)
367 { return !(__y < __x); }
368
369 template<typename _IteratorL, typename _IteratorR>
370 inline bool
371 operator>=(const reverse_iterator<_IteratorL>& __x,
372 const reverse_iterator<_IteratorR>& __y)
373 { return !(__x < __y); }
374
375 template<typename _IteratorL, typename _IteratorR>
376#if __cplusplus201103L >= 201103L
377 // DR 685.
378 inline auto
379 operator-(const reverse_iterator<_IteratorL>& __x,
380 const reverse_iterator<_IteratorR>& __y)
381 -> decltype(__y.base() - __x.base())
382#else
383 inline typename reverse_iterator<_IteratorL>::difference_type
384 operator-(const reverse_iterator<_IteratorL>& __x,
385 const reverse_iterator<_IteratorR>& __y)
386#endif
387 { return __y.base() - __x.base(); }
388 //@}
389
390 // 24.4.2.2.1 back_insert_iterator
391 /**
392 * @brief Turns assignment into insertion.
393 *
394 * These are output iterators, constructed from a container-of-T.
395 * Assigning a T to the iterator appends it to the container using
396 * push_back.
397 *
398 * Tip: Using the back_inserter function to create these iterators can
399 * save typing.
400 */
401 template<typename _Container>
402 class back_insert_iterator
403 : public iterator<output_iterator_tag, void, void, void, void>
404 {
405 protected:
406 _Container* container;
407
408 public:
409 /// A nested typedef for the type of whatever container you used.
410 typedef _Container container_type;
411
412 /// The only way to create this %iterator is with a container.
413 explicit
414 back_insert_iterator(_Container& __x) : container(&__x) { }
415
416 /**
417 * @param __value An instance of whatever type
418 * container_type::const_reference is; presumably a
419 * reference-to-const T for container<T>.
420 * @return This %iterator, for chained operations.
421 *
422 * This kind of %iterator doesn't really have a @a position in the
423 * container (you can think of the position as being permanently at
424 * the end, if you like). Assigning a value to the %iterator will
425 * always append the value to the end of the container.
426 */
427#if __cplusplus201103L < 201103L
428 back_insert_iterator&
429 operator=(typename _Container::const_reference __value)
430 {
431 container->push_back(__value);
432 return *this;
433 }
434#else
435 back_insert_iterator&
436 operator=(const typename _Container::value_type& __value)
437 {
438 container->push_back(__value);
439 return *this;
440 }
441
442 back_insert_iterator&
443 operator=(typename _Container::value_type&& __value)
444 {
445 container->push_back(std::move(__value));
446 return *this;
447 }
448#endif
449
450 /// Simply returns *this.
451 back_insert_iterator&
452 operator*()
453 { return *this; }
454
455 /// Simply returns *this. (This %iterator does not @a move.)
456 back_insert_iterator&
457 operator++()
458 { return *this; }
459
460 /// Simply returns *this. (This %iterator does not @a move.)
461 back_insert_iterator
462 operator++(int)
463 { return *this; }
464 };
465
466 /**
467 * @param __x A container of arbitrary type.
468 * @return An instance of back_insert_iterator working on @p __x.
469 *
470 * This wrapper function helps in creating back_insert_iterator instances.
471 * Typing the name of the %iterator requires knowing the precise full
472 * type of the container, which can be tedious and impedes generic
473 * programming. Using this function lets you take advantage of automatic
474 * template parameter deduction, making the compiler match the correct
475 * types for you.
476 */
477 template<typename _Container>
478 inline back_insert_iterator<_Container>
479 back_inserter(_Container& __x)
480 { return back_insert_iterator<_Container>(__x); }
481
482 /**
483 * @brief Turns assignment into insertion.
484 *
485 * These are output iterators, constructed from a container-of-T.
486 * Assigning a T to the iterator prepends it to the container using
487 * push_front.
488 *
489 * Tip: Using the front_inserter function to create these iterators can
490 * save typing.
491 */
492 template<typename _Container>
493 class front_insert_iterator
494 : public iterator<output_iterator_tag, void, void, void, void>
495 {
496 protected:
497 _Container* container;
498
499 public:
500 /// A nested typedef for the type of whatever container you used.
501 typedef _Container container_type;
502
503 /// The only way to create this %iterator is with a container.
504 explicit front_insert_iterator(_Container& __x) : container(&__x) { }
505
506 /**
507 * @param __value An instance of whatever type
508 * container_type::const_reference is; presumably a
509 * reference-to-const T for container<T>.
510 * @return This %iterator, for chained operations.
511 *
512 * This kind of %iterator doesn't really have a @a position in the
513 * container (you can think of the position as being permanently at
514 * the front, if you like). Assigning a value to the %iterator will
515 * always prepend the value to the front of the container.
516 */
517#if __cplusplus201103L < 201103L
518 front_insert_iterator&
519 operator=(typename _Container::const_reference __value)
520 {
521 container->push_front(__value);
522 return *this;
523 }
524#else
525 front_insert_iterator&
526 operator=(const typename _Container::value_type& __value)
527 {
528 container->push_front(__value);
529 return *this;
530 }
531
532 front_insert_iterator&
533 operator=(typename _Container::value_type&& __value)
534 {
535 container->push_front(std::move(__value));
536 return *this;
537 }
538#endif
539
540 /// Simply returns *this.
541 front_insert_iterator&
542 operator*()
543 { return *this; }
544
545 /// Simply returns *this. (This %iterator does not @a move.)
546 front_insert_iterator&
547 operator++()
548 { return *this; }
549
550 /// Simply returns *this. (This %iterator does not @a move.)
551 front_insert_iterator
552 operator++(int)
553 { return *this; }
554 };
555
556 /**
557 * @param __x A container of arbitrary type.
558 * @return An instance of front_insert_iterator working on @p x.
559 *
560 * This wrapper function helps in creating front_insert_iterator instances.
561 * Typing the name of the %iterator requires knowing the precise full
562 * type of the container, which can be tedious and impedes generic
563 * programming. Using this function lets you take advantage of automatic
564 * template parameter deduction, making the compiler match the correct
565 * types for you.
566 */
567 template<typename _Container>
568 inline front_insert_iterator<_Container>
569 front_inserter(_Container& __x)
570 { return front_insert_iterator<_Container>(__x); }
571
572 /**
573 * @brief Turns assignment into insertion.
574 *
575 * These are output iterators, constructed from a container-of-T.
576 * Assigning a T to the iterator inserts it in the container at the
577 * %iterator's position, rather than overwriting the value at that
578 * position.
579 *
580 * (Sequences will actually insert a @e copy of the value before the
581 * %iterator's position.)
582 *
583 * Tip: Using the inserter function to create these iterators can
584 * save typing.
585 */
586 template<typename _Container>
587 class insert_iterator
588 : public iterator<output_iterator_tag, void, void, void, void>
589 {
590 protected:
591 _Container* container;
592 typename _Container::iterator iter;
593
594 public:
595 /// A nested typedef for the type of whatever container you used.
596 typedef _Container container_type;
597
598 /**
599 * The only way to create this %iterator is with a container and an
600 * initial position (a normal %iterator into the container).
601 */
602 insert_iterator(_Container& __x, typename _Container::iterator __i)
603 : container(&__x), iter(__i) {}
604
605 /**
606 * @param __value An instance of whatever type
607 * container_type::const_reference is; presumably a
608 * reference-to-const T for container<T>.
609 * @return This %iterator, for chained operations.
610 *
611 * This kind of %iterator maintains its own position in the
612 * container. Assigning a value to the %iterator will insert the
613 * value into the container at the place before the %iterator.
614 *
615 * The position is maintained such that subsequent assignments will
616 * insert values immediately after one another. For example,
617 * @code
618 * // vector v contains A and Z
619 *
620 * insert_iterator i (v, ++v.begin());
621 * i = 1;
622 * i = 2;
623 * i = 3;
624 *
625 * // vector v contains A, 1, 2, 3, and Z
626 * @endcode
627 */
628#if __cplusplus201103L < 201103L
629 insert_iterator&
630 operator=(typename _Container::const_reference __value)
631 {
632 iter = container->insert(iter, __value);
633 ++iter;
634 return *this;
635 }
636#else
637 insert_iterator&
638 operator=(const typename _Container::value_type& __value)
639 {
640 iter = container->insert(iter, __value);
641 ++iter;
642 return *this;
643 }
644
645 insert_iterator&
646 operator=(typename _Container::value_type&& __value)
647 {
648 iter = container->insert(iter, std::move(__value));
649 ++iter;
650 return *this;
651 }
652#endif
653
654 /// Simply returns *this.
655 insert_iterator&
656 operator*()
657 { return *this; }
658
659 /// Simply returns *this. (This %iterator does not @a move.)
660 insert_iterator&
661 operator++()
662 { return *this; }
663
664 /// Simply returns *this. (This %iterator does not @a move.)
665 insert_iterator&
666 operator++(int)
667 { return *this; }
668 };
669
670 /**
671 * @param __x A container of arbitrary type.
672 * @return An instance of insert_iterator working on @p __x.
673 *
674 * This wrapper function helps in creating insert_iterator instances.
675 * Typing the name of the %iterator requires knowing the precise full
676 * type of the container, which can be tedious and impedes generic
677 * programming. Using this function lets you take advantage of automatic
678 * template parameter deduction, making the compiler match the correct
679 * types for you.
680 */
681 template<typename _Container, typename _Iterator>
682 inline insert_iterator<_Container>
683 inserter(_Container& __x, _Iterator __i)
684 {
685 return insert_iterator<_Container>(__x,
686 typename _Container::iterator(__i));
687 }
688
689 // @} group iterators
690
691_GLIBCXX_END_NAMESPACE_VERSION
692} // namespace
693
694namespace __gnu_cxx _GLIBCXX_VISIBILITY(default)__attribute__ ((__visibility__ ("default")))
695{
696_GLIBCXX_BEGIN_NAMESPACE_VERSION
697
698 // This iterator adapter is @a normal in the sense that it does not
699 // change the semantics of any of the operators of its iterator
700 // parameter. Its primary purpose is to convert an iterator that is
701 // not a class, e.g. a pointer, into an iterator that is a class.
702 // The _Container parameter exists solely so that different containers
703 // using this template can instantiate different types, even if the
704 // _Iterator parameter is the same.
705 using std::iterator_traits;
706 using std::iterator;
707 template<typename _Iterator, typename _Container>
708 class __normal_iterator
709 {
710 protected:
711 _Iterator _M_current;
712
713 typedef iterator_traits<_Iterator> __traits_type;
714
715 public:
716 typedef _Iterator iterator_type;
717 typedef typename __traits_type::iterator_category iterator_category;
718 typedef typename __traits_type::value_type value_type;
719 typedef typename __traits_type::difference_type difference_type;
720 typedef typename __traits_type::reference reference;
721 typedef typename __traits_type::pointer pointer;
722
723 _GLIBCXX_CONSTEXPRconstexpr __normal_iterator() : _M_current(_Iterator()) { }
724
725 explicit
726 __normal_iterator(const _Iterator& __i) : _M_current(__i) { }
727
728 // Allow iterator to const_iterator conversion
729 template<typename _Iter>
730 __normal_iterator(const __normal_iterator<_Iter,
731 typename __enable_if<
732 (std::__are_same<_Iter, typename _Container::pointer>::__value),
733 _Container>::__type>& __i)
734 : _M_current(__i.base()) { }
735
736 // Forward iterator requirements
737 reference
738 operator*() const
739 { return *_M_current; }
740
741 pointer
742 operator->() const
743 { return _M_current; }
744
745 __normal_iterator&
746 operator++()
747 {
748 ++_M_current;
749 return *this;
750 }
751
752 __normal_iterator
753 operator++(int)
754 { return __normal_iterator(_M_current++); }
755
756 // Bidirectional iterator requirements
757 __normal_iterator&
758 operator--()
759 {
760 --_M_current;
761 return *this;
762 }
763
764 __normal_iterator
765 operator--(int)
766 { return __normal_iterator(_M_current--); }
767
768 // Random access iterator requirements
769 reference
770 operator[](const difference_type& __n) const
771 { return _M_current[__n]; }
772
773 __normal_iterator&
774 operator+=(const difference_type& __n)
775 { _M_current += __n; return *this; }
776
777 __normal_iterator
778 operator+(const difference_type& __n) const
779 { return __normal_iterator(_M_current + __n); }
780
781 __normal_iterator&
782 operator-=(const difference_type& __n)
783 { _M_current -= __n; return *this; }
784
785 __normal_iterator
786 operator-(const difference_type& __n) const
787 { return __normal_iterator(_M_current - __n); }
788
789 const _Iterator&
790 base() const
791 { return _M_current; }
792 };
793
794 // Note: In what follows, the left- and right-hand-side iterators are
795 // allowed to vary in types (conceptually in cv-qualification) so that
796 // comparison between cv-qualified and non-cv-qualified iterators be
797 // valid. However, the greedy and unfriendly operators in std::rel_ops
798 // will make overload resolution ambiguous (when in scope) if we don't
799 // provide overloads whose operands are of the same type. Can someone
800 // remind me what generic programming is about? -- Gaby
801
802 // Forward iterator requirements
803 template<typename _IteratorL, typename _IteratorR, typename _Container>
804 inline bool
805 operator==(const __normal_iterator<_IteratorL, _Container>& __lhs,
806 const __normal_iterator<_IteratorR, _Container>& __rhs)
807 { return __lhs.base() == __rhs.base(); }
808
809 template<typename _Iterator, typename _Container>
810 inline bool
811 operator==(const __normal_iterator<_Iterator, _Container>& __lhs,
812 const __normal_iterator<_Iterator, _Container>& __rhs)
813 { return __lhs.base() == __rhs.base(); }
814
815 template<typename _IteratorL, typename _IteratorR, typename _Container>
816 inline bool
817 operator!=(const __normal_iterator<_IteratorL, _Container>& __lhs,
818 const __normal_iterator<_IteratorR, _Container>& __rhs)
819 { return __lhs.base() != __rhs.base(); }
820
821 template<typename _Iterator, typename _Container>
822 inline bool
823 operator!=(const __normal_iterator<_Iterator, _Container>& __lhs,
824 const __normal_iterator<_Iterator, _Container>& __rhs)
825 { return __lhs.base() != __rhs.base(); }
20
Assuming the condition is true
21
Returning the value 1, which participates in a condition later
826
827 // Random access iterator requirements
828 template<typename _IteratorL, typename _IteratorR, typename _Container>
829 inline bool
830 operator<(const __normal_iterator<_IteratorL, _Container>& __lhs,
831 const __normal_iterator<_IteratorR, _Container>& __rhs)
832 { return __lhs.base() < __rhs.base(); }
833
834 template<typename _Iterator, typename _Container>
835 inline bool
836 operator<(const __normal_iterator<_Iterator, _Container>& __lhs,
837 const __normal_iterator<_Iterator, _Container>& __rhs)
838 { return __lhs.base() < __rhs.base(); }
839
840 template<typename _IteratorL, typename _IteratorR, typename _Container>
841 inline bool
842 operator>(const __normal_iterator<_IteratorL, _Container>& __lhs,
843 const __normal_iterator<_IteratorR, _Container>& __rhs)
844 { return __lhs.base() > __rhs.base(); }
845
846 template<typename _Iterator, typename _Container>
847 inline bool
848 operator>(const __normal_iterator<_Iterator, _Container>& __lhs,
849 const __normal_iterator<_Iterator, _Container>& __rhs)
850 { return __lhs.base() > __rhs.base(); }
851
852 template<typename _IteratorL, typename _IteratorR, typename _Container>
853 inline bool
854 operator<=(const __normal_iterator<_IteratorL, _Container>& __lhs,
855 const __normal_iterator<_IteratorR, _Container>& __rhs)
856 { return __lhs.base() <= __rhs.base(); }
857
858 template<typename _Iterator, typename _Container>
859 inline bool
860 operator<=(const __normal_iterator<_Iterator, _Container>& __lhs,
861 const __normal_iterator<_Iterator, _Container>& __rhs)
862 { return __lhs.base() <= __rhs.base(); }
863
864 template<typename _IteratorL, typename _IteratorR, typename _Container>
865 inline bool
866 operator>=(const __normal_iterator<_IteratorL, _Container>& __lhs,
867 const __normal_iterator<_IteratorR, _Container>& __rhs)
868 { return __lhs.base() >= __rhs.base(); }
869
870 template<typename _Iterator, typename _Container>
871 inline bool
872 operator>=(const __normal_iterator<_Iterator, _Container>& __lhs,
873 const __normal_iterator<_Iterator, _Container>& __rhs)
874 { return __lhs.base() >= __rhs.base(); }
875
876 // _GLIBCXX_RESOLVE_LIB_DEFECTS
877 // According to the resolution of DR179 not only the various comparison
878 // operators but also operator- must accept mixed iterator/const_iterator
879 // parameters.
880 template<typename _IteratorL, typename _IteratorR, typename _Container>
881#if __cplusplus201103L >= 201103L
882 // DR 685.
883 inline auto
884 operator-(const __normal_iterator<_IteratorL, _Container>& __lhs,
885 const __normal_iterator<_IteratorR, _Container>& __rhs)
886 -> decltype(__lhs.base() - __rhs.base())
887#else
888 inline typename __normal_iterator<_IteratorL, _Container>::difference_type
889 operator-(const __normal_iterator<_IteratorL, _Container>& __lhs,
890 const __normal_iterator<_IteratorR, _Container>& __rhs)
891#endif
892 { return __lhs.base() - __rhs.base(); }
893
894 template<typename _Iterator, typename _Container>
895 inline typename __normal_iterator<_Iterator, _Container>::difference_type
896 operator-(const __normal_iterator<_Iterator, _Container>& __lhs,
897 const __normal_iterator<_Iterator, _Container>& __rhs)
898 { return __lhs.base() - __rhs.base(); }
899
900 template<typename _Iterator, typename _Container>
901 inline __normal_iterator<_Iterator, _Container>
902 operator+(typename __normal_iterator<_Iterator, _Container>::difference_type
903 __n, const __normal_iterator<_Iterator, _Container>& __i)
904 { return __normal_iterator<_Iterator, _Container>(__i.base() + __n); }
905
906_GLIBCXX_END_NAMESPACE_VERSION
907} // namespace
908
909#if __cplusplus201103L >= 201103L
910
911namespace std _GLIBCXX_VISIBILITY(default)__attribute__ ((__visibility__ ("default")))
912{
913_GLIBCXX_BEGIN_NAMESPACE_VERSION
914
915 /**
916 * @addtogroup iterators
917 * @{
918 */
919
920 // 24.4.3 Move iterators
921 /**
922 * Class template move_iterator is an iterator adapter with the same
923 * behavior as the underlying iterator except that its dereference
924 * operator implicitly converts the value returned by the underlying
925 * iterator's dereference operator to an rvalue reference. Some
926 * generic algorithms can be called with move iterators to replace
927 * copying with moving.
928 */
929 template<typename _Iterator>
930 class move_iterator
931 {
932 protected:
933 _Iterator _M_current;
934
935 typedef iterator_traits<_Iterator> __traits_type;
936
937 public:
938 typedef _Iterator iterator_type;
939 typedef typename __traits_type::iterator_category iterator_category;
940 typedef typename __traits_type::value_type value_type;
941 typedef typename __traits_type::difference_type difference_type;
942 // NB: DR 680.
943 typedef _Iterator pointer;
944 typedef value_type&& reference;
945
946 move_iterator()
947 : _M_current() { }
948
949 explicit
950 move_iterator(iterator_type __i)
951 : _M_current(__i) { }
952
953 template<typename _Iter>
954 move_iterator(const move_iterator<_Iter>& __i)
955 : _M_current(__i.base()) { }
956
957 iterator_type
958 base() const
959 { return _M_current; }
960
961 reference
962 operator*() const
963 { return std::move(*_M_current); }
964
965 pointer
966 operator->() const
967 { return _M_current; }
968
969 move_iterator&
970 operator++()
971 {
972 ++_M_current;
973 return *this;
974 }
975
976 move_iterator
977 operator++(int)
978 {
979 move_iterator __tmp = *this;
980 ++_M_current;
981 return __tmp;
982 }
983
984 move_iterator&
985 operator--()
986 {
987 --_M_current;
988 return *this;
989 }
990
991 move_iterator
992 operator--(int)
993 {
994 move_iterator __tmp = *this;
995 --_M_current;
996 return __tmp;
997 }
998
999 move_iterator
1000 operator+(difference_type __n) const
1001 { return move_iterator(_M_current + __n); }
1002
1003 move_iterator&
1004 operator+=(difference_type __n)
1005 {
1006 _M_current += __n;
1007 return *this;
1008 }
1009
1010 move_iterator
1011 operator-(difference_type __n) const
1012 { return move_iterator(_M_current - __n); }
1013
1014 move_iterator&
1015 operator-=(difference_type __n)
1016 {
1017 _M_current -= __n;
1018 return *this;
1019 }
1020
1021 reference
1022 operator[](difference_type __n) const
1023 { return std::move(_M_current[__n]); }
1024 };
1025
1026 // Note: See __normal_iterator operators note from Gaby to understand
1027 // why there are always 2 versions for most of the move_iterator
1028 // operators.
1029 template<typename _IteratorL, typename _IteratorR>
1030 inline bool
1031 operator==(const move_iterator<_IteratorL>& __x,
1032 const move_iterator<_IteratorR>& __y)
1033 { return __x.base() == __y.base(); }
1034
1035 template<typename _Iterator>
1036 inline bool
1037 operator==(const move_iterator<_Iterator>& __x,
1038 const move_iterator<_Iterator>& __y)
1039 { return __x.base() == __y.base(); }
1040
1041 template<typename _IteratorL, typename _IteratorR>
1042 inline bool
1043 operator!=(const move_iterator<_IteratorL>& __x,
1044 const move_iterator<_IteratorR>& __y)
1045 { return !(__x == __y); }
1046
1047 template<typename _Iterator>
1048 inline bool
1049 operator!=(const move_iterator<_Iterator>& __x,
1050 const move_iterator<_Iterator>& __y)
1051 { return !(__x == __y); }
1052
1053 template<typename _IteratorL, typename _IteratorR>
1054 inline bool
1055 operator<(const move_iterator<_IteratorL>& __x,
1056 const move_iterator<_IteratorR>& __y)
1057 { return __x.base() < __y.base(); }
1058
1059 template<typename _Iterator>
1060 inline bool
1061 operator<(const move_iterator<_Iterator>& __x,
1062 const move_iterator<_Iterator>& __y)
1063 { return __x.base() < __y.base(); }
1064
1065 template<typename _IteratorL, typename _IteratorR>
1066 inline bool
1067 operator<=(const move_iterator<_IteratorL>& __x,
1068 const move_iterator<_IteratorR>& __y)
1069 { return !(__y < __x); }
1070
1071 template<typename _Iterator>
1072 inline bool
1073 operator<=(const move_iterator<_Iterator>& __x,
1074 const move_iterator<_Iterator>& __y)
1075 { return !(__y < __x); }
1076
1077 template<typename _IteratorL, typename _IteratorR>
1078 inline bool
1079 operator>(const move_iterator<_IteratorL>& __x,
1080 const move_iterator<_IteratorR>& __y)
1081 { return __y < __x; }
1082
1083 template<typename _Iterator>
1084 inline bool
1085 operator>(const move_iterator<_Iterator>& __x,
1086 const move_iterator<_Iterator>& __y)
1087 { return __y < __x; }
1088
1089 template<typename _IteratorL, typename _IteratorR>
1090 inline bool
1091 operator>=(const move_iterator<_IteratorL>& __x,
1092 const move_iterator<_IteratorR>& __y)
1093 { return !(__x < __y); }
1094
1095 template<typename _Iterator>
1096 inline bool
1097 operator>=(const move_iterator<_Iterator>& __x,
1098 const move_iterator<_Iterator>& __y)
1099 { return !(__x < __y); }
1100
1101 // DR 685.
1102 template<typename _IteratorL, typename _IteratorR>
1103 inline auto
1104 operator-(const move_iterator<_IteratorL>& __x,
1105 const move_iterator<_IteratorR>& __y)
1106 -> decltype(__x.base() - __y.base())
1107 { return __x.base() - __y.base(); }
1108
1109 template<typename _Iterator>
1110 inline auto
1111 operator-(const move_iterator<_Iterator>& __x,
1112 const move_iterator<_Iterator>& __y)
1113 -> decltype(__x.base() - __y.base())
1114 { return __x.base() - __y.base(); }
1115
1116 template<typename _Iterator>
1117 inline move_iterator<_Iterator>
1118 operator+(typename move_iterator<_Iterator>::difference_type __n,
1119 const move_iterator<_Iterator>& __x)
1120 { return __x + __n; }
1121
1122 template<typename _Iterator>
1123 inline move_iterator<_Iterator>
1124 make_move_iterator(_Iterator __i)
1125 { return move_iterator<_Iterator>(__i); }
1126
1127 template<typename _Iterator, typename _ReturnType
1128 = typename conditional<__move_if_noexcept_cond
1129 <typename iterator_traits<_Iterator>::value_type>::value,
1130 _Iterator, move_iterator<_Iterator>>::type>
1131 inline _ReturnType
1132 __make_move_if_noexcept_iterator(_Iterator __i)
1133 { return _ReturnType(__i); }
1134
1135 // @} group iterators
1136
1137_GLIBCXX_END_NAMESPACE_VERSION
1138} // namespace
1139
1140#define _GLIBCXX_MAKE_MOVE_ITERATOR(_Iter)std::make_move_iterator(_Iter) std::make_move_iterator(_Iter)
1141#define _GLIBCXX_MAKE_MOVE_IF_NOEXCEPT_ITERATOR(_Iter)std::__make_move_if_noexcept_iterator(_Iter) \
1142 std::__make_move_if_noexcept_iterator(_Iter)
1143#else
1144#define _GLIBCXX_MAKE_MOVE_ITERATOR(_Iter)std::make_move_iterator(_Iter) (_Iter)
1145#define _GLIBCXX_MAKE_MOVE_IF_NOEXCEPT_ITERATOR(_Iter)std::__make_move_if_noexcept_iterator(_Iter) (_Iter)
1146#endif // C++11
1147
1148#endif