Bug Summary

File:alld2/home/sdobbs/Software/jana/jana_0.8.2/Linux_CentOS7.7-x86_64-gcc4.8.5/include/JANA/JEventLoop.h
Warning:line 398, column 7
Null pointer passed to 2nd parameter expecting 'nonnull'

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-unknown-linux-gnu -analyze -disable-free -main-file-name DFCALShower_factory.cc -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -mrelocation-model pic -pic-level 2 -fhalf-no-semantic-interposition -mframe-pointer=none -fmath-errno -fno-rounding-math -mconstructor-aliases -munwind-tables -target-cpu x86-64 -tune-cpu generic -fno-split-dwarf-inlining -debugger-tuning=gdb -resource-dir /w/halld-scifs17exp/home/sdobbs/clang/llvm-project/install/lib/clang/12.0.0 -D HAVE_CCDB -D HAVE_RCDB -D HAVE_EVIO -D HAVE_TMVA=1 -D RCDB_MYSQL=1 -D RCDB_SQLITE=1 -D SQLITE_USE_LEGACY_STRUCT=ON -I .Linux_CentOS7.7-x86_64-gcc4.8.5/libraries/FCAL -I libraries/FCAL -I . -I libraries -I libraries/include -I /w/halld-scifs17exp/home/sdobbs/clang/halld_recon/Linux_CentOS7.7-x86_64-gcc4.8.5/include -I external/xstream/include -I /usr/include/tirpc -I /group/halld/Software/builds/Linux_CentOS7.7-x86_64-gcc4.8.5/root/root-6.08.06/include -I /w/halld-scifs17exp/halld2/home/sdobbs/Software/jana/jana_0.8.2/Linux_CentOS7.7-x86_64-gcc4.8.5/include -I /group/halld/Software/builds/Linux_CentOS7.7-x86_64-gcc4.8.5/ccdb/ccdb_1.06.06/include -I /group/halld/Software/builds/Linux_CentOS7.7-x86_64-gcc4.8.5/rcdb/rcdb_0.06.00/cpp/include -I /usr/include/mysql -I /group/halld/Software/builds/Linux_CentOS7.7-x86_64-gcc4.8.5/sqlitecpp/SQLiteCpp-2.2.0^bs130/include -I /group/halld/Software/builds/Linux_CentOS7.7-x86_64-gcc4.8.5/sqlite/sqlite-3.13.0^bs130/include -I /group/halld/Software/builds/Linux_CentOS7.7-x86_64-gcc4.8.5/hdds/hdds-4.9.0/Linux_CentOS7.7-x86_64-gcc4.8.5/src -I /group/halld/Software/builds/Linux_CentOS7.7-x86_64-gcc4.8.5/xerces-c/xerces-c-3.1.4/include -I /group/halld/Software/builds/Linux_CentOS7.7-x86_64-gcc4.8.5/evio/evio-4.4.6/Linux-x86_64/include -internal-isystem /usr/lib/gcc/x86_64-redhat-linux/4.8.5/../../../../include/c++/4.8.5 -internal-isystem /usr/lib/gcc/x86_64-redhat-linux/4.8.5/../../../../include/c++/4.8.5/x86_64-redhat-linux -internal-isystem /usr/lib/gcc/x86_64-redhat-linux/4.8.5/../../../../include/c++/4.8.5/backward -internal-isystem /usr/local/include -internal-isystem /w/halld-scifs17exp/home/sdobbs/clang/llvm-project/install/lib/clang/12.0.0/include -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -std=c++11 -fdeprecated-macro -fdebug-compilation-dir /home/sdobbs/work/clang/halld_recon/src -ferror-limit 19 -fgnuc-version=4.2.1 -fcxx-exceptions -fexceptions -vectorize-loops -vectorize-slp -analyzer-output=html -faddrsig -o /tmp/scan-build-2021-01-21-110224-160369-1 -x c++ libraries/FCAL/DFCALShower_factory.cc

libraries/FCAL/DFCALShower_factory.cc

1//
2// File: DFCALShower_factory.cc
3// Created: Tue May 17 11:57:50 EST 2005
4// Creator: remitche (on Linux mantrid00 2.4.20-18.8smp i686)
5
6#include <thread>
7#include <math.h>
8#include <DVector3.h>
9#include "TH2F.h"
10#include "TROOT.h"
11#include "TDirectory.h"
12using namespace std;
13
14#include "FCAL/DFCALShower_factory.h"
15#include "FCAL/DFCALGeometry.h"
16#include "FCAL/DFCALCluster.h"
17#include "FCAL/DFCALHit.h"
18#include "TRACKING/DTrackWireBased.h"
19#include <JANA/JEvent.h>
20#include <JANA/JApplication.h>
21using namespace jana;
22
23//----------------
24// Constructor
25//----------------
26DFCALShower_factory::DFCALShower_factory()
27{
28 // should we use CCDB constants?
29 LOAD_NONLIN_CCDB = 1.;
30 LOAD_TIMING_CCDB = 1.;
31 // 29/03/2020 ijaegle@jlab.org decouple non linear and timing correction
32 gPARMS->SetDefaultParameter("FCAL:LOAD_NONLIN_CCDB", LOAD_NONLIN_CCDB);
33 gPARMS->SetDefaultParameter("FCAL:LOAD_TIMING_CCDB", LOAD_TIMING_CCDB);
34
35 SHOWER_ENERGY_THRESHOLD = 50*k_MeV;
36 gPARMS->SetDefaultParameter("FCAL:SHOWER_ENERGY_THRESHOLD", SHOWER_ENERGY_THRESHOLD);
37
38 // these need to come from database to ensure accuracy
39 // remove default value which might be close to the right solution,
40 // but not quite correct -- allow command line tuning
41
42 cutoff_energy= 0;
43 linfit_slope = 0;
44 linfit_intercept = 0;
45 expfit_param1 = 0;
46 expfit_param2 = 0;
47 expfit_param3 = 0;
48
49 timeConst0 = 0;
50 timeConst1 = 0;
51 timeConst2 = 0;
52 timeConst3 = 0;
53 timeConst4 = 0;
54
55 gPARMS->SetDefaultParameter("FCAL:cutoff_energy", cutoff_energy);
56 gPARMS->SetDefaultParameter("FCAL:linfit_slope", linfit_slope);
57 gPARMS->SetDefaultParameter("FCAL:linfit_intercept", linfit_intercept);
58 gPARMS->SetDefaultParameter("FCAL:expfit_param1", expfit_param1);
59 gPARMS->SetDefaultParameter("FCAL:expfit_param2", expfit_param2);
60 gPARMS->SetDefaultParameter("FCAL:expfit_param3", expfit_param3);
61
62 gPARMS->SetDefaultParameter("FCAL:P0", timeConst0);
63 gPARMS->SetDefaultParameter("FCAL:P1", timeConst1);
64 gPARMS->SetDefaultParameter("FCAL:P2", timeConst2);
65 gPARMS->SetDefaultParameter("FCAL:P3", timeConst3);
66 gPARMS->SetDefaultParameter("FCAL:P4", timeConst4);
67
68 // Parameters to make shower-depth correction taken from Radphi,
69 // slightly modifed to match photon-polar angle
70 FCAL_RADIATION_LENGTH = 0;
71 FCAL_CRITICAL_ENERGY = 0;
72 FCAL_SHOWER_OFFSET = 0;
73
74 gPARMS->SetDefaultParameter("FCAL:FCAL_RADIATION_LENGTH", FCAL_RADIATION_LENGTH);
75 gPARMS->SetDefaultParameter("FCAL:FCAL_CRITICAL_ENERGY", FCAL_CRITICAL_ENERGY);
76 gPARMS->SetDefaultParameter("FCAL:FCAL_SHOWER_OFFSET", FCAL_SHOWER_OFFSET);
77
78 VERBOSE = 0; ///< >0 once off info ; >2 event by event ; >3 everything
79 COVARIANCEFILENAME = ""; ///< Setting the filename will take precidence over the CCDB. Files must end in ij.txt, where i and j are integers corresponding to the element of the matrix
80 gPARMS->SetDefaultParameter("DFCALShower:VERBOSE", VERBOSE, "Verbosity level for DFCALShower objects and factories");
81 gPARMS->SetDefaultParameter("DFCALShower:COVARIANCEFILENAME", COVARIANCEFILENAME, "File name for covariance files");
82
83
84 log_position_const = 4.2;
85 gPARMS->SetDefaultParameter("FCAL:log_position_const", log_position_const);
86
87
88 INSERT_RADIATION_LENGTH = 0.89;
89 INSERT_CRITICAL_ENERGY = 0.00964;
90 INSERT_SHOWER_OFFSET = 1.0;
91
92 INSERT_PAR1=1.345;
93 INSERT_PAR2=0.04;
94 INSERT_PAR3=1.16;
95 INSERT_PAR4=2.;
96 gPARMS->SetDefaultParameter("FCAL:INSERT_PAR1",INSERT_PAR1);
97 gPARMS->SetDefaultParameter("FCAL:INSERT_PAR2",INSERT_PAR2);
98 gPARMS->SetDefaultParameter("FCAL:INSERT_PAR3",INSERT_PAR3);
99 gPARMS->SetDefaultParameter("FCAL:INSERT_PAR4",INSERT_PAR4);
100
101
102}
103
104//------------------
105// brun
106//------------------
107jerror_t DFCALShower_factory::brun(JEventLoop *loop, int32_t runnumber)
108{
109
110 map<string, double> depth_correction_params;
111 if(loop->GetCalib("FCAL/depth_correction_params", depth_correction_params)) {
112 jerr << "Problem loading FCAL/depth_correction_params from CCDB!" << endl;
113 } else {
114 FCAL_RADIATION_LENGTH = depth_correction_params["radiation_length"];
115 FCAL_CRITICAL_ENERGY = depth_correction_params["critical_energy"];
116 FCAL_SHOWER_OFFSET = depth_correction_params["shower_offset"];
117 }
118
119
120 // Get calibration constants
121 map<string, double> fcal_parms;
122 loop->GetCalib("FCAL/fcal_parms", fcal_parms);
123 if (fcal_parms.find("FCAL_C_EFFECTIVE")!=fcal_parms.end()){
124 FCAL_C_EFFECTIVE = fcal_parms["FCAL_C_EFFECTIVE"];
125 if(debug_level>0)jout<<"FCAL_C_EFFECTIVE = "<<FCAL_C_EFFECTIVE<<endl;
126 } else {
127 jerr<<"Unable to get FCAL_C_EFFECTIVE from FCAL/fcal_parms in Calib database!"<<endl;
128 }
129
130 DApplication *dapp = dynamic_cast<DApplication*>(loop->GetJApplication());
131 const DGeometry *geom = dapp->GetDGeometry(runnumber);
132
133 if (geom) {
134 geom->GetTargetZ(m_zTarget);
135 loop->GetSingle(fcalGeom);
136 m_FCALfront=fcalGeom->fcalFrontZ();
137 m_insertFront=fcalGeom->insertFrontZ();
138 }
139 else{
140
141 cerr << "No geometry accessible." << endl;
142 return RESOURCE_UNAVAILABLE;
143 }
144 // 29/03/2020 ijaegle@jlab.org add x,y
145 jana::JCalibration *jcalib = japp->GetJCalibration(runnumber);
146 std::map<string, float> beam_spot;
147 jcalib->Get("PHOTON_BEAM/beam_spot", beam_spot);
148
149 // by default, load non-linear shower corrections from the CCDB
150 // but allow these to be overridden by command line parameters
151 energy_dependence_correction_vs_ring.clear();
152 if(LOAD_NONLIN_CCDB > 0.1) {
153 map<string, double> shower_calib_piecewise;
154 loop->GetCalib("FCAL/shower_calib_piecewise", shower_calib_piecewise);
155 cutoff_energy = shower_calib_piecewise["cutoff_energy"];
156 linfit_slope = shower_calib_piecewise["linfit_slope"];
157 linfit_intercept = shower_calib_piecewise["linfit_intercept"];
158 expfit_param1 = shower_calib_piecewise["expfit_param1"];
159 expfit_param2 = shower_calib_piecewise["expfit_param2"];
160 expfit_param3 = shower_calib_piecewise["expfit_param3"];
161 m_beamSpotX = 0;
162 m_beamSpotY = 0;
163
164 if(debug_level>0) {
165 jout << "cutoff_energy = " << cutoff_energy << endl;
166 jout << "linfit_slope = " << linfit_slope << endl;
167 jout << "linfit_intercept = " << linfit_intercept << endl;
168 jout << "expfit_param1 = " << expfit_param1 << endl;
169 jout << "expfit_param2 = " << expfit_param2<< endl;
170 jout << "expfit_param3 = " << expfit_param3 << endl;
171 }
172 loop->GetCalib("FCAL/energy_dependence_correction_vs_ring", energy_dependence_correction_vs_ring);
173 if (energy_dependence_correction_vs_ring.size() > 0 && energy_dependence_correction_vs_ring[0][0] != 0) {
174 m_beamSpotX = beam_spot.at("x");
175 m_beamSpotY = beam_spot.at("y");
176 if (debug_level > 0) {
177 TString str_coef[] = {"A", "B", "C", "D", "E", "F"};
178 for (int i = 0; i < 24; i ++) {
179 //for (int j = 0; j < 6; j ++) {
180 for (int j = 0; j < 3; j ++) {
181 jout << "Ring # " << i << Form(" %s", str_coef[j].Data()) << energy_dependence_correction_vs_ring[i][j];
182 }
183 jout << endl;
184 }
185 }
186 }
187 }
188
189 if (LOAD_TIMING_CCDB > 0.1) {
190 // Get timing correction polynomial, J. Mirabelli 10/31/17
191 map<string,double> timing_correction;
192 loop->GetCalib("FCAL/shower_timing_correction", timing_correction);
193 timeConst0 = timing_correction["P0"];
194 timeConst1 = timing_correction["P1"];
195 timeConst2 = timing_correction["P2"];
196 timeConst3 = timing_correction["P3"];
197 timeConst4 = timing_correction["P4"];
198
199 if(debug_level>0) {
200 jout << "timeConst0 = " << timeConst0 << endl;
201 jout << "timeConst1 = " << timeConst1 << endl;
202 jout << "timeConst2 = " << timeConst2 << endl;
203 jout << "timeConst3 = " << timeConst3 << endl;
204 jout << "timeConst4 = " << timeConst4 << endl;
205 }
206 }
207
208 jerror_t result = LoadCovarianceLookupTables(eventLoop);
209 if (result!=NOERROR) return result;
210
211 INSERT_C_EFFECTIVE=FCAL_C_EFFECTIVE;
212
213 return NOERROR;
214}
215
216
217jerror_t DFCALShower_factory::erun(void) {
218 // delete lookup tables to prevent memory leak
219 for (int i=0; i<5; i++) {
220 for (int j=0; j<=i; j++) {
221 delete CovarianceLookupTable[i][j];
222 CovarianceLookupTable[i][j] = nullptr;
223 }
224 }
225 return NOERROR;
226}
227
228
229//------------------
230// evnt
231//------------------
232jerror_t DFCALShower_factory::evnt(JEventLoop *eventLoop, uint64_t eventnumber)
233{
234 vector<const DFCALCluster*> fcalClusters;
235 eventLoop->Get(fcalClusters);
1
Calling 'JEventLoop::Get'
236 if(fcalClusters.size()<1)return NOERROR;
237
238 // Use the center of the target as an approximation for the vertex position
239 // 29/03/2020 ijaegle@jlab.org add beam center in x,y
240 DVector3 vertex(m_beamSpotX, m_beamSpotY, m_zTarget);
241
242 vector< const DTrackWireBased* > allWBTracks;
243 eventLoop->Get( allWBTracks );
244 vector< const DTrackWireBased* > wbTracks = filterWireBasedTracks( allWBTracks );
245
246 // Loop over list of DFCALCluster objects and calculate the "Non-linear" corrected
247 // energy and position for each. We'll use a logarithmic energy-weighting to
248 // find the final position and error.
249 for( vector< const DFCALCluster* >::const_iterator clItr = fcalClusters.begin();
250 clItr != fcalClusters.end(); ++clItr ){
251 const DFCALCluster* cluster=*clItr;
252
253 // energy weighted time provides better resolution:
254 double cTime = cluster->getTimeEWeight();
255
256 double zback=m_FCALfront + fcalGeom->blockLength();
257 double c_effective=FCAL_C_EFFECTIVE;
258
259 int channel = cluster->getChannelEmax();
260 DVector2 pos=fcalGeom->positionOnFace(channel);
261 // Check if the cluster is in the insert
262 bool in_insert=fcalGeom->inInsert(channel);
263 if (in_insert){
264 zback=m_insertFront + fcalGeom->insertBlockLength();
265 c_effective=INSERT_C_EFFECTIVE;
266 in_insert=true;
267 }
268
269 // Get corrected energy, position, and errZ
270 double Ecorrected;
271 DVector3 pos_corrected;
272 double errZ;
273 double radius = pos.Mod();
274 int ring_nb = (int) (radius / (5 * k_cm));
275 GetCorrectedEnergyAndPosition( cluster, ring_nb , Ecorrected, pos_corrected, errZ, &vertex,in_insert);
276
277 DVector3 pos_log;
278 GetLogWeightedPosition( cluster, pos_log, Ecorrected, &vertex );
279
280 if (Ecorrected>0.){
281 //up to this point, all times have been times at which light reaches
282 //the back of the detector. Here we correct for the time that it
283 //takes the Cherenkov light to reach the back of the detector
284 //so that the t reported is roughly the time of the shower at the
285 //position pos_corrected
286 cTime -= ( zback - pos_corrected.Z() )/c_effective;
287
288 //Apply time-walk correction/global timing offset
289 cTime += ( timeConst0 + timeConst1 * Ecorrected + timeConst2 * TMath::Power( Ecorrected, 2 ) +
290 timeConst3 * TMath::Power( Ecorrected, 3 ) + timeConst4 * TMath::Power( Ecorrected, 4 ) );
291
292 // Make the DFCALShower object
293 DFCALShower* shower = new DFCALShower;
294
295 shower->setEnergy( Ecorrected );
296 shower->setPosition( pos_corrected );
297 shower->setPosition_log( pos_log );
298 shower->setTime ( cTime );
299
300 if (in_insert==false){
301 FillCovarianceMatrix( shower );
302 }
303 else{
304 // Some guesses for insert resolution, currently hard-coded...
305 double sigx=0.1016/sqrt(Ecorrected)+0.2219;
306 shower->ExyztCovariance(1,1)=sigx*sigx;
307 shower->ExyztCovariance(2,2)=sigx*sigx;
308 shower->ExyztCovariance(0,0)=Ecorrected*Ecorrected*(0.01586/Ecorrected
309 +0.0002342/(Ecorrected*Ecorrected)
310 +1.695e-6);
311 for (unsigned int i=0;i<5;i++){
312 for(unsigned int j=0;j<5;j++){
313 if (i!=j) shower->ExyztCovariance(i,j)=0.;
314 }
315
316 }
317 }
318
319 if( VERBOSE > 2 ){
320 printf("FCAL shower: } E=%f x=%f y=%f z=%f t=%f\n",
321 shower->getEnergy(),shower->getPosition().X(),shower->getPosition().Y(),shower->getPosition().Z(),shower->getTime());
322 printf("FCAL shower: dE=%f dx=%f dy=%f dz=%f dt=%f\n",
323 shower->EErr(),shower->xErr(),shower->yErr(),shower->zErr(),shower->tErr());
324 printf("FCAL shower: Ex=%f Ey=%f Ez=%f Et=%f xy=%f\n",
325 shower->EXcorr(),shower->EYcorr(),shower->EZcorr(),shower->ETcorr(),shower->XYcorr());
326 printf("FCAL shower: xz=%f xt=%f yz=%f yt=%f zt=%f\n",
327 shower->XZcorr(),shower->XTcorr(),shower->YZcorr(),shower->YTcorr(),shower->ZTcorr());
328 }
329
330 // now fill information related to shower shape and nearby
331 // tracks -- useful for splitoff rejection later
332
333 double docaTr = 1E6;
334 double timeTr = 1E6;
335 double xTr = 0;
336 double yTr = 0;
337
338 double flightTime;
339 DVector3 projPos, projMom;
340
341 // find the closest track to the shower -- here we loop over the best FOM
342 // wire-based track for every track candidate not just the ones associated
343 // with the topology
344 for( size_t iTrk = 0; iTrk < wbTracks.size(); ++iTrk ){
345
346 if( !wbTracks[iTrk]->GetProjection( SYS_FCAL, projPos, &projMom, &flightTime ) ) continue;
347
348 // need to swim fcalPos to common z for DOCA calculation -- this really
349 // shouldn't be in the loop if the z-value of projPos doesn't change
350 // with each track
351
352 DVector3 fcalFacePos = ( shower->getPosition() - vertex );
353 fcalFacePos.SetMag( fcalFacePos.Mag() * projPos.Z() / fcalFacePos.Z() );
354
355 double distance = ( fcalFacePos - projPos ).Mag();
356
357 if( distance < docaTr ){
358
359 docaTr = distance;
360 // this is the time from the center of the target to the detector -- to compare with
361 // the FCAL time, one needs to have the t0RF at the center of the target. That
362 // comparison happens at a later stage in the analysis.
363 timeTr = ( wbTracks[iTrk]->position().Z() - vertex.Z() ) / SPEED_OF_LIGHT29.9792458 + flightTime;
364 xTr = projPos.X();
365 yTr = projPos.Y();
366 }
367 }
368
369 shower->setDocaTrack( docaTr );
370 shower->setTimeTrack( timeTr );
371
372 // now compute some variables at the hit level
373
374 vector< const DFCALHit* > fcalHits;
375 cluster->Get( fcalHits );
376 shower->setNumBlocks( fcalHits.size() );
377
378 double e9e25, e1e9;
379 getE1925FromHits( e1e9, e9e25, fcalHits, getMaxHit( fcalHits ) );
380 shower->setE1E9( e1e9 );
381 shower->setE9E25( e9e25 );
382
383 double sumU = 0;
384 double sumV = 0;
385 // if there is no nearest track, the defaults for xTr and yTr will result
386 // in using the beam axis as the directional axis
387 getUVFromHits( sumU, sumV, fcalHits,
388 DVector3( shower->getPosition().X(), shower->getPosition().Y(), 0 ),
389 DVector3( xTr, yTr, 0 ) );
390
391 shower->setSumU( sumU );
392 shower->setSumV( sumV );
393
394 shower->AddAssociatedObject( cluster );
395
396 _data.push_back(shower);
397 }
398 }
399
400 return NOERROR;
401}
402
403//--------------------------------
404// GetCorrectedEnergyAndPosition
405//
406// Non-linear and depth corrections should be fixed within DFCALShower member functions
407//--------------------------------
408 void DFCALShower_factory::GetCorrectedEnergyAndPosition(const DFCALCluster* cluster, int ring_nb, double &Ecorrected, DVector3 &pos_corrected, double &errZ, const DVector3 *vertex,bool in_insert)
409{
410 // Non-linear energy correction are done here
411 //int MAXITER = 1000;
412
413 DVector3 posInCal = cluster->getCentroid();
414 float x0 = posInCal.Px();
415 float y0 = posInCal.Py();
416 double Eclust = cluster->getEnergy();
417
418 double Ecutoff = 0;
419 double A = 0;
420 double B = 0;
421 double C = 0;
422 double D = 0;
423 double E = 0;
424 double Egamma = Eclust;
425 Ecorrected = 0;
426
427 // block properties
428 double radiation_length=FCAL_RADIATION_LENGTH;
429 double shower_offset=FCAL_SHOWER_OFFSET;
430 double critical_energy=FCAL_CRITICAL_ENERGY;
431 double zfront=m_FCALfront;
432
433 // Check for presence of insert
434 if (in_insert){
435 radiation_length=INSERT_RADIATION_LENGTH;
436 shower_offset=INSERT_SHOWER_OFFSET;
437 critical_energy=INSERT_CRITICAL_ENERGY;
438 zfront=m_insertFront;
439
440 A=INSERT_PAR1;
441 B=INSERT_PAR2;
442 C=INSERT_PAR3;
443 D=INSERT_PAR4;
444 if (Eclust<D){
445 Egamma=A*Eclust/(1.+B*Eclust);
446 }
447 else Egamma=A*D/(1.+D*B)+C*(Eclust-D);
448 }
449 else{
450 int ring_region = -1;
451 if (0 <= ring_nb && ring_nb <= 2)
452 ring_region = 0;
453 else if (3 <= ring_nb && ring_nb <= 4)
454 ring_region = 1;
455 else if (ring_nb == 5)
456 ring_region = 2;
457 else if (6 <= ring_nb && ring_nb <= 7)
458 ring_region = 3;
459 else if (8 <= ring_nb && ring_nb <= 9)
460 ring_region = 4;
461 else if (10 <= ring_nb && ring_nb <= 11)
462 ring_region = 5;
463 else if (12 <= ring_nb && ring_nb <= 17)
464 ring_region = 6;
465 else if (18 <= ring_nb && ring_nb <= 20)
466 ring_region = 7;
467 else if (21 <= ring_nb && ring_nb <= 23)
468 ring_region = 8;
469
470 // 06/04/2020 ijaegle@jlab.org allows two different energy dependence correction
471 if (LOAD_NONLIN_CCDB > 0.1) {
472
473 // Method I: IU way, one overall correction
474 Egamma = 0;
475 Ecutoff = cutoff_energy;
476 A = linfit_slope;
477 B = linfit_intercept;
478 C = expfit_param1;
479 D = expfit_param2;
480 E = expfit_param3;
481 // 06/02/2016 Shower Non-linearity Correction by Adesh.
482 // 29/03/2020 ijaegle@jlab.org the linear part correction is applied in (some) data/sim. backward comptability?
483 if ( Eclust <= Ecutoff ) {
484
485 Egamma = Eclust / (A * Eclust + B); // Linear part
486
487 } else
488 // 29/03/2020 ijaegle@jlab.org this correction is always applied if all C=2 & D=E=0 then Egamma = Eclust
489 if ( Eclust > Ecutoff ) {
490
491 Egamma = Eclust / (C - exp(-D * Eclust + E)); // Non-linear part
492
493 }
494 // 29/03/2020 ijaegle@jlab.org if all C=D=E=0 by mistake then Egamma = - Eclust
495 // End Correction method I
496
497 // Method II: PRIMEXD way, correction per ring
498 if (C == 2 && D == 0 && E == 0 && energy_dependence_correction_vs_ring.size() > 0 && ring_region != -1) {
499
500 Egamma = 0;
501 A = energy_dependence_correction_vs_ring[ring_region][0];
502 B = energy_dependence_correction_vs_ring[ring_region][1];
503 C = energy_dependence_correction_vs_ring[ring_region][2];
504 //D = energy_dependence_correction_vs_ring[ring_nb][3];
505 //E = energy_dependence_correction_vs_ring[ring_nb][4];
506 //F = energy_dependence_correction_vs_ring[ring_nb][5];
507 //Egamma = Eclust / (A + B * Eclust + C * pow(Eclust, 2) + D * pow(Eclust, 3) + E * pow(Eclust, 4) + F * pow(Eclust, 5));
508 //Egamma = Eclust / (A + B * Eclust + C * pow(Eclust, 2));
509 Egamma = Eclust / (A - exp(-B * Eclust + C));
510 }
511 // End Correction method II
512 }
513 //End energy dependence correction
514 }
515 if (Egamma <= 0 && Eclust > 0) Egamma = Eclust;
516
517 // then depth corrections
518 if ( Egamma > 0 ) {
519 float dxV = x0-vertex->X();
520 float dyV = y0-vertex->Y();
521 float zV = vertex->Z();
522
523 double z0 = zfront - zV;
524 double zMax = radiation_length*(shower_offset+log(Egamma/critical_energy));
525
526 double zed = z0;
527 double zed1 = z0 + zMax;
528
529 double r0 = sqrt(dxV*dxV + dyV*dyV );
530
531 int niter;
532 for ( niter=0; niter<100; niter++) {
533 double tt = r0/zed1;
534 zed = z0 + zMax/sqrt( 1 + tt*tt );
535 if ( fabs( (zed-zed1) ) < 0.001) {
536 break;
537 }
538 zed1 = zed;
539 }
540
541 posInCal.SetZ( zed + zV );
542 errZ = zed - zed1;
543 }
544
545 Ecorrected = Egamma;
546 pos_corrected = posInCal;
547
548}
549
550
551
552jerror_t
553DFCALShower_factory::FillCovarianceMatrix(DFCALShower *shower){
554 /// This function takes a FCALShower object and using the internal variables
555 /// overwrites any existing covaraince matrix using lookup tables.
556
557 // Get edges of lookup table histograms (assume that all histograms have the same limits.)
558 TAxis *xaxis = CovarianceLookupTable[0][0]->GetXaxis();
559 TAxis *yaxis = CovarianceLookupTable[0][0]->GetYaxis();
560 float minElookup = xaxis->GetBinLowEdge(1);
561 float maxElookup = xaxis->GetBinUpEdge(xaxis->GetNbins());
562 float minthlookup = yaxis->GetBinLowEdge(1);
563 float maxthlookup = yaxis->GetBinUpEdge(yaxis->GetNbins());
564
565 float shower_E = shower->getEnergy();
566 float shower_x = shower->getPosition().X();
567 float shower_y = shower->getPosition().Y();
568 float shower_z = shower->getPosition().Z();
569 float shower_r = sqrt(shower_x*shower_x + shower_y*shower_y);
570 float shower_theta = atan2(shower_r,shower_z);
571 float thlookup = shower_theta/3.14159265*180;
572 float Elookup = shower_E;
573
574 // Adjust values: in order to use Interpolate() must be within histogram range
575 if (Elookup<minElookup) Elookup=minElookup;
576 if (Elookup>maxElookup) Elookup=maxElookup-0.0001; // move below edge, on edge doesn't work.
577 if (thlookup<minthlookup) thlookup=minthlookup;
578 if (thlookup>maxthlookup) thlookup=maxthlookup-0.0001;
579 if (VERBOSE>3) printf("(%f,%F) limits (%f,%f) (%f,%f)\n",Elookup,thlookup,minElookup,maxElookup,minthlookup,maxthlookup);
580
581 DMatrixDSym ErphiztCovariance(5);
582 for (int i=0; i<5; i++) {
583 for (int j=0; j<=i; j++) {
584 float val = CovarianceLookupTable[i][j]->Interpolate(Elookup, thlookup);
585 if (i==0 && j==0) val *= shower_E; // E variance is divided by energy in CCDB
586 ErphiztCovariance(i,j) = ErphiztCovariance(j,i) = val;
587 }
588 }
589
590 float shower_phi = atan2(shower_y,shower_x);
591 float cosPhi = cos(shower_phi);
592 float sinPhi = sin(shower_phi);
593 DMatrix rotationmatrix(5,5);
594 rotationmatrix(0,0) = 1;
595 rotationmatrix(3,3) = 1;
596 rotationmatrix(4,4) = 1;
597 rotationmatrix(1,1) = cosPhi;
598 rotationmatrix(1,2) = -sinPhi;
599 rotationmatrix(2,1) = sinPhi;
600 rotationmatrix(2,2) = cosPhi;
601
602 if (VERBOSE>3) {printf("(E,r,phi,z,t) "); ErphiztCovariance.Print(); }
603 DMatrixDSym &D = ErphiztCovariance.Similarity(rotationmatrix);
604 for (int i=0; i<5; i++) {
605 for (int j=0; j<5; j++)
606 shower->ExyztCovariance(i, j) = D(i, j);
607 }
608 if (VERBOSE>2) {printf("(E,x,y,z,t) "); shower->ExyztCovariance.Print(); }
609
610 return NOERROR;
611}
612
613
614jerror_t
615DFCALShower_factory::LoadCovarianceLookupTables(JEventLoop *eventLoop){
616 std::thread::id this_id = std::this_thread::get_id();
617 stringstream idstring;
618 idstring << this_id;
619 if (VERBOSE>0) printf("DFCALShower_factory::LoadCovarianceLookupTables(): Thread %s\n",idstring.str().c_str());
620
621 bool USECCDB=0;
622 bool DUMMYTABLES=0;
623 // if filename specified try to use filename else get info from CCDB
624 if (COVARIANCEFILENAME == "") USECCDB=1;
625
626 map<string,string> covariance_data;
627 if (USECCDB) {
628 // load information for covariance matrix
629 if (eventLoop->GetJCalibration()->GetCalib("/FCAL/shower_covariance", covariance_data)) {
630 jerr << "Error loading /FCAL/shower_covariance !" << endl;
631 DUMMYTABLES=1;
632 }
633 if (covariance_data.size() == 15) { // there are 15 elements in the covariance matrix
634 // for example, print it all out
635 if (VERBOSE>0) {
636 for(auto element : covariance_data) {
637 cout << "\nTEST: " << element.first << " = " << element.second << endl;
638 }
639 }
640 } else {
641 jerr << "Wrong number of elements /FCAL/shower_covariance !" << endl;
642 DUMMYTABLES=1;
643 }
644 }
645
646 for (int i=0; i<5; i++) {
647 for (int j=0; j<=i; j++) {
648
649 japp->RootWriteLock();
650 // change directory to memory so that histograms are not saved to file
651 TDirectory *savedir = gDirectory(TDirectory::CurrentDirectory());
652
653 char histname[255];
654 sprintf(histname,"covariance_%i%i_thread%s",i,j,idstring.str().c_str());
655 // Read in string
656 ifstream ifs;
657 string line;
658 stringstream ss;
659 if (USECCDB) {
660 stringstream matrixname;
661 matrixname << "covmatrix_" << i << j;
662 if (VERBOSE>1) cout << "Using CCDB \"" << matrixname.str() << "\" " << covariance_data[matrixname.str()] << endl;
663 ss.str(covariance_data[matrixname.str()]);
664 } else {
665 char filename[255];
666 sprintf(filename,"%s%i%i.txt",COVARIANCEFILENAME.c_str(),i,j);
667 if (VERBOSE>0) cout << filename << std::endl;
668 ifs.open(filename);
669 if (! ifs.is_open()) {
670 jerr << " Error: Cannot open file! " << filename << std::endl;
671 DUMMYTABLES=1;
672 } else {
673 getline(ifs, line, '\n');
674 ss.str(line);
675 if (VERBOSE>1) cout << filename << " dump: " <<line<<endl;
676 }
677 }
678 if (DUMMYTABLES) {
679 // create dummy histogram since something went wrong
680 CovarianceLookupTable[i][j] = new TH2F(histname,"Covariance histogram",10,0,12,10,0,12);
681 CovarianceLookupTable[i][j]->SetDirectory(nullptr);
682 } else {
683 // Parse string
684 int nxbins, nybins;
685 ss>>nxbins;
686 ss>>nybins;
687 if (VERBOSE>1) printf("parsed dump: bins (%i,%i)\n",nxbins,nybins);
688 Float_t xbins[nxbins+1];
689 Float_t ybins[nybins+1];
690 for (int count=0; count<=nxbins; count++) {
691 ss>>xbins[count];
692 if (VERBOSE>1) printf("(%i,%f) ",count,xbins[count]);
693 }
694 if (VERBOSE>1) printf("\n");
695 for (int count=0; count<=nybins; count++) {
696 ss>>ybins[count];
697 if (VERBOSE>1) printf("(%i,%f) ",count,ybins[count]);
698 }
699 if (VERBOSE>1) printf("\n");
700 int xbin=1;
701 double cont;
702 int ybin=1;
703 // create histogram
704 CovarianceLookupTable[i][j] = new TH2F(histname,"Covariance histogram",nxbins,xbins,nybins,ybins);
705 CovarianceLookupTable[i][j]->SetDirectory(nullptr);
706 // fill histogram
707 while(ss>>cont){
708 if (VERBOSE>1) printf("(%i,%i) (%i,%i) %e ",i,j,xbin,ybin,cont);
709 CovarianceLookupTable[i][j]->SetBinContent(xbin,ybin,cont);
710 ybin++;
711 if (ybin>nybins) { xbin++; ybin=1; }
712 }
713 if (VERBOSE>1) printf("\n");
714 // Close file
715 ifs.close();
716 }
717 savedir->cd();
718 japp->RootUnLock();
719 }
720 }
721 return NOERROR;
722}
723
724unsigned int
725DFCALShower_factory::getMaxHit( const vector< const DFCALHit* >& hitVec ) const {
726
727 unsigned int maxIndex = 0;
728
729 double eMaxSh = 0;
730
731 for( vector< const DFCALHit* >::const_iterator hit = hitVec.begin();
732 hit != hitVec.end(); ++hit ){
733
734 if( (**hit).E > eMaxSh ){
735
736 eMaxSh = (**hit).E;
737 maxIndex = hit - hitVec.begin();
738 }
739 }
740
741 return maxIndex;
742}
743
744void
745DFCALShower_factory::getUVFromHits( double& sumUSh, double& sumVSh,
746 const vector< const DFCALHit* >& hits,
747 const DVector3& showerVec,
748 const DVector3& trackVec ) const {
749
750 // This method forms an axis pointing from the shower to nearest track
751 // and computes the energy-weighted second moment of the shower along
752 // and perpendicular to this axis. True photons are fairly symmetric
753 // and have similar values of sumU and sumV whereas splitoffs tend
754 // to be asymmetric in these variables.
755
756 DVector3 u = ( showerVec - trackVec ).Unit();
757 DVector3 z( 0, 0, 1 );
758 DVector3 v = u.Cross( z );
759
760 DVector3 hitLoc( 0, 0, 0 );
761
762 sumUSh = 0;
763 sumVSh = 0;
764
765 double sumE = 0;
766
767 for( vector< const DFCALHit* >::const_iterator hit = hits.begin();
768 hit != hits.end(); ++hit ){
769
770 hitLoc.SetX( (**hit).x - showerVec.X() );
771 hitLoc.SetY( (**hit).y - showerVec.Y() );
772
773 sumUSh += (**hit).E * pow( u.Dot( hitLoc ), 2 );
774 sumVSh += (**hit).E * pow( v.Dot( hitLoc ), 2 );
775
776 sumE += (**hit).E;
777 }
778
779 sumUSh /= sumE;
780 sumVSh /= sumE;
781}
782
783void
784DFCALShower_factory::getE1925FromHits( double& e1e9Sh, double& e9e25Sh,
785 const vector< const DFCALHit* >& hits,
786 unsigned int maxIndex ) const {
787
788 double E9 = 0;
789 double E25 = 0;
790
791 const DFCALHit* maxHit = hits[maxIndex];
792
793 for( vector< const DFCALHit* >::const_iterator hit = hits.begin();
794 hit != hits.end(); ++hit ){
795
796 if( fabs( (**hit).x - maxHit->x ) < 4.5 && fabs( (**hit).y - maxHit->y ) < 4.5 )
797 E9 += (**hit).E;
798
799 if( fabs( (**hit).x - maxHit->x ) < 8.5 && fabs( (**hit).y - maxHit->y ) < 8.5 )
800 E25 += (**hit).E;
801 }
802
803 e1e9Sh = maxHit->E/E9;
804 e9e25Sh = E9/E25;
805}
806
807
808vector< const DTrackWireBased* >
809DFCALShower_factory::filterWireBasedTracks( vector< const DTrackWireBased* >& wbTracks ) const {
810
811 vector< const DTrackWireBased* > finalTracks;
812 map< unsigned int, vector< const DTrackWireBased* > > sortedTracks;
813
814 // first sort the wire based tracks into lists with a common candidate id
815 // this means that they all come from the same track in the detector
816
817 for( unsigned int i = 0; i < wbTracks.size(); ++i ){
818
819 unsigned int id = wbTracks[i]->candidateid;
820
821 if( sortedTracks.find( id ) == sortedTracks.end() ){
822
823 sortedTracks[id] = vector< const DTrackWireBased* >();
824 }
825
826 sortedTracks[id].push_back( wbTracks[i] );
827 }
828
829 // now loop through that list of unique tracks and for each set
830 // of wire based tracks, choose the one with the highest FOM
831 // (this is choosing among different particle hypotheses)
832
833 for( map< unsigned int, vector< const DTrackWireBased* > >::const_iterator
834 anId = sortedTracks.begin();
835 anId != sortedTracks.end(); ++anId ){
836
837 double maxFOM = 0;
838 unsigned int bestIndex = 0;
839
840 for( unsigned int i = 0; i < anId->second.size(); ++i ){
841
842 if( anId->second[i]->Ndof < 15 ) continue;
843
844 if( anId->second[i]->FOM > maxFOM ){
845
846 maxFOM = anId->second[i]->FOM;
847 bestIndex = i;
848 }
849 }
850
851 finalTracks.push_back( anId->second[bestIndex] );
852 }
853
854 return finalTracks;
855}
856
857
858void DFCALShower_factory::GetLogWeightedPosition( const DFCALCluster* cluster, DVector3 &pos_log, double Egamma, const DVector3 *vertex )
859{
860
861 DVector3 posInCal = cluster->getCentroid();
862
863 const vector< DFCALCluster::DFCALClusterHit_t > locHitVector = cluster->GetHits();
864
865 int loc_nhits = (int)locHitVector.size();
866 if( loc_nhits < 1 ) {
867 pos_log = posInCal;
868 return;
869 }
870
871 //------ Loop over hits ------//
872
873 double sW = 0.0;
874 double xpos = 0.0;
875 double ypos = 0.0;
876 double W;
877
878 double ecluster = cluster->getEnergy();
879
880 for( int ih = 0; ih < loc_nhits; ih++ ) {
881
882 DFCALCluster::DFCALClusterHit_t locHit = locHitVector[ih];
883
884 double xcell = locHit.x;
885 double ycell = locHit.y;
886 double ecell = locHit.E;
887
888 W = log_position_const + log( ecell / ecluster );
889 if( W > 0. ) {
890 sW += W;
891 xpos += xcell * W;
892 ypos += ycell * W;
893 }
894
895 }
896
897 double x1, y1;
898 if( sW ) {
899 x1 = xpos / sW;
900 y1 = ypos / sW;
901 } else {
902 cout << "\nBad Cluster Logged in DFCALShower_factory::GetLogWeightedPosition" << endl;
903 x1 = 0.;
904 y1 = 0.;
905 }
906
907
908 // Shower Depth Corrections (copied from GetCorrectedEnergyAndPosition function)
909
910 if ( Egamma > 0 ) {
911 float dxV = x1 - vertex->X();
912 float dyV = y1 - vertex->Y();
913 float zV = vertex->Z();
914
915 double z0 = m_FCALfront - zV;
916 double zMax = FCAL_RADIATION_LENGTH*(FCAL_SHOWER_OFFSET
917 + log(Egamma/FCAL_CRITICAL_ENERGY));
918
919 double zed = z0;
920 double zed1 = z0 + zMax;
921
922 double r0 = sqrt( dxV*dxV + dyV*dyV );
923
924 int niter;
925 for ( niter=0; niter<100; niter++) {
926 double tt = r0/zed1;
927 zed = z0 + zMax/sqrt( 1 + tt*tt );
928 if ( fabs( (zed-zed1) ) < 0.001) {
929 break;
930 }
931 zed1 = zed;
932 }
933
934 posInCal.SetZ( zed + zV );
935 }
936
937 posInCal.SetX( x1 );
938 posInCal.SetY( y1 );
939
940
941 pos_log = posInCal;
942
943
944 return;
945
946}
947
948

/w/halld-scifs17exp/halld2/home/sdobbs/Software/jana/jana_0.8.2/Linux_CentOS7.7-x86_64-gcc4.8.5/include/JANA/JEventLoop.h

1// $Id: JEventLoop.h 1763 2006-05-10 14:29:25Z davidl $
2//
3// File: JEventLoop.h
4// Created: Wed Jun 8 12:30:51 EDT 2005
5// Creator: davidl (on Darwin wire129.jlab.org 7.8.0 powerpc)
6//
7
8#ifndef _JEventLoop_
9#define _JEventLoop_
10
11#include <sys/time.h>
12
13#include <vector>
14#include <list>
15#include <string>
16#include <utility>
17#include <typeinfo>
18#include <string.h>
19#include <map>
20#include <utility>
21using std::vector;
22using std::list;
23using std::string;
24using std::type_info;
25
26#include <JANA/jerror.h>
27#include <JANA/JObject.h>
28#include <JANA/JException.h>
29#include <JANA/JEvent.h>
30#include <JANA/JThread.h>
31#include <JANA/JFactory_base.h>
32#include <JANA/JCalibration.h>
33#include <JANA/JGeometry.h>
34#include <JANA/JResourceManager.h>
35#include <JANA/JStreamLog.h>
36
37// The following is here just so we can use ROOT's THtml class to generate documentation.
38#include "cint.h"
39
40
41// Place everything in JANA namespace
42namespace jana{
43
44
45template<class T> class JFactory;
46class JApplication;
47class JEventProcessor;
48
49
50class JEventLoop{
51 public:
52
53 friend class JApplication;
54
55 enum data_source_t{
56 DATA_NOT_AVAILABLE = 1,
57 DATA_FROM_CACHE,
58 DATA_FROM_SOURCE,
59 DATA_FROM_FACTORY
60 };
61
62 typedef struct{
63 string caller_name;
64 string caller_tag;
65 string callee_name;
66 string callee_tag;
67 double start_time;
68 double end_time;
69 data_source_t data_source;
70 }call_stack_t;
71
72 typedef struct{
73 const char* factory_name;
74 string tag;
75 const char* filename;
76 int line;
77 }error_call_stack_t;
78
79 JEventLoop(JApplication *app); ///< Constructor
80 virtual ~JEventLoop(); ////< Destructor
81 virtual const char* className(void){return static_className();}
82 static const char* static_className(void){return "JEventLoop";}
83
84 JApplication* GetJApplication(void) const {return app;} ///< Get pointer to the JApplication object
85 void RefreshProcessorListFromJApplication(void); ///< Re-copy the list of JEventProcessors from JApplication
86 virtual jerror_t AddFactory(JFactory_base* factory); ///< Add a factory
87 jerror_t RemoveFactory(JFactory_base* factory); ///< Remove a factory
88 JFactory_base* GetFactory(const string data_name, const char *tag="", bool allow_deftag=true); ///< Get a specific factory pointer
89 vector<JFactory_base*> GetFactories(void) const {return factories;} ///< Get all factory pointers
90 void GetFactoryNames(vector<string> &factorynames); ///< Get names of all factories in name:tag format
91 void GetFactoryNames(map<string,string> &factorynames); ///< Get names of all factories in map with key=name, value=tag
92 map<string,string> GetDefaultTags(void) const {return default_tags;}
93 jerror_t ClearFactories(void); ///< Reset all factories in preparation for next event.
94 jerror_t PrintFactories(int sparsify=0); ///< Print a list of all factories.
95 jerror_t Print(const string data_name, const char *tag=""); ///< Print the data of the given type
96
97 JCalibration* GetJCalibration();
98 template<class T> bool GetCalib(string namepath, map<string,T> &vals);
99 template<class T> bool GetCalib(string namepath, vector<T> &vals);
100 template<class T> bool GetCalib(string namepath, T &val);
101
102 JGeometry* GetJGeometry();
103 template<class T> bool GetGeom(string namepath, map<string,T> &vals);
104 template<class T> bool GetGeom(string namepath, T &val);
105
106 JResourceManager* GetJResourceManager(void);
107 string GetResource(string namepath);
108 template<class T> bool GetResource(string namepath, T vals, int event_number=0);
109
110 void Initialize(void); ///< Do initializations just before event processing starts
111 jerror_t Loop(void); ///< Loop over events
112 jerror_t OneEvent(uint64_t event_number); ///< Process a specific single event (if source supports it)
113 jerror_t OneEvent(void); ///< Process a single event
114 inline void Pause(void){pause = 1;} ///< Pause event processing
115 inline void Resume(void){pause = 0;} ///< Resume event processing
116 inline void Quit(void){quit = 1;} ///< Clean up and exit the event loop
117 inline bool GetQuit(void) const {return quit;}
118 void QuitProgram(void);
119
120 // Support for random access of events
121 bool HasRandomAccess(void);
122 void AddToEventQueue(uint64_t event_number){ next_events_to_process.push_back(event_number); }
123 void AddToEventQueue(list<uint64_t> &event_numbers) { next_events_to_process.insert(next_events_to_process.end(), event_numbers.begin(), event_numbers.end()); }
124 list<uint64_t> GetEventQueue(void){ return next_events_to_process; }
125 void ClearEventQueue(void){ next_events_to_process.clear(); }
126
127 template<class T> JFactory<T>* GetSingle(const T* &t, const char *tag="", bool exception_if_not_one=true); ///< Get pointer to first data object from (source or factory).
128 template<class T> JFactory<T>* Get(vector<const T*> &t, const char *tag="", bool allow_deftag=true); ///< Get data object pointers from (source or factory)
129 template<class T> JFactory<T>* GetFromFactory(vector<const T*> &t, const char *tag="", data_source_t &data_source=null_data_source, bool allow_deftag=true); ///< Get data object pointers from factory
130 template<class T> jerror_t GetFromSource(vector<const T*> &t, JFactory_base *factory=NULL__null); ///< Get data object pointers from source.
131 inline JEvent& GetJEvent(void){return event;} ///< Get pointer to the current JEvent object.
132 inline void SetJEvent(JEvent *event){this->event = *event;} ///< Set the JEvent pointer.
133 inline void SetAutoFree(int auto_free){this->auto_free = auto_free;} ///< Set the Auto-Free flag on/off
134 inline pthread_t GetPThreadID(void) const {return pthread_id;} ///< Get the pthread of the thread to which this JEventLoop belongs
135 double GetInstantaneousRate(void) const {return rate_instantaneous;} ///< Get the current event processing rate
136 double GetIntegratedRate(void) const {return rate_integrated;} ///< Get the current event processing rate
137 double GetLastEventProcessingTime(void) const {return delta_time_single;}
138 unsigned int GetNevents(void) const {return Nevents;}
139
140 inline bool CheckEventBoundary(uint64_t event_numberA, uint64_t event_numberB);
141
142 inline bool GetCallStackRecordingStatus(void){ return record_call_stack; }
143 inline void DisableCallStackRecording(void){ record_call_stack = false; }
144 inline void EnableCallStackRecording(void){ record_call_stack = true; }
145 inline void CallStackStart(JEventLoop::call_stack_t &cs, const string &caller_name, const string &caller_tag, const string callee_name, const string callee_tag);
146 inline void CallStackEnd(JEventLoop::call_stack_t &cs);
147 inline vector<call_stack_t> GetCallStack(void){return call_stack;} ///< Get the current factory call stack
148 inline void AddToCallStack(call_stack_t &cs){if(record_call_stack) call_stack.push_back(cs);} ///< Add specified item to call stack record but only if record_call_stack is true
149 inline void AddToErrorCallStack(error_call_stack_t &cs){error_call_stack.push_back(cs);} ///< Add layer to the factory call stack
150 inline vector<error_call_stack_t> GetErrorCallStack(void){return error_call_stack;} ///< Get the current factory error call stack
151 void PrintErrorCallStack(void); ///< Print the current factory call stack
152
153 const JObject* FindByID(JObject::oid_t id); ///< Find a data object by its identifier.
154 template<class T> const T* FindByID(JObject::oid_t id); ///< Find a data object by its type and identifier
155 JFactory_base* FindOwner(const JObject *t); ///< Find the factory that owns a data object by pointer
156 JFactory_base* FindOwner(JObject::oid_t id); ///< Find a factory that owns a data object by identifier
157
158 // User defined references
159 template<class T> void SetRef(T *t); ///< Add a user reference to this JEventLoop (must be a pointer)
160 template<class T> T* GetRef(void); ///< Get a user-defined reference of a specific type
161 template<class T> vector<T*> GetRefsT(void); ///< Get all user-defined refrences of a specicif type
162 vector<pair<const char*, void*> > GetRefs(void){ return user_refs; } ///< Get copy of full list of user-defined references
163 template<class T> void RemoveRef(T *t); ///< Remove user reference from list
164
165 // Convenience methods wrapping JEvent methods of same name
166 uint64_t GetStatus(void){return event.GetStatus();}
167 bool GetStatusBit(uint32_t bit){return event.GetStatusBit(bit);}
168 bool SetStatusBit(uint32_t bit, bool val=true){return event.SetStatusBit(bit, val);}
169 bool ClearStatusBit(uint32_t bit){return event.ClearStatusBit(bit);}
170 void ClearStatus(void){event.ClearStatus();}
171 void SetStatusBitDescription(uint32_t bit, string description){event.SetStatusBitDescription(bit, description);}
172 string GetStatusBitDescription(uint32_t bit){return event.GetStatusBitDescription(bit);}
173 void GetStatusBitDescriptions(map<uint32_t, string> &status_bit_descriptions){return event.GetStatusBitDescriptions(status_bit_descriptions);}
174 string StatusWordToString(void);
175
176 private:
177 JEvent event;
178 vector<JFactory_base*> factories;
179 vector<JEventProcessor*> processors;
180 vector<error_call_stack_t> error_call_stack;
181 vector<call_stack_t> call_stack;
182 JApplication *app;
183 JThread *jthread;
184 bool initialized;
185 bool print_parameters_called;
186 int pause;
187 int quit;
188 int auto_free;
189 pthread_t pthread_id;
190 map<string, string> default_tags;
191 vector<pair<string,string> > auto_activated_factories;
192 bool record_call_stack;
193 string caller_name;
194 string caller_tag;
195 vector<uint64_t> event_boundaries;
196 int32_t event_boundaries_run; ///< Run number boundaries were retrieved from (possbily 0)
197 list<uint64_t> next_events_to_process;
198
199 uint64_t Nevents; ///< Total events processed (this thread)
200 uint64_t Nevents_rate; ///< Num. events accumulated for "instantaneous" rate
201 double delta_time_single; ///< Time spent processing last event
202 double delta_time_rate; ///< Integrated time accumulated "instantaneous" rate (partial number of events)
203 double delta_time; ///< Total time spent processing events (this thread)
204 double rate_instantaneous; ///< Latest instantaneous rate
205 double rate_integrated; ///< Rate integrated over all events
206
207 static data_source_t null_data_source;
208
209 vector<pair<const char*, void*> > user_refs;
210};
211
212
213// The following is here just so we can use ROOT's THtml class to generate documentation.
214#ifdef G__DICTIONARY
215typedef JEventLoop::call_stack_t call_stack_t;
216typedef JEventLoop::error_call_stack_t error_call_stack_t;
217#endif
218
219#if !defined(__CINT__) && !defined(__CLING__)
220
221//-------------
222// GetSingle
223//-------------
224template<class T>
225JFactory<T>* JEventLoop::GetSingle(const T* &t, const char *tag, bool exception_if_not_one)
226{
227 /// This is a convenience method that can be used to get a pointer to the single
228 /// object of type T from the specified factory. It simply calls the Get(vector<...>) method
229 /// and copies the first pointer into "t" (or NULL if something other than 1 object is returned).
230 ///
231 /// This is intended to address the common situation in which there is an interest
232 /// in the event if and only if there is exactly 1 object of type T. If the event
233 /// has no objects of that type or more than 1 object of that type (for the specified
234 /// factory) then an exception of type "unsigned long" is thrown with the value
235 /// being the number of objects of type T. You can supress the exception by setting
236 /// exception_if_not_one to false. In that case, you will have to check if t==NULL to
237 /// know if the call succeeded.
238 vector<const T*> v;
239 JFactory<T> *fac = Get(v, tag);
240
241 if(v.size()!=1){
242 t = NULL__null;
243 if(exception_if_not_one) throw v.size();
244 }
245
246 t = v[0];
247
248 return fac;
249}
250
251//-------------
252// Get
253//-------------
254template<class T>
255JFactory<T>* JEventLoop::Get(vector<const T*> &t, const char *tag, bool allow_deftag)
256{
257 /// Retrieve or generate the array of objects of
258 /// type T for the curent event being processed
259 /// by this thread.
260 ///
261 /// By default, preference is given to reading the
262 /// objects from the data source(e.g. file) before generating
263 /// them in the factory. A flag exists in the factory
264 /// however to change this so that the factory is
265 /// given preference.
266 ///
267 /// Note that regardless of the setting of this flag,
268 /// the data are only either read in or generated once.
269 /// Ownership of the objects will always be with the
270 /// factory so subsequent calls will always return pointers to
271 /// the same data.
272 ///
273 /// If the factory is called on to generate the data,
274 /// it is done by calling the factory's Get() method
275 /// which, in turn, calls the evnt() method.
276 ///
277 /// First, we just call the GetFromFactory() method.
278 /// It will make the initial decision as to whether
279 /// it should look in the source first or not. If
280 /// it returns NULL, then the factory couldn't be
281 /// found so we automatically try the file.
282 ///
283 /// Note that if no factory exists to hold the objects
284 /// from the file, one can be created automatically
285 /// providing the <i>JANA:AUTOFACTORYCREATE</i>
286 /// configuration parameter is set.
287
288 // Check if a tag was specified for this data type to use for the
289 // default.
290 const char *mytag = tag
1.1
'tag' is not equal to NULL
1.1
'tag' is not equal to NULL
1.1
'tag' is not equal to NULL
==NULL__null ? "":tag; // protection against NULL tags
2
'?' condition is false
291 if(strlen(mytag)==0 && allow_deftag
2.1
'allow_deftag' is true
2.1
'allow_deftag' is true
2.1
'allow_deftag' is true
){
3
Taking true branch
292 map<string, string>::const_iterator iter = default_tags.find(T::static_className());
293 if(iter!=default_tags.end())tag = iter->second.c_str();
4
Assuming the condition is true
5
Taking true branch
6
Value assigned to 'tag'
294 }
295
296
297 // If we are trying to keep track of the call stack then we
298 // need to add a new call_stack_t object to the the list
299 // and initialize it with the start time and caller/callee
300 // info.
301 call_stack_t cs;
302
303 // Optionally record starting info of call stack entry
304 if(record_call_stack) CallStackStart(cs, caller_name, caller_tag, T::static_className(), tag);
7
Assuming field 'record_call_stack' is false
8
Taking false branch
305
306 // Get the data (or at least try to)
307 JFactory<T>* factory=NULL__null;
308 try{
309 factory = GetFromFactory(t, tag, cs.data_source, allow_deftag);
9
Passing value via 2nd parameter 'tag'
10
Calling 'JEventLoop::GetFromFactory'
310 if(!factory){
311 // No factory exists for this type and tag. It's possible
312 // that the source may be able to provide the objects
313 // but it will need a place to put them. We can create a
314 // dumb JFactory just to hold the data in case the source
315 // can provide the objects. Before we do though, make sure
316 // the user condones this via the presence of the
317 // "JANA:AUTOFACTORYCREATE" config parameter.
318 string p;
319 try{
320 gPARMS->GetParameter("JANA:AUTOFACTORYCREATE", p);
321 }catch(...){}
322 if(p.size()==0){
323 jout<<std::endl;
324 _DBG__std::cerr<<"/w/halld-scifs17exp/halld2/home/sdobbs/Software/jana/jana_0.8.2/Linux_CentOS7.7-x86_64-gcc4.8.5/include/JANA/JEventLoop.h"
<<":"<<324<<std::endl
;
325 jout<<"No factory of type \""<<T::static_className()<<"\" with tag \""<<tag<<"\" exists."<<std::endl;
326 jout<<"If you are reading objects from a file, I can auto-create a factory"<<std::endl;
327 jout<<"of the appropriate type to hold the objects, but this feature is turned"<<std::endl;
328 jout<<"off by default. To turn it on, set the \"JANA:AUTOFACTORYCREATE\""<<std::endl;
329 jout<<"configuration parameter. This can usually be done by passing the"<<std::endl;
330 jout<<"following argument to the program from the command line:"<<std::endl;
331 jout<<std::endl;
332 jout<<" -PJANA:AUTOFACTORYCREATE=1"<<std::endl;
333 jout<<std::endl;
334 jout<<"Note that since the most commonly expected occurance of this situation."<<std::endl;
335 jout<<"is an error, the program will now throw an exception so that the factory."<<std::endl;
336 jout<<"call stack can be printed."<<std::endl;
337 jout<<std::endl;
338 throw exception();
339 }else{
340 AddFactory(new JFactory<T>(tag));
341 jout<<__FILE__"/w/halld-scifs17exp/halld2/home/sdobbs/Software/jana/jana_0.8.2/Linux_CentOS7.7-x86_64-gcc4.8.5/include/JANA/JEventLoop.h"<<":"<<__LINE__341<<" Auto-created "<<T::static_className()<<":"<<tag<<" factory"<<std::endl;
342
343 // Now try once more. The GetFromFactory method will call
344 // GetFromSource since it's empty.
345 factory = GetFromFactory(t, tag, cs.data_source, allow_deftag);
346 }
347 }
348 }catch(exception &e){
349 // Uh-oh, an exception was thrown. Add us to the call stack
350 // and re-throw the exception
351 error_call_stack_t ecs;
352 ecs.factory_name = T::static_className();
353 ecs.tag = tag;
354 ecs.filename = NULL__null;
355 error_call_stack.push_back(ecs);
356 throw e;
357 }
358
359 // If recording the call stack, update the end_time field and add to stack
360 if(record_call_stack) CallStackEnd(cs);
361
362 return factory;
363}
364
365//-------------
366// GetFromFactory
367//-------------
368template<class T>
369JFactory<T>* JEventLoop::GetFromFactory(vector<const T*> &t, const char *tag, data_source_t &data_source, bool allow_deftag)
370{
371 // We need to find the factory providing data type T with
372 // tag given by "tag".
373 vector<JFactory_base*>::iterator iter=factories.begin();
374 JFactory<T> *factory = NULL__null;
375 string className(T::static_className());
376
377 // Check if a tag was specified for this data type to use for the
378 // default.
379 const char *mytag = tag==NULL__null ? "":tag; // protection against NULL tags
11
Assuming 'tag' is equal to NULL
12
Assuming pointer value is null
13
'?' condition is true
380 if(strlen(mytag)==0 && allow_deftag
13.1
'allow_deftag' is true
13.1
'allow_deftag' is true
13.1
'allow_deftag' is true
){
14
Taking true branch
381 map<string, string>::const_iterator iter = default_tags.find(className);
382 if(iter!=default_tags.end())tag = iter->second.c_str();
15
Assuming the condition is false
16
Taking false branch
383 }
384
385 for(; iter!=factories.end(); iter++){
17
Calling 'operator!=<jana::JFactory_base **, std::vector<jana::JFactory_base *>>'
20
Returning from 'operator!=<jana::JFactory_base **, std::vector<jana::JFactory_base *>>'
21
Loop condition is true. Entering loop body
386 // It turns out a long standing bug in g++ makes dynamic_cast return
387 // zero improperly when used on objects created on one side of
388 // a dynamically shared object (DSO) and the cast occurs on the
389 // other side. I saw bug reports ranging from 2001 to 2004. I saw
390 // saw it first-hand on LinuxEL4 using g++ 3.4.5. This is too bad
391 // since it is much more elegant (and safe) to use dynamic_cast.
392 // To avoid this problem which can occur with plugins, we check
393 // the name of the data classes are the same. (sigh)
394 //factory = dynamic_cast<JFactory<T> *>(*iter);
395 if(className == (*iter)->GetDataClassName())factory = (JFactory<T>*)(*iter);
22
Taking true branch
396 if(factory == NULL__null)continue;
23
Assuming 'factory' is not equal to NULL
24
Taking false branch
397 const char *factag = factory->Tag()==NULL__null ? "":factory->Tag();
25
Assuming the condition is true
26
'?' condition is true
398 if(!strcmp(factag, tag)){
27
Null pointer passed to 2nd parameter expecting 'nonnull'
399 break;
400 }else{
401 factory=NULL__null;
402 }
403 }
404
405 // If factory not found, just return now
406 if(!factory){
407 data_source = DATA_NOT_AVAILABLE;
408 return NULL__null;
409 }
410
411 // OK, we found the factory. If the evnt() routine has already
412 // been called, then just call the factory's Get() routine
413 // to return a copy of the existing data
414 if(factory->evnt_was_called()){
415 factory->CopyFrom(t);
416 data_source = DATA_FROM_CACHE;
417 return factory;
418 }
419
420 // Next option is to get the objects from the data source
421 if(factory->GetCheckSourceFirst()){
422 // If the object type/tag is found in the source, it
423 // will return NOERROR, even if there are zero instances
424 // of it. If it is not available in the source then it
425 // will return OBJECT_NOT_AVAILABLE.
426
427 jerror_t err = GetFromSource(t, factory);
428 if(err == NOERROR){
429 // A return value of NOERROR means the source had the objects
430 // even if there were zero of them.(If the source had no
431 // information about the objects OBJECT_NOT_AVAILABLE would
432 // have been returned.)
433 // The GetFromSource() call will eventually lead to a call to
434 // the GetObjects() method of the concrete class derived
435 // from JEventSource. That routine should copy the object
436 // pointers into the factory using the factory's CopyTo()
437 // method which also sets the evnt_called flag for the factory.
438 // Note also that the "t" vector is then filled with a call
439 // to the factory's CopyFrom() method in JEvent::GetObjects().
440 // All we need to do now is just set the factory pointers in
441 // the newly generated JObjects and return the factory pointer.
442
443 factory->SetFactoryPointers();
444 data_source = DATA_FROM_SOURCE;
445
446 return factory;
447 }
448 }
449
450 // OK. It looks like we have to have the factory make this.
451 // Get pointers to data from the factory.
452 factory->Get(t);
453 factory->SetFactoryPointers();
454 data_source = DATA_FROM_FACTORY;
455
456 return factory;
457}
458
459//-------------
460// GetFromSource
461//-------------
462template<class T>
463jerror_t JEventLoop::GetFromSource(vector<const T*> &t, JFactory_base *factory)
464{
465 /// This tries to get objects from the event source.
466 /// "factory" must be a valid pointer to a JFactory
467 /// object since that will take ownership of the objects
468 /// created by the source.
469 /// This should usually be called from JEventLoop::GetFromFactory
470 /// which is called from JEventLoop::Get. The latter will
471 /// create a dummy JFactory of the proper flavor and tag if
472 /// one does not already exist so if objects exist in the
473 /// file without a corresponding factory to create them, they
474 /// can still be used.
475 if(!factory)throw OBJECT_NOT_AVAILABLE;
476
477 return event.GetObjects(t, factory);
478}
479
480//-------------
481// CallStackStart
482//-------------
483inline void JEventLoop::CallStackStart(JEventLoop::call_stack_t &cs, const string &caller_name, const string &caller_tag, const string callee_name, const string callee_tag)
484{
485 /// This is used to fill initial info into a call_stack_t stucture
486 /// for recording the call stack. It should be matched with a call
487 /// to CallStackEnd. It is normally called from the Get() method
488 /// above, but may also be used by external actors to manipulate
489 /// the call stack (presumably for good and not evil).
490
491 struct itimerval tmr;
492 getitimer(ITIMER_PROFITIMER_PROF, &tmr);
493
494 cs.caller_name = this->caller_name;
495 cs.caller_tag = this->caller_tag;
496 this->caller_name = cs.callee_name = callee_name;
497 this->caller_tag = cs.callee_tag = callee_tag;
498 cs.start_time = tmr.it_value.tv_sec + tmr.it_value.tv_usec/1.0E6;
499}
500
501//-------------
502// CallStackEnd
503//-------------
504inline void JEventLoop::CallStackEnd(JEventLoop::call_stack_t &cs)
505{
506 /// Complete a call stack entry. This should be matched
507 /// with a previous call to CallStackStart which was
508 /// used to fill the cs structure.
509
510 struct itimerval tmr;
511 getitimer(ITIMER_PROFITIMER_PROF, &tmr);
512 cs.end_time = tmr.it_value.tv_sec + tmr.it_value.tv_usec/1.0E6;
513 caller_name = cs.caller_name;
514 caller_tag = cs.caller_tag;
515 call_stack.push_back(cs);
516}
517
518//-------------
519// CheckEventBoundary
520//-------------
521inline bool JEventLoop::CheckEventBoundary(uint64_t event_numberA, uint64_t event_numberB)
522{
523 /// Check whether the two event numbers span one or more boundaries
524 /// in the calibration/conditions database for the current run number.
525 /// Return true if they do and false if they don't. The first parameter
526 /// "event_numberA" is also checked if it lands on a boundary in which
527 /// case true is also returned. If event_numberB lands on a boundary,
528 /// but event_numberA does not, then false is returned.
529 ///
530 /// This method is not expected to be called by a user. It is, however called,
531 /// everytime a JFactory's Get() method is called.
532
533 // Make sure our copy of the boundaries is up to date
534 if(event.GetRunNumber()!=event_boundaries_run){
535 event_boundaries.clear(); // in case we can't get the JCalibration pointer
536 JCalibration *jcalib = GetJCalibration();
537 if(jcalib)jcalib->GetEventBoundaries(event_boundaries);
538 event_boundaries_run = event.GetRunNumber();
539 }
540
541 // Loop over boundaries
542 for(unsigned int i=0; i<event_boundaries.size(); i++){
543 uint64_t eb = event_boundaries[i];
544 if((eb - event_numberA)*(eb - event_numberB) < 0.0 || eb==event_numberA){ // think about it ....
545 // events span a boundary or is on a boundary. Return true
546 return true;
547 }
548 }
549
550 return false;
551}
552
553//-------------
554// FindByID
555//-------------
556template<class T>
557const T* JEventLoop::FindByID(JObject::oid_t id)
558{
559 /// This is a templated method that can be used in place
560 /// of the non-templated FindByID(oid_t) method if one knows
561 /// the class of the object with the specified id.
562 /// This method is faster than calling the non-templated
563 /// FindByID and dynamic_cast-ing the JObject since
564 /// this will only search the objects of factories that
565 /// produce the desired data type.
566 /// This method will cast the JObject pointer to one
567 /// of the specified type. To use this method,
568 /// a type is specified in the call as follows:
569 ///
570 /// const DMyType *t = loop->FindByID<DMyType>(id);
571
572 // Loop over factories looking for ones that provide
573 // specified data type.
574 for(unsigned int i=0; i<factories.size(); i++){
575 if(factories[i]->GetDataClassName() != T::static_className())continue;
576
577 // This factory provides data of type T. Search it for
578 // the object with the specified id.
579 const JObject *my_obj = factories[i]->GetByID(id);
580 if(my_obj)return dynamic_cast<const T*>(my_obj);
581 }
582
583 return NULL__null;
584}
585
586//-------------
587// GetCalib (map)
588//-------------
589template<class T>
590bool JEventLoop::GetCalib(string namepath, map<string,T> &vals)
591{
592 /// Get the JCalibration object from JApplication for the run number of
593 /// the current event and call its Get() method to get the constants.
594
595 // Note that we could do this by making "vals" a generic type T thus, combining
596 // this with the vector version below. However, doing this explicitly will make
597 // it easier for the user to understand how to call us.
598
599 vals.clear();
600
601 JCalibration *calib = GetJCalibration();
602 if(!calib){
603 _DBG_std::cerr<<"/w/halld-scifs17exp/halld2/home/sdobbs/Software/jana/jana_0.8.2/Linux_CentOS7.7-x86_64-gcc4.8.5/include/JANA/JEventLoop.h"
<<":"<<603<<" "
<<"Unable to get JCalibration object for run "<<event.GetRunNumber()<<std::endl;
604 return true;
605 }
606
607 return calib->Get(namepath, vals, event.GetEventNumber());
608}
609
610//-------------
611// GetCalib (vector)
612//-------------
613template<class T> bool JEventLoop::GetCalib(string namepath, vector<T> &vals)
614{
615 /// Get the JCalibration object from JApplication for the run number of
616 /// the current event and call its Get() method to get the constants.
617
618 vals.clear();
619
620 JCalibration *calib = GetJCalibration();
621 if(!calib){
622 _DBG_std::cerr<<"/w/halld-scifs17exp/halld2/home/sdobbs/Software/jana/jana_0.8.2/Linux_CentOS7.7-x86_64-gcc4.8.5/include/JANA/JEventLoop.h"
<<":"<<622<<" "
<<"Unable to get JCalibration object for run "<<event.GetRunNumber()<<std::endl;
623 return true;
624 }
625
626 return calib->Get(namepath, vals, event.GetEventNumber());
627}
628
629//-------------
630// GetCalib (single)
631//-------------
632template<class T> bool JEventLoop::GetCalib(string namepath, T &val)
633{
634 /// This is a convenience method for getting a single entry. It
635 /// simply calls the vector version and returns the first entry.
636 /// It returns true if the vector version returns true AND there
637 /// is at least one entry in the vector. No check is made for there
638 /// there being more than one entry in the vector.
639
640 vector<T> vals;
641 bool ret = GetCalib(namepath, vals);
642 if(vals.empty()) return true;
643 val = vals[0];
644
645 return ret;
646}
647
648//-------------
649// GetGeom (map)
650//-------------
651template<class T>
652bool JEventLoop::GetGeom(string namepath, map<string,T> &vals)
653{
654 /// Get the JGeometry object from JApplication for the run number of
655 /// the current event and call its Get() method to get the constants.
656
657 // Note that we could do this by making "vals" a generic type T thus, combining
658 // this with the vector version below. However, doing this explicitly will make
659 // it easier for the user to understand how to call us.
660
661 vals.clear();
662
663 JGeometry *geom = GetJGeometry();
664 if(!geom){
665 _DBG_std::cerr<<"/w/halld-scifs17exp/halld2/home/sdobbs/Software/jana/jana_0.8.2/Linux_CentOS7.7-x86_64-gcc4.8.5/include/JANA/JEventLoop.h"
<<":"<<665<<" "
<<"Unable to get JGeometry object for run "<<event.GetRunNumber()<<std::endl;
666 return true;
667 }
668
669 return geom->Get(namepath, vals);
670}
671
672//-------------
673// GetGeom (atomic)
674//-------------
675template<class T> bool JEventLoop::GetGeom(string namepath, T &val)
676{
677 /// Get the JCalibration object from JApplication for the run number of
678 /// the current event and call its Get() method to get the constants.
679
680 JGeometry *geom = GetJGeometry();
681 if(!geom){
682 _DBG_std::cerr<<"/w/halld-scifs17exp/halld2/home/sdobbs/Software/jana/jana_0.8.2/Linux_CentOS7.7-x86_64-gcc4.8.5/include/JANA/JEventLoop.h"
<<":"<<682<<" "
<<"Unable to get JGeometry object for run "<<event.GetRunNumber()<<std::endl;
683 return true;
684 }
685
686 return geom->Get(namepath, val);
687}
688
689//-------------
690// SetRef
691//-------------
692template<class T>
693void JEventLoop::SetRef(T *t)
694{
695 pair<const char*, void*> p(typeid(T).name(), (void*)t);
696 user_refs.push_back(p);
697}
698
699//-------------
700// GetResource
701//-------------
702template<class T> bool JEventLoop::GetResource(string namepath, T vals, int event_number)
703{
704 JResourceManager *resource_manager = GetJResourceManager();
705 if(!resource_manager){
706 string mess = string("Unable to get the JResourceManager object (namepath=\"")+namepath+"\")";
707 throw JException(mess);
708 }
709
710 return resource_manager->Get(namepath, vals, event_number);
711}
712
713//-------------
714// GetRef
715//-------------
716template<class T>
717T* JEventLoop::GetRef(void)
718{
719 /// Get a user-defined reference (a pointer)
720 for(unsigned int i=0; i<user_refs.size(); i++){
721 if(user_refs[i].first == typeid(T).name()) return (T*)user_refs[i].second;
722 }
723
724 return NULL__null;
725}
726
727//-------------
728// GetRefsT
729//-------------
730template<class T>
731vector<T*> JEventLoop::GetRefsT(void)
732{
733 vector<T*> refs;
734 for(unsigned int i=0; i<user_refs.size(); i++){
735 if(user_refs[i].first == typeid(T).name()){
736 refs.push_back((T*)user_refs[i].second);
737 }
738 }
739
740 return refs;
741}
742
743//-------------
744// RemoveRef
745//-------------
746template<class T>
747void JEventLoop::RemoveRef(T *t)
748{
749 vector<pair<const char*, void*> >::iterator iter;
750 for(iter=user_refs.begin(); iter!= user_refs.end(); iter++){
751 if(iter->second == (void*)t){
752 user_refs.erase(iter);
753 return;
754 }
755 }
756 _DBG_std::cerr<<"/w/halld-scifs17exp/halld2/home/sdobbs/Software/jana/jana_0.8.2/Linux_CentOS7.7-x86_64-gcc4.8.5/include/JANA/JEventLoop.h"
<<":"<<756<<" "
<<" Attempt to remove user reference not in event loop!" << std::endl;
757}
758
759
760#endif //__CINT__ __CLING__
761
762} // Close JANA namespace
763
764
765
766#endif // _JEventLoop_
767

/usr/lib/gcc/x86_64-redhat-linux/4.8.5/../../../../include/c++/4.8.5/bits/stl_iterator.h

1// Iterators -*- C++ -*-
2
3// Copyright (C) 2001-2013 Free Software Foundation, Inc.
4//
5// This file is part of the GNU ISO C++ Library. This library is free
6// software; you can redistribute it and/or modify it under the
7// terms of the GNU General Public License as published by the
8// Free Software Foundation; either version 3, or (at your option)
9// any later version.
10
11// This library is distributed in the hope that it will be useful,
12// but WITHOUT ANY WARRANTY; without even the implied warranty of
13// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14// GNU General Public License for more details.
15
16// Under Section 7 of GPL version 3, you are granted additional
17// permissions described in the GCC Runtime Library Exception, version
18// 3.1, as published by the Free Software Foundation.
19
20// You should have received a copy of the GNU General Public License and
21// a copy of the GCC Runtime Library Exception along with this program;
22// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
23// <http://www.gnu.org/licenses/>.
24
25/*
26 *
27 * Copyright (c) 1994
28 * Hewlett-Packard Company
29 *
30 * Permission to use, copy, modify, distribute and sell this software
31 * and its documentation for any purpose is hereby granted without fee,
32 * provided that the above copyright notice appear in all copies and
33 * that both that copyright notice and this permission notice appear
34 * in supporting documentation. Hewlett-Packard Company makes no
35 * representations about the suitability of this software for any
36 * purpose. It is provided "as is" without express or implied warranty.
37 *
38 *
39 * Copyright (c) 1996-1998
40 * Silicon Graphics Computer Systems, Inc.
41 *
42 * Permission to use, copy, modify, distribute and sell this software
43 * and its documentation for any purpose is hereby granted without fee,
44 * provided that the above copyright notice appear in all copies and
45 * that both that copyright notice and this permission notice appear
46 * in supporting documentation. Silicon Graphics makes no
47 * representations about the suitability of this software for any
48 * purpose. It is provided "as is" without express or implied warranty.
49 */
50
51/** @file bits/stl_iterator.h
52 * This is an internal header file, included by other library headers.
53 * Do not attempt to use it directly. @headername{iterator}
54 *
55 * This file implements reverse_iterator, back_insert_iterator,
56 * front_insert_iterator, insert_iterator, __normal_iterator, and their
57 * supporting functions and overloaded operators.
58 */
59
60#ifndef _STL_ITERATOR_H1
61#define _STL_ITERATOR_H1 1
62
63#include <bits/cpp_type_traits.h>
64#include <ext/type_traits.h>
65#include <bits/move.h>
66
67namespace std _GLIBCXX_VISIBILITY(default)__attribute__ ((__visibility__ ("default")))
68{
69_GLIBCXX_BEGIN_NAMESPACE_VERSION
70
71 /**
72 * @addtogroup iterators
73 * @{
74 */
75
76 // 24.4.1 Reverse iterators
77 /**
78 * Bidirectional and random access iterators have corresponding reverse
79 * %iterator adaptors that iterate through the data structure in the
80 * opposite direction. They have the same signatures as the corresponding
81 * iterators. The fundamental relation between a reverse %iterator and its
82 * corresponding %iterator @c i is established by the identity:
83 * @code
84 * &*(reverse_iterator(i)) == &*(i - 1)
85 * @endcode
86 *
87 * <em>This mapping is dictated by the fact that while there is always a
88 * pointer past the end of an array, there might not be a valid pointer
89 * before the beginning of an array.</em> [24.4.1]/1,2
90 *
91 * Reverse iterators can be tricky and surprising at first. Their
92 * semantics make sense, however, and the trickiness is a side effect of
93 * the requirement that the iterators must be safe.
94 */
95 template<typename _Iterator>
96 class reverse_iterator
97 : public iterator<typename iterator_traits<_Iterator>::iterator_category,
98 typename iterator_traits<_Iterator>::value_type,
99 typename iterator_traits<_Iterator>::difference_type,
100 typename iterator_traits<_Iterator>::pointer,
101 typename iterator_traits<_Iterator>::reference>
102 {
103 protected:
104 _Iterator current;
105
106 typedef iterator_traits<_Iterator> __traits_type;
107
108 public:
109 typedef _Iterator iterator_type;
110 typedef typename __traits_type::difference_type difference_type;
111 typedef typename __traits_type::pointer pointer;
112 typedef typename __traits_type::reference reference;
113
114 /**
115 * The default constructor value-initializes member @p current.
116 * If it is a pointer, that means it is zero-initialized.
117 */
118 // _GLIBCXX_RESOLVE_LIB_DEFECTS
119 // 235 No specification of default ctor for reverse_iterator
120 reverse_iterator() : current() { }
121
122 /**
123 * This %iterator will move in the opposite direction that @p x does.
124 */
125 explicit
126 reverse_iterator(iterator_type __x) : current(__x) { }
127
128 /**
129 * The copy constructor is normal.
130 */
131 reverse_iterator(const reverse_iterator& __x)
132 : current(__x.current) { }
133
134 /**
135 * A %reverse_iterator across other types can be copied if the
136 * underlying %iterator can be converted to the type of @c current.
137 */
138 template<typename _Iter>
139 reverse_iterator(const reverse_iterator<_Iter>& __x)
140 : current(__x.base()) { }
141
142 /**
143 * @return @c current, the %iterator used for underlying work.
144 */
145 iterator_type
146 base() const
147 { return current; }
148
149 /**
150 * @return A reference to the value at @c --current
151 *
152 * This requires that @c --current is dereferenceable.
153 *
154 * @warning This implementation requires that for an iterator of the
155 * underlying iterator type, @c x, a reference obtained by
156 * @c *x remains valid after @c x has been modified or
157 * destroyed. This is a bug: http://gcc.gnu.org/PR51823
158 */
159 reference
160 operator*() const
161 {
162 _Iterator __tmp = current;
163 return *--__tmp;
164 }
165
166 /**
167 * @return A pointer to the value at @c --current
168 *
169 * This requires that @c --current is dereferenceable.
170 */
171 pointer
172 operator->() const
173 { return &(operator*()); }
174
175 /**
176 * @return @c *this
177 *
178 * Decrements the underlying iterator.
179 */
180 reverse_iterator&
181 operator++()
182 {
183 --current;
184 return *this;
185 }
186
187 /**
188 * @return The original value of @c *this
189 *
190 * Decrements the underlying iterator.
191 */
192 reverse_iterator
193 operator++(int)
194 {
195 reverse_iterator __tmp = *this;
196 --current;
197 return __tmp;
198 }
199
200 /**
201 * @return @c *this
202 *
203 * Increments the underlying iterator.
204 */
205 reverse_iterator&
206 operator--()
207 {
208 ++current;
209 return *this;
210 }
211
212 /**
213 * @return A reverse_iterator with the previous value of @c *this
214 *
215 * Increments the underlying iterator.
216 */
217 reverse_iterator
218 operator--(int)
219 {
220 reverse_iterator __tmp = *this;
221 ++current;
222 return __tmp;
223 }
224
225 /**
226 * @return A reverse_iterator that refers to @c current - @a __n
227 *
228 * The underlying iterator must be a Random Access Iterator.
229 */
230 reverse_iterator
231 operator+(difference_type __n) const
232 { return reverse_iterator(current - __n); }
233
234 /**
235 * @return *this
236 *
237 * Moves the underlying iterator backwards @a __n steps.
238 * The underlying iterator must be a Random Access Iterator.
239 */
240 reverse_iterator&
241 operator+=(difference_type __n)
242 {
243 current -= __n;
244 return *this;
245 }
246
247 /**
248 * @return A reverse_iterator that refers to @c current - @a __n
249 *
250 * The underlying iterator must be a Random Access Iterator.
251 */
252 reverse_iterator
253 operator-(difference_type __n) const
254 { return reverse_iterator(current + __n); }
255
256 /**
257 * @return *this
258 *
259 * Moves the underlying iterator forwards @a __n steps.
260 * The underlying iterator must be a Random Access Iterator.
261 */
262 reverse_iterator&
263 operator-=(difference_type __n)
264 {
265 current += __n;
266 return *this;
267 }
268
269 /**
270 * @return The value at @c current - @a __n - 1
271 *
272 * The underlying iterator must be a Random Access Iterator.
273 */
274 reference
275 operator[](difference_type __n) const
276 { return *(*this + __n); }
277 };
278
279 //@{
280 /**
281 * @param __x A %reverse_iterator.
282 * @param __y A %reverse_iterator.
283 * @return A simple bool.
284 *
285 * Reverse iterators forward many operations to their underlying base()
286 * iterators. Others are implemented in terms of one another.
287 *
288 */
289 template<typename _Iterator>
290 inline bool
291 operator==(const reverse_iterator<_Iterator>& __x,
292 const reverse_iterator<_Iterator>& __y)
293 { return __x.base() == __y.base(); }
294
295 template<typename _Iterator>
296 inline bool
297 operator<(const reverse_iterator<_Iterator>& __x,
298 const reverse_iterator<_Iterator>& __y)
299 { return __y.base() < __x.base(); }
300
301 template<typename _Iterator>
302 inline bool
303 operator!=(const reverse_iterator<_Iterator>& __x,
304 const reverse_iterator<_Iterator>& __y)
305 { return !(__x == __y); }
306
307 template<typename _Iterator>
308 inline bool
309 operator>(const reverse_iterator<_Iterator>& __x,
310 const reverse_iterator<_Iterator>& __y)
311 { return __y < __x; }
312
313 template<typename _Iterator>
314 inline bool
315 operator<=(const reverse_iterator<_Iterator>& __x,
316 const reverse_iterator<_Iterator>& __y)
317 { return !(__y < __x); }
318
319 template<typename _Iterator>
320 inline bool
321 operator>=(const reverse_iterator<_Iterator>& __x,
322 const reverse_iterator<_Iterator>& __y)
323 { return !(__x < __y); }
324
325 template<typename _Iterator>
326 inline typename reverse_iterator<_Iterator>::difference_type
327 operator-(const reverse_iterator<_Iterator>& __x,
328 const reverse_iterator<_Iterator>& __y)
329 { return __y.base() - __x.base(); }
330
331 template<typename _Iterator>
332 inline reverse_iterator<_Iterator>
333 operator+(typename reverse_iterator<_Iterator>::difference_type __n,
334 const reverse_iterator<_Iterator>& __x)
335 { return reverse_iterator<_Iterator>(__x.base() - __n); }
336
337 // _GLIBCXX_RESOLVE_LIB_DEFECTS
338 // DR 280. Comparison of reverse_iterator to const reverse_iterator.
339 template<typename _IteratorL, typename _IteratorR>
340 inline bool
341 operator==(const reverse_iterator<_IteratorL>& __x,
342 const reverse_iterator<_IteratorR>& __y)
343 { return __x.base() == __y.base(); }
344
345 template<typename _IteratorL, typename _IteratorR>
346 inline bool
347 operator<(const reverse_iterator<_IteratorL>& __x,
348 const reverse_iterator<_IteratorR>& __y)
349 { return __y.base() < __x.base(); }
350
351 template<typename _IteratorL, typename _IteratorR>
352 inline bool
353 operator!=(const reverse_iterator<_IteratorL>& __x,
354 const reverse_iterator<_IteratorR>& __y)
355 { return !(__x == __y); }
356
357 template<typename _IteratorL, typename _IteratorR>
358 inline bool
359 operator>(const reverse_iterator<_IteratorL>& __x,
360 const reverse_iterator<_IteratorR>& __y)
361 { return __y < __x; }
362
363 template<typename _IteratorL, typename _IteratorR>
364 inline bool
365 operator<=(const reverse_iterator<_IteratorL>& __x,
366 const reverse_iterator<_IteratorR>& __y)
367 { return !(__y < __x); }
368
369 template<typename _IteratorL, typename _IteratorR>
370 inline bool
371 operator>=(const reverse_iterator<_IteratorL>& __x,
372 const reverse_iterator<_IteratorR>& __y)
373 { return !(__x < __y); }
374
375 template<typename _IteratorL, typename _IteratorR>
376#if __cplusplus201103L >= 201103L
377 // DR 685.
378 inline auto
379 operator-(const reverse_iterator<_IteratorL>& __x,
380 const reverse_iterator<_IteratorR>& __y)
381 -> decltype(__y.base() - __x.base())
382#else
383 inline typename reverse_iterator<_IteratorL>::difference_type
384 operator-(const reverse_iterator<_IteratorL>& __x,
385 const reverse_iterator<_IteratorR>& __y)
386#endif
387 { return __y.base() - __x.base(); }
388 //@}
389
390 // 24.4.2.2.1 back_insert_iterator
391 /**
392 * @brief Turns assignment into insertion.
393 *
394 * These are output iterators, constructed from a container-of-T.
395 * Assigning a T to the iterator appends it to the container using
396 * push_back.
397 *
398 * Tip: Using the back_inserter function to create these iterators can
399 * save typing.
400 */
401 template<typename _Container>
402 class back_insert_iterator
403 : public iterator<output_iterator_tag, void, void, void, void>
404 {
405 protected:
406 _Container* container;
407
408 public:
409 /// A nested typedef for the type of whatever container you used.
410 typedef _Container container_type;
411
412 /// The only way to create this %iterator is with a container.
413 explicit
414 back_insert_iterator(_Container& __x) : container(&__x) { }
415
416 /**
417 * @param __value An instance of whatever type
418 * container_type::const_reference is; presumably a
419 * reference-to-const T for container<T>.
420 * @return This %iterator, for chained operations.
421 *
422 * This kind of %iterator doesn't really have a @a position in the
423 * container (you can think of the position as being permanently at
424 * the end, if you like). Assigning a value to the %iterator will
425 * always append the value to the end of the container.
426 */
427#if __cplusplus201103L < 201103L
428 back_insert_iterator&
429 operator=(typename _Container::const_reference __value)
430 {
431 container->push_back(__value);
432 return *this;
433 }
434#else
435 back_insert_iterator&
436 operator=(const typename _Container::value_type& __value)
437 {
438 container->push_back(__value);
439 return *this;
440 }
441
442 back_insert_iterator&
443 operator=(typename _Container::value_type&& __value)
444 {
445 container->push_back(std::move(__value));
446 return *this;
447 }
448#endif
449
450 /// Simply returns *this.
451 back_insert_iterator&
452 operator*()
453 { return *this; }
454
455 /// Simply returns *this. (This %iterator does not @a move.)
456 back_insert_iterator&
457 operator++()
458 { return *this; }
459
460 /// Simply returns *this. (This %iterator does not @a move.)
461 back_insert_iterator
462 operator++(int)
463 { return *this; }
464 };
465
466 /**
467 * @param __x A container of arbitrary type.
468 * @return An instance of back_insert_iterator working on @p __x.
469 *
470 * This wrapper function helps in creating back_insert_iterator instances.
471 * Typing the name of the %iterator requires knowing the precise full
472 * type of the container, which can be tedious and impedes generic
473 * programming. Using this function lets you take advantage of automatic
474 * template parameter deduction, making the compiler match the correct
475 * types for you.
476 */
477 template<typename _Container>
478 inline back_insert_iterator<_Container>
479 back_inserter(_Container& __x)
480 { return back_insert_iterator<_Container>(__x); }
481
482 /**
483 * @brief Turns assignment into insertion.
484 *
485 * These are output iterators, constructed from a container-of-T.
486 * Assigning a T to the iterator prepends it to the container using
487 * push_front.
488 *
489 * Tip: Using the front_inserter function to create these iterators can
490 * save typing.
491 */
492 template<typename _Container>
493 class front_insert_iterator
494 : public iterator<output_iterator_tag, void, void, void, void>
495 {
496 protected:
497 _Container* container;
498
499 public:
500 /// A nested typedef for the type of whatever container you used.
501 typedef _Container container_type;
502
503 /// The only way to create this %iterator is with a container.
504 explicit front_insert_iterator(_Container& __x) : container(&__x) { }
505
506 /**
507 * @param __value An instance of whatever type
508 * container_type::const_reference is; presumably a
509 * reference-to-const T for container<T>.
510 * @return This %iterator, for chained operations.
511 *
512 * This kind of %iterator doesn't really have a @a position in the
513 * container (you can think of the position as being permanently at
514 * the front, if you like). Assigning a value to the %iterator will
515 * always prepend the value to the front of the container.
516 */
517#if __cplusplus201103L < 201103L
518 front_insert_iterator&
519 operator=(typename _Container::const_reference __value)
520 {
521 container->push_front(__value);
522 return *this;
523 }
524#else
525 front_insert_iterator&
526 operator=(const typename _Container::value_type& __value)
527 {
528 container->push_front(__value);
529 return *this;
530 }
531
532 front_insert_iterator&
533 operator=(typename _Container::value_type&& __value)
534 {
535 container->push_front(std::move(__value));
536 return *this;
537 }
538#endif
539
540 /// Simply returns *this.
541 front_insert_iterator&
542 operator*()
543 { return *this; }
544
545 /// Simply returns *this. (This %iterator does not @a move.)
546 front_insert_iterator&
547 operator++()
548 { return *this; }
549
550 /// Simply returns *this. (This %iterator does not @a move.)
551 front_insert_iterator
552 operator++(int)
553 { return *this; }
554 };
555
556 /**
557 * @param __x A container of arbitrary type.
558 * @return An instance of front_insert_iterator working on @p x.
559 *
560 * This wrapper function helps in creating front_insert_iterator instances.
561 * Typing the name of the %iterator requires knowing the precise full
562 * type of the container, which can be tedious and impedes generic
563 * programming. Using this function lets you take advantage of automatic
564 * template parameter deduction, making the compiler match the correct
565 * types for you.
566 */
567 template<typename _Container>
568 inline front_insert_iterator<_Container>
569 front_inserter(_Container& __x)
570 { return front_insert_iterator<_Container>(__x); }
571
572 /**
573 * @brief Turns assignment into insertion.
574 *
575 * These are output iterators, constructed from a container-of-T.
576 * Assigning a T to the iterator inserts it in the container at the
577 * %iterator's position, rather than overwriting the value at that
578 * position.
579 *
580 * (Sequences will actually insert a @e copy of the value before the
581 * %iterator's position.)
582 *
583 * Tip: Using the inserter function to create these iterators can
584 * save typing.
585 */
586 template<typename _Container>
587 class insert_iterator
588 : public iterator<output_iterator_tag, void, void, void, void>
589 {
590 protected:
591 _Container* container;
592 typename _Container::iterator iter;
593
594 public:
595 /// A nested typedef for the type of whatever container you used.
596 typedef _Container container_type;
597
598 /**
599 * The only way to create this %iterator is with a container and an
600 * initial position (a normal %iterator into the container).
601 */
602 insert_iterator(_Container& __x, typename _Container::iterator __i)
603 : container(&__x), iter(__i) {}
604
605 /**
606 * @param __value An instance of whatever type
607 * container_type::const_reference is; presumably a
608 * reference-to-const T for container<T>.
609 * @return This %iterator, for chained operations.
610 *
611 * This kind of %iterator maintains its own position in the
612 * container. Assigning a value to the %iterator will insert the
613 * value into the container at the place before the %iterator.
614 *
615 * The position is maintained such that subsequent assignments will
616 * insert values immediately after one another. For example,
617 * @code
618 * // vector v contains A and Z
619 *
620 * insert_iterator i (v, ++v.begin());
621 * i = 1;
622 * i = 2;
623 * i = 3;
624 *
625 * // vector v contains A, 1, 2, 3, and Z
626 * @endcode
627 */
628#if __cplusplus201103L < 201103L
629 insert_iterator&
630 operator=(typename _Container::const_reference __value)
631 {
632 iter = container->insert(iter, __value);
633 ++iter;
634 return *this;
635 }
636#else
637 insert_iterator&
638 operator=(const typename _Container::value_type& __value)
639 {
640 iter = container->insert(iter, __value);
641 ++iter;
642 return *this;
643 }
644
645 insert_iterator&
646 operator=(typename _Container::value_type&& __value)
647 {
648 iter = container->insert(iter, std::move(__value));
649 ++iter;
650 return *this;
651 }
652#endif
653
654 /// Simply returns *this.
655 insert_iterator&
656 operator*()
657 { return *this; }
658
659 /// Simply returns *this. (This %iterator does not @a move.)
660 insert_iterator&
661 operator++()
662 { return *this; }
663
664 /// Simply returns *this. (This %iterator does not @a move.)
665 insert_iterator&
666 operator++(int)
667 { return *this; }
668 };
669
670 /**
671 * @param __x A container of arbitrary type.
672 * @return An instance of insert_iterator working on @p __x.
673 *
674 * This wrapper function helps in creating insert_iterator instances.
675 * Typing the name of the %iterator requires knowing the precise full
676 * type of the container, which can be tedious and impedes generic
677 * programming. Using this function lets you take advantage of automatic
678 * template parameter deduction, making the compiler match the correct
679 * types for you.
680 */
681 template<typename _Container, typename _Iterator>
682 inline insert_iterator<_Container>
683 inserter(_Container& __x, _Iterator __i)
684 {
685 return insert_iterator<_Container>(__x,
686 typename _Container::iterator(__i));
687 }
688
689 // @} group iterators
690
691_GLIBCXX_END_NAMESPACE_VERSION
692} // namespace
693
694namespace __gnu_cxx _GLIBCXX_VISIBILITY(default)__attribute__ ((__visibility__ ("default")))
695{
696_GLIBCXX_BEGIN_NAMESPACE_VERSION
697
698 // This iterator adapter is @a normal in the sense that it does not
699 // change the semantics of any of the operators of its iterator
700 // parameter. Its primary purpose is to convert an iterator that is
701 // not a class, e.g. a pointer, into an iterator that is a class.
702 // The _Container parameter exists solely so that different containers
703 // using this template can instantiate different types, even if the
704 // _Iterator parameter is the same.
705 using std::iterator_traits;
706 using std::iterator;
707 template<typename _Iterator, typename _Container>
708 class __normal_iterator
709 {
710 protected:
711 _Iterator _M_current;
712
713 typedef iterator_traits<_Iterator> __traits_type;
714
715 public:
716 typedef _Iterator iterator_type;
717 typedef typename __traits_type::iterator_category iterator_category;
718 typedef typename __traits_type::value_type value_type;
719 typedef typename __traits_type::difference_type difference_type;
720 typedef typename __traits_type::reference reference;
721 typedef typename __traits_type::pointer pointer;
722
723 _GLIBCXX_CONSTEXPRconstexpr __normal_iterator() : _M_current(_Iterator()) { }
724
725 explicit
726 __normal_iterator(const _Iterator& __i) : _M_current(__i) { }
727
728 // Allow iterator to const_iterator conversion
729 template<typename _Iter>
730 __normal_iterator(const __normal_iterator<_Iter,
731 typename __enable_if<
732 (std::__are_same<_Iter, typename _Container::pointer>::__value),
733 _Container>::__type>& __i)
734 : _M_current(__i.base()) { }
735
736 // Forward iterator requirements
737 reference
738 operator*() const
739 { return *_M_current; }
740
741 pointer
742 operator->() const
743 { return _M_current; }
744
745 __normal_iterator&
746 operator++()
747 {
748 ++_M_current;
749 return *this;
750 }
751
752 __normal_iterator
753 operator++(int)
754 { return __normal_iterator(_M_current++); }
755
756 // Bidirectional iterator requirements
757 __normal_iterator&
758 operator--()
759 {
760 --_M_current;
761 return *this;
762 }
763
764 __normal_iterator
765 operator--(int)
766 { return __normal_iterator(_M_current--); }
767
768 // Random access iterator requirements
769 reference
770 operator[](const difference_type& __n) const
771 { return _M_current[__n]; }
772
773 __normal_iterator&
774 operator+=(const difference_type& __n)
775 { _M_current += __n; return *this; }
776
777 __normal_iterator
778 operator+(const difference_type& __n) const
779 { return __normal_iterator(_M_current + __n); }
780
781 __normal_iterator&
782 operator-=(const difference_type& __n)
783 { _M_current -= __n; return *this; }
784
785 __normal_iterator
786 operator-(const difference_type& __n) const
787 { return __normal_iterator(_M_current - __n); }
788
789 const _Iterator&
790 base() const
791 { return _M_current; }
792 };
793
794 // Note: In what follows, the left- and right-hand-side iterators are
795 // allowed to vary in types (conceptually in cv-qualification) so that
796 // comparison between cv-qualified and non-cv-qualified iterators be
797 // valid. However, the greedy and unfriendly operators in std::rel_ops
798 // will make overload resolution ambiguous (when in scope) if we don't
799 // provide overloads whose operands are of the same type. Can someone
800 // remind me what generic programming is about? -- Gaby
801
802 // Forward iterator requirements
803 template<typename _IteratorL, typename _IteratorR, typename _Container>
804 inline bool
805 operator==(const __normal_iterator<_IteratorL, _Container>& __lhs,
806 const __normal_iterator<_IteratorR, _Container>& __rhs)
807 { return __lhs.base() == __rhs.base(); }
808
809 template<typename _Iterator, typename _Container>
810 inline bool
811 operator==(const __normal_iterator<_Iterator, _Container>& __lhs,
812 const __normal_iterator<_Iterator, _Container>& __rhs)
813 { return __lhs.base() == __rhs.base(); }
814
815 template<typename _IteratorL, typename _IteratorR, typename _Container>
816 inline bool
817 operator!=(const __normal_iterator<_IteratorL, _Container>& __lhs,
818 const __normal_iterator<_IteratorR, _Container>& __rhs)
819 { return __lhs.base() != __rhs.base(); }
820
821 template<typename _Iterator, typename _Container>
822 inline bool
823 operator!=(const __normal_iterator<_Iterator, _Container>& __lhs,
824 const __normal_iterator<_Iterator, _Container>& __rhs)
825 { return __lhs.base() != __rhs.base(); }
18
Assuming the condition is true
19
Returning the value 1, which participates in a condition later
826
827 // Random access iterator requirements
828 template<typename _IteratorL, typename _IteratorR, typename _Container>
829 inline bool
830 operator<(const __normal_iterator<_IteratorL, _Container>& __lhs,
831 const __normal_iterator<_IteratorR, _Container>& __rhs)
832 { return __lhs.base() < __rhs.base(); }
833
834 template<typename _Iterator, typename _Container>
835 inline bool
836 operator<(const __normal_iterator<_Iterator, _Container>& __lhs,
837 const __normal_iterator<_Iterator, _Container>& __rhs)
838 { return __lhs.base() < __rhs.base(); }
839
840 template<typename _IteratorL, typename _IteratorR, typename _Container>
841 inline bool
842 operator>(const __normal_iterator<_IteratorL, _Container>& __lhs,
843 const __normal_iterator<_IteratorR, _Container>& __rhs)
844 { return __lhs.base() > __rhs.base(); }
845
846 template<typename _Iterator, typename _Container>
847 inline bool
848 operator>(const __normal_iterator<_Iterator, _Container>& __lhs,
849 const __normal_iterator<_Iterator, _Container>& __rhs)
850 { return __lhs.base() > __rhs.base(); }
851
852 template<typename _IteratorL, typename _IteratorR, typename _Container>
853 inline bool
854 operator<=(const __normal_iterator<_IteratorL, _Container>& __lhs,
855 const __normal_iterator<_IteratorR, _Container>& __rhs)
856 { return __lhs.base() <= __rhs.base(); }
857
858 template<typename _Iterator, typename _Container>
859 inline bool
860 operator<=(const __normal_iterator<_Iterator, _Container>& __lhs,
861 const __normal_iterator<_Iterator, _Container>& __rhs)
862 { return __lhs.base() <= __rhs.base(); }
863
864 template<typename _IteratorL, typename _IteratorR, typename _Container>
865 inline bool
866 operator>=(const __normal_iterator<_IteratorL, _Container>& __lhs,
867 const __normal_iterator<_IteratorR, _Container>& __rhs)
868 { return __lhs.base() >= __rhs.base(); }
869
870 template<typename _Iterator, typename _Container>
871 inline bool
872 operator>=(const __normal_iterator<_Iterator, _Container>& __lhs,
873 const __normal_iterator<_Iterator, _Container>& __rhs)
874 { return __lhs.base() >= __rhs.base(); }
875
876 // _GLIBCXX_RESOLVE_LIB_DEFECTS
877 // According to the resolution of DR179 not only the various comparison
878 // operators but also operator- must accept mixed iterator/const_iterator
879 // parameters.
880 template<typename _IteratorL, typename _IteratorR, typename _Container>
881#if __cplusplus201103L >= 201103L
882 // DR 685.
883 inline auto
884 operator-(const __normal_iterator<_IteratorL, _Container>& __lhs,
885 const __normal_iterator<_IteratorR, _Container>& __rhs)
886 -> decltype(__lhs.base() - __rhs.base())
887#else
888 inline typename __normal_iterator<_IteratorL, _Container>::difference_type
889 operator-(const __normal_iterator<_IteratorL, _Container>& __lhs,
890 const __normal_iterator<_IteratorR, _Container>& __rhs)
891#endif
892 { return __lhs.base() - __rhs.base(); }
893
894 template<typename _Iterator, typename _Container>
895 inline typename __normal_iterator<_Iterator, _Container>::difference_type
896 operator-(const __normal_iterator<_Iterator, _Container>& __lhs,
897 const __normal_iterator<_Iterator, _Container>& __rhs)
898 { return __lhs.base() - __rhs.base(); }
899
900 template<typename _Iterator, typename _Container>
901 inline __normal_iterator<_Iterator, _Container>
902 operator+(typename __normal_iterator<_Iterator, _Container>::difference_type
903 __n, const __normal_iterator<_Iterator, _Container>& __i)
904 { return __normal_iterator<_Iterator, _Container>(__i.base() + __n); }
905
906_GLIBCXX_END_NAMESPACE_VERSION
907} // namespace
908
909#if __cplusplus201103L >= 201103L
910
911namespace std _GLIBCXX_VISIBILITY(default)__attribute__ ((__visibility__ ("default")))
912{
913_GLIBCXX_BEGIN_NAMESPACE_VERSION
914
915 /**
916 * @addtogroup iterators
917 * @{
918 */
919
920 // 24.4.3 Move iterators
921 /**
922 * Class template move_iterator is an iterator adapter with the same
923 * behavior as the underlying iterator except that its dereference
924 * operator implicitly converts the value returned by the underlying
925 * iterator's dereference operator to an rvalue reference. Some
926 * generic algorithms can be called with move iterators to replace
927 * copying with moving.
928 */
929 template<typename _Iterator>
930 class move_iterator
931 {
932 protected:
933 _Iterator _M_current;
934
935 typedef iterator_traits<_Iterator> __traits_type;
936
937 public:
938 typedef _Iterator iterator_type;
939 typedef typename __traits_type::iterator_category iterator_category;
940 typedef typename __traits_type::value_type value_type;
941 typedef typename __traits_type::difference_type difference_type;
942 // NB: DR 680.
943 typedef _Iterator pointer;
944 typedef value_type&& reference;
945
946 move_iterator()
947 : _M_current() { }
948
949 explicit
950 move_iterator(iterator_type __i)
951 : _M_current(__i) { }
952
953 template<typename _Iter>
954 move_iterator(const move_iterator<_Iter>& __i)
955 : _M_current(__i.base()) { }
956
957 iterator_type
958 base() const
959 { return _M_current; }
960
961 reference
962 operator*() const
963 { return std::move(*_M_current); }
964
965 pointer
966 operator->() const
967 { return _M_current; }
968
969 move_iterator&
970 operator++()
971 {
972 ++_M_current;
973 return *this;
974 }
975
976 move_iterator
977 operator++(int)
978 {
979 move_iterator __tmp = *this;
980 ++_M_current;
981 return __tmp;
982 }
983
984 move_iterator&
985 operator--()
986 {
987 --_M_current;
988 return *this;
989 }
990
991 move_iterator
992 operator--(int)
993 {
994 move_iterator __tmp = *this;
995 --_M_current;
996 return __tmp;
997 }
998
999 move_iterator
1000 operator+(difference_type __n) const
1001 { return move_iterator(_M_current + __n); }
1002
1003 move_iterator&
1004 operator+=(difference_type __n)
1005 {
1006 _M_current += __n;
1007 return *this;
1008 }
1009
1010 move_iterator
1011 operator-(difference_type __n) const
1012 { return move_iterator(_M_current - __n); }
1013
1014 move_iterator&
1015 operator-=(difference_type __n)
1016 {
1017 _M_current -= __n;
1018 return *this;
1019 }
1020
1021 reference
1022 operator[](difference_type __n) const
1023 { return std::move(_M_current[__n]); }
1024 };
1025
1026 // Note: See __normal_iterator operators note from Gaby to understand
1027 // why there are always 2 versions for most of the move_iterator
1028 // operators.
1029 template<typename _IteratorL, typename _IteratorR>
1030 inline bool
1031 operator==(const move_iterator<_IteratorL>& __x,
1032 const move_iterator<_IteratorR>& __y)
1033 { return __x.base() == __y.base(); }
1034
1035 template<typename _Iterator>
1036 inline bool
1037 operator==(const move_iterator<_Iterator>& __x,
1038 const move_iterator<_Iterator>& __y)
1039 { return __x.base() == __y.base(); }
1040
1041 template<typename _IteratorL, typename _IteratorR>
1042 inline bool
1043 operator!=(const move_iterator<_IteratorL>& __x,
1044 const move_iterator<_IteratorR>& __y)
1045 { return !(__x == __y); }
1046
1047 template<typename _Iterator>
1048 inline bool
1049 operator!=(const move_iterator<_Iterator>& __x,
1050 const move_iterator<_Iterator>& __y)
1051 { return !(__x == __y); }
1052
1053 template<typename _IteratorL, typename _IteratorR>
1054 inline bool
1055 operator<(const move_iterator<_IteratorL>& __x,
1056 const move_iterator<_IteratorR>& __y)
1057 { return __x.base() < __y.base(); }
1058
1059 template<typename _Iterator>
1060 inline bool
1061 operator<(const move_iterator<_Iterator>& __x,
1062 const move_iterator<_Iterator>& __y)
1063 { return __x.base() < __y.base(); }
1064
1065 template<typename _IteratorL, typename _IteratorR>
1066 inline bool
1067 operator<=(const move_iterator<_IteratorL>& __x,
1068 const move_iterator<_IteratorR>& __y)
1069 { return !(__y < __x); }
1070
1071 template<typename _Iterator>
1072 inline bool
1073 operator<=(const move_iterator<_Iterator>& __x,
1074 const move_iterator<_Iterator>& __y)
1075 { return !(__y < __x); }
1076
1077 template<typename _IteratorL, typename _IteratorR>
1078 inline bool
1079 operator>(const move_iterator<_IteratorL>& __x,
1080 const move_iterator<_IteratorR>& __y)
1081 { return __y < __x; }
1082
1083 template<typename _Iterator>
1084 inline bool
1085 operator>(const move_iterator<_Iterator>& __x,
1086 const move_iterator<_Iterator>& __y)
1087 { return __y < __x; }
1088
1089 template<typename _IteratorL, typename _IteratorR>
1090 inline bool
1091 operator>=(const move_iterator<_IteratorL>& __x,
1092 const move_iterator<_IteratorR>& __y)
1093 { return !(__x < __y); }
1094
1095 template<typename _Iterator>
1096 inline bool
1097 operator>=(const move_iterator<_Iterator>& __x,
1098 const move_iterator<_Iterator>& __y)
1099 { return !(__x < __y); }
1100
1101 // DR 685.
1102 template<typename _IteratorL, typename _IteratorR>
1103 inline auto
1104 operator-(const move_iterator<_IteratorL>& __x,
1105 const move_iterator<_IteratorR>& __y)
1106 -> decltype(__x.base() - __y.base())
1107 { return __x.base() - __y.base(); }
1108
1109 template<typename _Iterator>
1110 inline auto
1111 operator-(const move_iterator<_Iterator>& __x,
1112 const move_iterator<_Iterator>& __y)
1113 -> decltype(__x.base() - __y.base())
1114 { return __x.base() - __y.base(); }
1115
1116 template<typename _Iterator>
1117 inline move_iterator<_Iterator>
1118 operator+(typename move_iterator<_Iterator>::difference_type __n,
1119 const move_iterator<_Iterator>& __x)
1120 { return __x + __n; }
1121
1122 template<typename _Iterator>
1123 inline move_iterator<_Iterator>
1124 make_move_iterator(_Iterator __i)
1125 { return move_iterator<_Iterator>(__i); }
1126
1127 template<typename _Iterator, typename _ReturnType
1128 = typename conditional<__move_if_noexcept_cond
1129 <typename iterator_traits<_Iterator>::value_type>::value,
1130 _Iterator, move_iterator<_Iterator>>::type>
1131 inline _ReturnType
1132 __make_move_if_noexcept_iterator(_Iterator __i)
1133 { return _ReturnType(__i); }
1134
1135 // @} group iterators
1136
1137_GLIBCXX_END_NAMESPACE_VERSION
1138} // namespace
1139
1140#define _GLIBCXX_MAKE_MOVE_ITERATOR(_Iter)std::make_move_iterator(_Iter) std::make_move_iterator(_Iter)
1141#define _GLIBCXX_MAKE_MOVE_IF_NOEXCEPT_ITERATOR(_Iter)std::__make_move_if_noexcept_iterator(_Iter) \
1142 std::__make_move_if_noexcept_iterator(_Iter)
1143#else
1144#define _GLIBCXX_MAKE_MOVE_ITERATOR(_Iter)std::make_move_iterator(_Iter) (_Iter)
1145#define _GLIBCXX_MAKE_MOVE_IF_NOEXCEPT_ITERATOR(_Iter)std::__make_move_if_noexcept_iterator(_Iter) (_Iter)
1146#endif // C++11
1147
1148#endif