Bug Summary

File:alld2/home/sdobbs/Software/jana/jana_0.8.2/Linux_CentOS7.7-x86_64-gcc4.8.5/include/JANA/JEventLoop.h
Warning:line 398, column 7
Null pointer passed to 2nd parameter expecting 'nonnull'

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-unknown-linux-gnu -analyze -disable-free -main-file-name DTOFHit_factory.cc -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -mrelocation-model pic -pic-level 2 -fhalf-no-semantic-interposition -mframe-pointer=none -fmath-errno -fno-rounding-math -mconstructor-aliases -munwind-tables -target-cpu x86-64 -tune-cpu generic -fno-split-dwarf-inlining -debugger-tuning=gdb -resource-dir /w/halld-scifs17exp/home/sdobbs/clang/llvm-project/install/lib/clang/12.0.0 -D HAVE_CCDB -D HAVE_RCDB -D HAVE_EVIO -D HAVE_TMVA=1 -D RCDB_MYSQL=1 -D RCDB_SQLITE=1 -D SQLITE_USE_LEGACY_STRUCT=ON -I .Linux_CentOS7.7-x86_64-gcc4.8.5/libraries/TOF -I libraries/TOF -I . -I libraries -I libraries/include -I /w/halld-scifs17exp/home/sdobbs/clang/halld_recon/Linux_CentOS7.7-x86_64-gcc4.8.5/include -I external/xstream/include -I /usr/include/tirpc -I /group/halld/Software/builds/Linux_CentOS7.7-x86_64-gcc4.8.5/root/root-6.08.06/include -I /w/halld-scifs17exp/halld2/home/sdobbs/Software/jana/jana_0.8.2/Linux_CentOS7.7-x86_64-gcc4.8.5/include -I /group/halld/Software/builds/Linux_CentOS7.7-x86_64-gcc4.8.5/ccdb/ccdb_1.06.06/include -I /group/halld/Software/builds/Linux_CentOS7.7-x86_64-gcc4.8.5/rcdb/rcdb_0.06.00/cpp/include -I /usr/include/mysql -I /group/halld/Software/builds/Linux_CentOS7.7-x86_64-gcc4.8.5/sqlitecpp/SQLiteCpp-2.2.0^bs130/include -I /group/halld/Software/builds/Linux_CentOS7.7-x86_64-gcc4.8.5/sqlite/sqlite-3.13.0^bs130/include -I /group/halld/Software/builds/Linux_CentOS7.7-x86_64-gcc4.8.5/hdds/hdds-4.9.0/Linux_CentOS7.7-x86_64-gcc4.8.5/src -I /group/halld/Software/builds/Linux_CentOS7.7-x86_64-gcc4.8.5/xerces-c/xerces-c-3.1.4/include -I /group/halld/Software/builds/Linux_CentOS7.7-x86_64-gcc4.8.5/evio/evio-4.4.6/Linux-x86_64/include -internal-isystem /usr/lib/gcc/x86_64-redhat-linux/4.8.5/../../../../include/c++/4.8.5 -internal-isystem /usr/lib/gcc/x86_64-redhat-linux/4.8.5/../../../../include/c++/4.8.5/x86_64-redhat-linux -internal-isystem /usr/lib/gcc/x86_64-redhat-linux/4.8.5/../../../../include/c++/4.8.5/backward -internal-isystem /usr/local/include -internal-isystem /w/halld-scifs17exp/home/sdobbs/clang/llvm-project/install/lib/clang/12.0.0/include -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -std=c++11 -fdeprecated-macro -fdebug-compilation-dir /home/sdobbs/work/clang/halld_recon/src -ferror-limit 19 -fgnuc-version=4.2.1 -fcxx-exceptions -fexceptions -vectorize-loops -vectorize-slp -analyzer-output=html -faddrsig -o /tmp/scan-build-2021-01-21-110224-160369-1 -x c++ libraries/TOF/DTOFHit_factory.cc

libraries/TOF/DTOFHit_factory.cc

1// $Id$
2//
3// File: DTOFHit_factory.cc
4// Created: Wed Aug 7 09:30:17 EDT 2013
5// Creator: davidl (on Darwin harriet.jlab.org 11.4.2 i386)
6//
7
8
9#include <iostream>
10#include <iomanip>
11#include <cmath>
12#include <vector>
13#include <limits>
14
15#include <TMath.h>
16
17using namespace std;
18
19#include <TOF/DTOFDigiHit.h>
20#include <TOF/DTOFTDCDigiHit.h>
21#include "DTOFHit_factory.h"
22#include <DAQ/Df250PulseIntegral.h>
23#include <DAQ/Df250Config.h>
24#include <DAQ/DCODAROCInfo.h>
25
26using namespace jana;
27
28static bool COSMIC_DATA = false;
29static bool OVERRIDE_HIGH_TIME_CUT = false;
30static bool OVERRIDE_LOW_TIME_CUT = false;
31
32int TOF_DEBUG = 0;
33
34//------------------
35// init
36//------------------
37jerror_t DTOFHit_factory::init(void)
38{
39
40 gPARMS->SetDefaultParameter("TOF:DEBUG_TOF_HITS", TOF_DEBUG,
41 "Generate DEBUG output");
42
43 USE_NEWAMP_4WALKCORR = 0;
44 USE_AMP_4WALKCORR = 0;
45 USE_NEW_WALK_NEW = 0;
46 USE_NEW_4WALKCORR = 0; // this is new always zero and not used!
47
48 DELTA_T_ADC_TDC_MAX = 20.0; // ns
49 // DELTA_T_ADC_TDC_MAX = 30.0; // ns, value based on the studies from cosmic events
50 gPARMS->SetDefaultParameter("TOF:DELTA_T_ADC_TDC_MAX", DELTA_T_ADC_TDC_MAX,
51 "Maximum difference in ns between a (calibrated) fADC time and F1TDC time for them to be matched in a single hit");
52
53 int analyze_cosmic_data = 0;
54 gPARMS->SetDefaultParameter("TOF:COSMIC_DATA", analyze_cosmic_data,
55 "Special settings for analysing cosmic data");
56 if(analyze_cosmic_data > 0)
57 COSMIC_DATA = true;
58
59 CHECK_FADC_ERRORS = true;
60 gPARMS->SetDefaultParameter("TOF:CHECK_FADC_ERRORS", CHECK_FADC_ERRORS, "Set to 1 to reject hits with fADC250 errors, set to 0 to keep these hits");
61
62 gPARMS->SetDefaultParameter("TOF:OVERRIDE_HIGH_TIME_CUT", OVERRIDE_HIGH_TIME_CUT, "Set to 1 to override the high side time cut, set to 0 to use the values from CCDB");
63 gPARMS->SetDefaultParameter("TOF:HIGH_TIME_CUT", hi_time_cut, "Set the value of the high side time cut");
64 gPARMS->SetDefaultParameter("TOF:OVERRIDE_LOW_TIME_CUT", OVERRIDE_LOW_TIME_CUT, "Set to 1 to override the low side time cut, set to 0 to use the values from CCDB");
65 gPARMS->SetDefaultParameter("TOF:LOW_TIME_CUT", lo_time_cut, "Set the value of the low side time cut");
66
67
68 /// Set basic conversion constants
69 a_scale = 0.2/5.2E5;
70 t_scale = 0.0625; // 62.5 ps/count
71 t_base = 0.; // ns
72 t_base_tdc = 0.; // ns
73
74 if(COSMIC_DATA)
75 // Hardcoding of 110 taken from cosmics events
76 tdc_adc_time_offset = 110.;
77 else
78 tdc_adc_time_offset = 0.;
79
80 // default values, will override from DTOFGeometry
81 TOF_NUM_PLANES = 2;
82 TOF_NUM_BARS = 44;
83 TOF_MAX_CHANNELS = 176;
84
85 return NOERROR;
86}
87
88//------------------
89// brun
90//------------------
91jerror_t DTOFHit_factory::brun(jana::JEventLoop *eventLoop, int32_t runnumber)
92{
93 // Only print messages for one thread whenever run number change
94 static pthread_mutex_t print_mutex = PTHREAD_MUTEX_INITIALIZER{ { 0, 0, 0, 0, 0, 0, 0, { 0, 0 } } };
95 static set<int> runs_announced;
96 pthread_mutex_lock(&print_mutex);
97 bool print_messages = false;
98 if(runs_announced.find(runnumber) == runs_announced.end()){
99 print_messages = true;
100 runs_announced.insert(runnumber);
101 }
102 pthread_mutex_unlock(&print_mutex);
103
104 // read in geometry information
105 vector<const DTOFGeometry*> tofGeomVect;
106 eventLoop->Get( tofGeomVect );
107 if(tofGeomVect.size()<1) return OBJECT_NOT_AVAILABLE;
108 const DTOFGeometry& tofGeom = *(tofGeomVect[0]);
109
110 TOF_NUM_PLANES = tofGeom.Get_NPlanes();
111 TOF_NUM_BARS = tofGeom.Get_NBars();
112 TOF_MAX_CHANNELS = TOF_NUM_PLANES*TOF_NUM_BARS*2; // total number of bars * 2 ends
113
114 /// Read in calibration constants
115 vector<double> raw_adc_pedestals;
116 vector<double> raw_adc_gains;
117 vector<double> raw_adc_offsets;
118 vector<double> raw_tdc_offsets;
119 vector<double> raw_adc2E;
120
121 if(print_messages) jout << "In DTOFHit_factory, loading constants..." << endl;
122
123 // load timing cut values
124 if(OVERRIDE_HIGH_TIME_CUT && OVERRIDE_LOW_TIME_CUT) {
125
126 double loli = lo_time_cut;
127 double hili = hi_time_cut;
128 TimeCenterCut = hili - (hili-loli)/2.;
129 TimeWidthCut = (hili-loli)/2.;
130
131 } else {
132
133 vector<double> time_cut_values;
134 string locTOFHitTimeCutTable = tofGeom.Get_CCDB_DirectoryName() + "/HitTimeCut";
135 if(eventLoop->GetCalib(locTOFHitTimeCutTable.c_str(), time_cut_values)){
136 jout << "Error loading " << locTOFHitTimeCutTable << " SET DEFUALT to 0 and 100!" << endl;
137 TimeCenterCut = 0.;
138 TimeWidthCut = 100.;
139 } else {
140
141 double loli = 0., hili = 0.;
142 if(OVERRIDE_LOW_TIME_CUT)
143 loli = lo_time_cut;
144 else
145 loli = time_cut_values[0];
146 if(OVERRIDE_HIGH_TIME_CUT)
147 hili = hi_time_cut;
148 else
149 hili = time_cut_values[1];
150 TimeCenterCut = hili - (hili-loli)/2.;
151 TimeWidthCut = (hili-loli)/2.;
152 //jout<<"TOF Timing Cuts for PRUNING: "<<TimeCenterCut<<" +/- "<<TimeWidthCut<<endl;
153 }
154
155 }
156
157 // load scale factors
158 map<string,double> scale_factors;
159 string locTOFDigiScalesTable = tofGeom.Get_CCDB_DirectoryName() + "/digi_scales";
160 if(eventLoop->GetCalib(locTOFDigiScalesTable.c_str(), scale_factors))
161 jout << "Error loading " << locTOFDigiScalesTable << " !" << endl;
162 if( scale_factors.find("TOF_ADC_ASCALE") != scale_factors.end() ) {
163 ; //a_scale = scale_factors["TOF_ADC_ASCALE"];
164 } else {
165 jerr << "Unable to get TOF_ADC_ASCALE from " << locTOFDigiScalesTable << " !" << endl;
166 }
167 if( scale_factors.find("TOF_ADC_TSCALE") != scale_factors.end() ) {
168 ; //t_scale = scale_factors["TOF_ADC_TSCALE"];
169 } else {
170 jerr << "Unable to get TOF_ADC_TSCALE from " << locTOFDigiScalesTable << " !" << endl;
171 }
172
173 // load base time offset
174 map<string,double> base_time_offset;
175 string locTOFBaseTimeOffsetTable = tofGeom.Get_CCDB_DirectoryName() + "/base_time_offset";
176 if (eventLoop->GetCalib(locTOFBaseTimeOffsetTable.c_str(),base_time_offset))
177 jout << "Error loading " << locTOFBaseTimeOffsetTable << " !" << endl;
178 if (base_time_offset.find("TOF_BASE_TIME_OFFSET") != base_time_offset.end())
179 t_base = base_time_offset["TOF_BASE_TIME_OFFSET"];
180 else
181 jerr << "Unable to get TOF_BASE_TIME_OFFSET from "<<locTOFBaseTimeOffsetTable<<" !" << endl;
182
183 if (base_time_offset.find("TOF_TDC_BASE_TIME_OFFSET") != base_time_offset.end())
184 t_base_tdc = base_time_offset["TOF_TDC_BASE_TIME_OFFSET"];
185 else
186 jerr << "Unable to get TOF_TDC_BASE_TIME_OFFSET from "<<locTOFBaseTimeOffsetTable<<" !" << endl;
187
188 // load constant tables
189 string locTOFPedestalsTable = tofGeom.Get_CCDB_DirectoryName() + "/pedestals";
190 if(eventLoop->GetCalib(locTOFPedestalsTable.c_str(), raw_adc_pedestals))
191 jout << "Error loading " << locTOFPedestalsTable << " !" << endl;
192 string locTOFGainsTable = tofGeom.Get_CCDB_DirectoryName() + "/gains";
193 if(eventLoop->GetCalib(locTOFGainsTable.c_str(), raw_adc_gains))
194 jout << "Error loading " << locTOFGainsTable << " !" << endl;
195 string locTOFADCTimeOffetsTable = tofGeom.Get_CCDB_DirectoryName() + "/adc_timing_offsets";
196 if(eventLoop->GetCalib(locTOFADCTimeOffetsTable.c_str(), raw_adc_offsets))
197 jout << "Error loading " << locTOFADCTimeOffetsTable << " !" << endl;
198
199 // check which walk correction to use:
200 string locTOFWalkCorrectionType = tofGeom.Get_CCDB_DirectoryName() + "/walkcorr_type";
201 vector<int> walkcorrtype;
202 if(eventLoop->GetCalib(locTOFWalkCorrectionType.c_str(), walkcorrtype)) {
203 jout<<"\033[1;31m"; // red text";
204 jout<< "Error loading "<<locTOFWalkCorrectionType<<" !\033[0m" << endl;
205 return (jerror_t)101;
206 }
207
208 switch ((int)walkcorrtype[0]) {
209
210 case 1: // walk corrections based on Integral values
211 {
212 if(print_messages) jout<<"TOF: USE WALK CORRECTION TYPE 1"<<endl;
213 string locTOFTimewalkTable = tofGeom.Get_CCDB_DirectoryName() + "/timewalk_parms";
214 if(eventLoop->GetCalib(locTOFTimewalkTable.c_str(), timewalk_parameters)){
215 jout << "Error loading "<<locTOFTimewalkTable<<" !" << endl;
216 }
217 string locTOFChanOffsetTable1 = tofGeom.Get_CCDB_DirectoryName() + "/timing_offsets";
218 if(eventLoop->GetCalib(locTOFChanOffsetTable1.c_str(), raw_tdc_offsets)){
219 jout << "Error loading "<<locTOFChanOffsetTable1<<" !" << endl;
220 }
221 }
222 break;
223
224 case 2: // walk correction based on peak Amplitudes single function
225 {
226 if(print_messages) jout<<"TOF: USE WALK CORRECTION TYPE 2"<<endl;
227 USE_AMP_4WALKCORR = 1;
228 string locTOFTimewalkAMPTable = tofGeom.Get_CCDB_DirectoryName() + "/timewalk_parms_AMP";
229 if(eventLoop->GetCalib(locTOFTimewalkAMPTable.c_str(), timewalk_parameters_AMP)){
230 jout << "Error loading "<<locTOFTimewalkAMPTable<<" !" << endl;
231 }
232 string locTOFChanOffsetTable2 = tofGeom.Get_CCDB_DirectoryName() + "/timing_offsets";
233 if(eventLoop->GetCalib(locTOFChanOffsetTable2.c_str(), raw_tdc_offsets)){
234 jout << "Error loading "<<locTOFChanOffsetTable2<<" !" << endl;
235 }
236 }
237 break;
238
239 case 3:
240 {
241 if(print_messages) jout<<"TOF: USE WALK CORRECTION TYPE 3"<<endl;
242 USE_NEWAMP_4WALKCORR = 1;
243 string locTOFChanOffsetNEWAMPTable = tofGeom.Get_CCDB_DirectoryName() + "/timing_offsets_NEWAMP";
244 if(eventLoop->GetCalib(locTOFChanOffsetNEWAMPTable.c_str(), raw_tdc_offsets)) {
245 jout<< "Error loading "<<locTOFChanOffsetNEWAMPTable<<" !" << endl;
246 }
247 string locTOFTimewalkNEWAMPTable = tofGeom.Get_CCDB_DirectoryName() + "/timewalk_parms_NEWAMP";
248 if(eventLoop->GetCalib(locTOFTimewalkNEWAMPTable.c_str(), timewalk_parameters_NEWAMP)){
249 jout << "Error loading "<<locTOFTimewalkNEWAMPTable<<" !" << endl;
250 }
251 }
252 break;
253
254 case 4:
255 {
256 if(print_messages) jout<<"TOF: USE WALK CORRECTION TYPE 4"<<endl;
257 USE_NEW_WALK_NEW = 1;
258 string locTOFTimewalkNEWTable = tofGeom.Get_CCDB_DirectoryName() + "/timewalk_parms_5PAR";
259 if(eventLoop->GetCalib(locTOFTimewalkNEWTable.c_str(), timewalk_parameters_5PAR)){
260 jout << "Error loading "<<locTOFTimewalkNEWTable<<" !" << endl;
261 }
262 string locTOFChanOffsetTable = tofGeom.Get_CCDB_DirectoryName() + "/timing_offsets_5PAR";
263 if(eventLoop->GetCalib(locTOFChanOffsetTable.c_str(), raw_tdc_offsets)){
264 jout << "Error loading "<<locTOFChanOffsetTable<<" !" << endl;
265 }
266 }
267 break;
268
269 }
270
271
272 FillCalibTable(adc_pedestals, raw_adc_pedestals, tofGeom);
273 FillCalibTable(adc_gains, raw_adc_gains, tofGeom);
274 FillCalibTable(adc_time_offsets, raw_adc_offsets, tofGeom);
275 FillCalibTable(tdc_time_offsets, raw_tdc_offsets, tofGeom);
276
277
278 string locTOFADC2ETable = tofGeom.Get_CCDB_DirectoryName() + "/adc2E";
279 if(eventLoop->GetCalib(locTOFADC2ETable.c_str(), raw_adc2E))
280 jout << "Error loading " << locTOFADC2ETable << " !" << endl;
281
282 // make sure we have one entry per channel
283 adc2E.resize(TOF_NUM_PLANES*TOF_NUM_BARS*2);
284 for (unsigned int n=0; n<raw_adc2E.size(); n++){
285 adc2E[n] = raw_adc2E[n];
286 }
287
288 /*
289 CheckCalibTable(adc_pedestals,"/TOF/pedestals");
290 CheckCalibTable(adc_gains,"/TOF/gains");
291 CheckCalibTable(adc_time_offsets,"/TOF/adc_timing_offsets");
292 CheckCalibTable(tdc_time_offsets,"/TOF/timing_offsets");
293 */
294
295 return NOERROR;
296}
297
298//------------------
299// evnt
300//------------------
301jerror_t DTOFHit_factory::evnt(JEventLoop *loop, uint64_t eventnumber)
302{
303 /// Generate DTOFHit object for each DTOFDigiHit object.
304 /// This is where the first set of calibration constants
305 /// is applied to convert from digitzed units into natural
306 /// units.
307 ///
308 /// Note that this code does NOT get called for simulated
309 /// data in HDDM format. The HDDM event source will copy
310 /// the precalibrated values directly into the _data vector.
311
312 const DTTabUtilities* locTTabUtilities = NULL__null;
313 loop->GetSingle(locTTabUtilities);
1
Calling 'JEventLoop::GetSingle'
314
315 // First, make hits out of all fADC250 hits
316 vector<const DTOFDigiHit*> digihits;
317 loop->Get(digihits);
318 for(unsigned int i=0; i<digihits.size(); i++){
319 const DTOFDigiHit *digihit = digihits[i];
320
321 // Error checking for pre-Fall 2016 firmware
322 if(digihit->datasource == 1) {
323 // There is a slight difference between Mode 7 and 8 data
324 // The following condition signals an error state in the flash algorithm
325 // Do not make hits out of these
326 const Df250PulsePedestal* PPobj = NULL__null;
327 digihit->GetSingle(PPobj);
328 if (PPobj != NULL__null) {
329 if (PPobj->pedestal == 0 || PPobj->pulse_peak == 0) continue;
330 } else
331 continue;
332
333 //if (digihit->pulse_time == 0) continue; // Should already be caught
334 }
335
336 if(CHECK_FADC_ERRORS && !locTTabUtilities->CheckFADC250_NoErrors(digihit->QF)){
337
338 if (TOF_DEBUG){
339 vector <const Df250PulseData *> pulses;
340 digihit->Get(pulses);
341 const Df250PulseData *p = pulses[0];
342
343 cout<<"1: "<<eventnumber<<" P/B/E "<<digihit->plane<<"/"<<digihit->bar<<"/"<<digihit->end
344 <<" :::> I/Ped/P/T "<<digihit->pulse_integral<<"/"<<digihit->pedestal<<"/"<<digihit->pulse_peak<<"/"<<digihit->pulse_time
345 <<" QF: 0x"<<hex<<digihit->QF<<dec
346 <<" roc/slot/chan "<<p->rocid<<"/"<<p->slot<<"/"<<p->channel
347 << endl;
348 }
349
350 //continue;
351
352 }
353 // Initialize pedestal to one found in CCDB, but override it
354 // with one found in event if is available (?)
355 // For now, only keep events with a correct pedestal
356 double pedestal = GetConstant(adc_pedestals, digihit); // get mean pedestal from DB in case we need it
357 double nsamples_integral = digihit->nsamples_integral;
358 double nsamples_pedestal = digihit->nsamples_pedestal;
359
360 // nsamples_pedestal should always be positive for valid data - err on the side of caution for now
361 if(nsamples_pedestal == 0) {
362 jerr << "DTOFDigiHit with nsamples_pedestal == 0 ! Event = " << eventnumber << endl;
363 continue;
364 }
365
366 double pedestal4Amp = pedestal;
367 int AlreadyDone = 0;
368 if( (digihit->pedestal>0) && locTTabUtilities->CheckFADC250_PedestalOK(digihit->QF) ) {
369 pedestal = digihit->pedestal * (double)(nsamples_integral)/(double)(nsamples_pedestal); // overwrite pedestal
370 pedestal4Amp = digihit->pedestal;
371 } else {
372
373 if (TOF_DEBUG){
374 vector <const Df250PulseData *> pulses;
375 digihit->Get(pulses);
376 const Df250PulseData *p = pulses[0];
377
378 cout<<"2: "<<eventnumber<<" P/B/E "<<digihit->plane<<"/"<<digihit->bar<<"/"<<digihit->end
379 <<" :::> I/Ped/P/T "<<digihit->pulse_integral<<"/"<<digihit->pedestal<<"/"<<digihit->pulse_peak<<"/"<<digihit->pulse_time
380 <<" QF: 0x"<<hex<<digihit->QF<<dec
381 <<" roc/slot/chan "<<p->rocid<<"/"<<p->slot<<"/"<<p->channel
382 << endl;
383
384 }
385
386 pedestal *= (double)(nsamples_integral);
387 pedestal4Amp *= (double)nsamples_pedestal;
388 AlreadyDone = 1;
389 //continue;
390 }
391
392 if ((digihit->pulse_peak == 0) && (!AlreadyDone)){
393 pedestal = pedestal4Amp * (double)(nsamples_integral);
394 pedestal4Amp *= (double)nsamples_pedestal;
395 }
396
397 // Apply calibration constants here
398 double A = (double)digihit->pulse_integral;
399 double T = (double)digihit->pulse_time;
400 T = t_scale * T - GetConstant(adc_time_offsets, digihit) + t_base;
401 double dA = A - pedestal;
402
403 if (dA<0) {
404
405 if (TOF_DEBUG){
406
407 vector <const Df250PulseData *> pulses;
408 digihit->Get(pulses);
409 const Df250PulseData *p = pulses[0];
410
411 cout<<"3: "<<eventnumber<<" "<<dA<<" "<<digihit->plane<<" "<<digihit->bar<<" "<<digihit->end
412 <<" :::> "<<digihit->pulse_integral<<" "<<digihit->pedestal<<" "<<digihit->pulse_peak<<" "<<digihit->pulse_time
413 <<" roc/slot/chan "<<p->rocid<<"/"<<p->slot<<"/"<<p->channel
414 << endl;
415
416 }
417 // ok if Integral is below zero this is a good hint that we can not use this hit!
418 continue;
419 }
420 // apply Time cut to prune out of time hits
421 if (TMath::Abs(T-TimeCenterCut)> TimeWidthCut ) continue;
422
423 DTOFHit *hit = new DTOFHit;
424 hit->plane = digihit->plane;
425 hit->bar = digihit->bar;
426 hit->end = digihit->end;
427 hit->dE=dA; // this will be scaled to energy units later
428 hit->Amp = (float)digihit->pulse_peak - pedestal4Amp/(float)nsamples_pedestal;
429
430 if (hit->Amp<1){ // this happens if pulse_peak is reported as zero, resort to use scaled Integral value
431 hit->Amp = dA*0.163;
432 }
433
434 if(COSMIC_DATA)
435 hit->dE = (A - 55*pedestal); // value of 55 is taken from (NSB,NSA)=(10,45) in the confg file
436
437 hit->t_TDC=numeric_limits<double>::quiet_NaN();
438 hit->t_fADC=T;
439 hit->t = hit->t_fADC; // set initial time to the ADC time, in case there's no matching TDC hit
440
441 hit->has_fADC=true;
442 hit->has_TDC=false;
443
444 /*
445 cout << "TOF ADC hit = (" << hit->plane << "," << hit->bar << "," << hit->end << ") "
446 << t_scale << " " << T << " "
447 << GetConstant(adc_time_offsets, digihit) << " "
448 << t_scale*GetConstant(adc_time_offsets, digihit) << " " << hit->t << endl;
449 */
450
451 hit->AddAssociatedObject(digihit);
452
453 _data.push_back(hit);
454 }
455
456 //Get the TDC hits
457 vector<const DTOFTDCDigiHit*> tdcdigihits;
458 loop->Get(tdcdigihits);
459
460 // Next, loop over TDC hits, matching them to the
461 // existing fADC hits where possible and updating
462 // their time information. If no match is found, then
463 // create a new hit with just the TDC info.
464 for(unsigned int i=0; i<tdcdigihits.size(); i++)
465 {
466 const DTOFTDCDigiHit *digihit = tdcdigihits[i];
467
468 // Apply calibration constants here
469 double T = locTTabUtilities->Convert_DigiTimeToNs_CAEN1290TDC(digihit);
470 T += t_base_tdc - GetConstant(tdc_time_offsets, digihit) + tdc_adc_time_offset;
471
472 // do not consider Time hits away from coincidence peak Note: This cut should be wide for uncalibrated data!!!!!
473 if (TMath::Abs(T-TimeCenterCut)> TimeWidthCut ) continue;
474
475 /*
476 cout << "TOF TDC hit = (" << digihit->plane << "," << digihit->bar << "," << digihit->end << ") "
477 << T << " " << GetConstant(tdc_time_offsets, digihit) << endl;
478 */
479
480 // Look for existing hits to see if there is a match
481 // or create new one if there is no match
482 DTOFHit *hit = FindMatch(digihit->plane, digihit->bar, digihit->end, T);
483 //DTOFHit *hit = FindMatch(digihit->plane, hit->bar, hit->end, T);
484 if(!hit){
485 continue; // Do not use unmatched TDC hits
486 /*
487 hit = new DTOFHit;
488 hit->plane = digihit->plane;
489 hit->bar = digihit->bar;
490 hit->end = digihit->end;
491 hit->dE = 0.0;
492 hit->Amp = 0.0;
493 hit->t_fADC=numeric_limits<double>::quiet_NaN();
494 hit->has_fADC=false;
495
496 _data.push_back(hit);
497 */
498 } else if (hit->has_TDC) { // this tof ADC hit has already a matching TDC, make new tof ADC hit
499 DTOFHit *newhit = new DTOFHit;
500 newhit->plane = hit->plane;
501 newhit->bar = hit->bar;
502 newhit->end = hit->end;
503 newhit->dE = hit->dE;
504 newhit->Amp = hit->Amp;
505 newhit->t_fADC = hit->t_fADC;
506 newhit->has_fADC = hit->has_fADC;
507 newhit->t_TDC=numeric_limits<double>::quiet_NaN();
508 newhit->t = hit->t_fADC; // set initial time to the ADC time, in case there's no matching TDC hit
509 newhit->has_TDC=false;
510 newhit->AddAssociatedObject(digihit);
511 _data.push_back(newhit);
512 hit = newhit;
513 }
514 hit->has_TDC=true;
515 hit->t_TDC=T;
516
517 if (hit->dE>0.){
518
519 // time walk correction
520 // Note at this point the dE value is still in ADC units
521 double tcorr = 0.;
522 if (USE_AMP_4WALKCORR) {
523 // use amplitude instead of integral
524 tcorr = CalcWalkCorrAmplitude(hit);
525
526 } else if (USE_NEW_4WALKCORR) {
527 // new functional form with 4 parameter but still using integral
528 tcorr = CalcWalkCorrNEW(hit);
529
530 } else if (USE_NEWAMP_4WALKCORR) {
531 // new functional form with 2 functions and 4 parameter using amplitude
532 tcorr = CalcWalkCorrNEWAMP(hit);
533
534 } else if (USE_NEW_WALK_NEW){
535 // new functional form with 5 parameters using singal amplitude
536 tcorr = CalcWalkCorrNEW5PAR(hit);
537
538 } else {
539 // use integral
540 tcorr = CalcWalkCorrIntegral(hit);
541
542 }
543
544 T -= tcorr;
545 }
546 hit->t=T;
547
548 hit->AddAssociatedObject(digihit);
549 }
550
551 // Apply calibration constants to convert pulse integrals to energy units
552 for (unsigned int i=0;i<_data.size();i++){
553 int id=2*TOF_NUM_BARS*_data[i]->plane + TOF_NUM_BARS*_data[i]->end + _data[i]->bar-1;
554 _data[i]->dE *= adc2E[id];
555 //cout<<id<<" "<< adc2E[id]<<" "<<_data[i]->dE<<endl;
556 }
557
558 return NOERROR;
559}
560
561//------------------
562// FindMatch
563//------------------
564DTOFHit* DTOFHit_factory::FindMatch(int plane, int bar, int end, double T)
565{
566 DTOFHit* best_match = NULL__null;
567
568 // Loop over existing hits (from fADC) and look for a match
569 // in both the sector and the time.
570 for(unsigned int i=0; i<_data.size(); i++){
571 DTOFHit *hit = _data[i];
572
573 if(!isfinite(hit->t_fADC)) continue; // only match to fADC hits, not bachelor TDC hits
574 if(hit->plane != plane) continue;
575 if(hit->bar != bar) continue;
576 if(hit->end != end) continue;
577
578 //double delta_T = fabs(hit->t - T);
579 double delta_T = fabs(T - hit->t);
580 if(delta_T > DELTA_T_ADC_TDC_MAX) continue;
581
582 // if there are multiple hits, pick the one that is closest in time
583 if(best_match != NULL__null) {
584 if(delta_T < fabs(best_match->t - T))
585 best_match = hit;
586 } else {
587 best_match = hit;
588 }
589
590 }
591
592 return best_match;
593}
594
595//------------------
596// erun
597//------------------
598jerror_t DTOFHit_factory::erun(void)
599{
600 return NOERROR;
601}
602
603//------------------
604// fini
605//------------------
606jerror_t DTOFHit_factory::fini(void)
607{
608 return NOERROR;
609}
610
611
612//------------------
613// FillCalibTable
614//------------------
615void DTOFHit_factory::FillCalibTable(tof_digi_constants_t &table, vector<double> &raw_table,
616 const DTOFGeometry &tofGeom)
617{
618 char str[256];
619 int channel = 0;
620
621 // reset the table before filling it
622 table.clear();
623
624 for(int plane=0; plane<tofGeom.Get_NPlanes(); plane++) {
625 int plane_index=2*tofGeom.Get_NBars()*plane;
626 table.push_back( vector< pair<double,double> >(tofGeom.Get_NBars()) );
627 for(int bar=0; bar<tofGeom.Get_NBars(); bar++) {
628 table[plane][bar]
629 = pair<double,double>(raw_table[plane_index+bar],
630 raw_table[plane_index+tofGeom.Get_NBars()+bar]);
631 channel+=2;
632 }
633 }
634
635 // check to make sure that we loaded enough channels
636 if(channel != TOF_MAX_CHANNELS) {
637 sprintf(str, "Wrong number of channels for TOF table! channel=%d (should be %d)",
638 channel, TOF_MAX_CHANNELS);
639 cerr << str << endl;
640 throw JException(str);
641 }
642}
643
644
645//------------------------------------
646// GetConstant
647// Allow a few different interfaces
648// NOTE: LoadGeometry() must be called before calling these functions
649//
650// TOF Geometry as defined in the Translation Table:
651// plane = 0-1
652// bar = 1-44
653// end = 0-1
654// Note the different counting schemes used
655//------------------------------------
656const double DTOFHit_factory::GetConstant( const tof_digi_constants_t &the_table,
657 const int in_plane, const int in_bar, const int in_end) const
658{
659 char str[256];
660
661 if( (in_plane < 0) || (in_plane > TOF_NUM_PLANES)) {
662 sprintf(str, "Bad module # requested in DTOFHit_factory::GetConstant()! requested=%d , should be 1-%d", in_plane, TOF_NUM_PLANES);
663 cerr << str << endl;
664 throw JException(str);
665 }
666 if( (in_bar <= 0) || (in_bar > TOF_NUM_BARS)) {
667 sprintf(str, "Bad layer # requested in DTOFHit_factory::GetConstant()! requested=%d , should be 1-%d", in_bar, TOF_NUM_BARS);
668 cerr << str << endl;
669 throw JException(str);
670 }
671 if( (in_end != 0) && (in_end != 1) ) {
672 sprintf(str, "Bad end # requested in DTOFHit_factory::GetConstant()! requested=%d , should be 0-1", in_end);
673 cerr << str << endl;
674 throw JException(str);
675 }
676
677 // we have two ends, indexed as 0/1
678 // could be north/south or up/down depending on the bar orientation
679 if(in_end == 0) {
680 return the_table[in_plane][in_bar].first;
681 } else {
682 return the_table[in_plane][in_bar].second;
683 }
684}
685
686const double DTOFHit_factory::GetConstant( const tof_digi_constants_t &the_table,
687 const DTOFHit *in_hit) const
688{
689 char str[256];
690
691 if( (in_hit->plane < 0) || (in_hit->plane > TOF_NUM_PLANES)) {
692 sprintf(str, "Bad module # requested in DTOFHit_factory::GetConstant()! requested=%d , should be 1-%d", in_hit->plane, TOF_NUM_PLANES);
693 cerr << str << endl;
694 throw JException(str);
695 }
696 if( (in_hit->bar <= 0) || (in_hit->bar > TOF_NUM_BARS)) {
697 sprintf(str, "Bad layer # requested in DTOFHit_factory::GetConstant()! requested=%d , should be 1-%d", in_hit->bar, TOF_NUM_BARS);
698 cerr << str << endl;
699 throw JException(str);
700 }
701 if( (in_hit->end != 0) && (in_hit->end != 1) ) {
702 sprintf(str, "Bad end # requested in DTOFHit_factory::GetConstant()! requested=%d , should be 0-1", in_hit->end);
703 cerr << str << endl;
704 throw JException(str);
705 }
706
707 // we have two ends, indexed as 0/1
708 // could be north/south or up/down depending on the bar orientation
709 if(in_hit->end == 0) {
710 return the_table[in_hit->plane][in_hit->bar-1].first;
711 } else {
712 return the_table[in_hit->plane][in_hit->bar-1].second;
713 }
714}
715
716const double DTOFHit_factory::GetConstant( const tof_digi_constants_t &the_table,
717 const DTOFDigiHit *in_digihit) const
718{
719 char str[256];
720
721 if( (in_digihit->plane < 0) || (in_digihit->plane > TOF_NUM_PLANES)) {
722 sprintf(str, "Bad module # requested in DTOFHit_factory::GetConstant()! requested=%d , should be 1-%d", in_digihit->plane, TOF_NUM_PLANES);
723 cerr << str << endl;
724 throw JException(str);
725 }
726 if( (in_digihit->bar <= 0) || (in_digihit->bar > TOF_NUM_BARS)) {
727 sprintf(str, "Bad layer # requested in DTOFHit_factory::GetConstant()! requested=%d , should be 1-%d", in_digihit->bar, TOF_NUM_BARS);
728 cerr << str << endl;
729 throw JException(str);
730 }
731 if( (in_digihit->end != 0) && (in_digihit->end != 1) ) {
732 sprintf(str, "Bad end # requested in DTOFHit_factory::GetConstant()! requested=%d , should be 0-1", in_digihit->end);
733 cerr << str << endl;
734 throw JException(str);
735 }
736
737 // we have two ends, indexed as 0/1
738 // could be north/south or up/down depending on the bar orientation
739 if(in_digihit->end == 0) {
740 return the_table[in_digihit->plane][in_digihit->bar-1].first;
741 } else {
742 return the_table[in_digihit->plane][in_digihit->bar-1].second;
743 }
744}
745
746const double DTOFHit_factory::GetConstant( const tof_digi_constants_t &the_table,
747 const DTOFTDCDigiHit *in_digihit) const
748{
749 char str[256];
750
751 if( (in_digihit->plane < 0) || (in_digihit->plane > TOF_NUM_PLANES)) {
752 sprintf(str, "Bad module # requested in DTOFHit_factory::GetConstant()! requested=%d , should be 1-%d", in_digihit->plane, TOF_NUM_PLANES);
753 cerr << str << endl;
754 throw JException(str);
755 }
756 if( (in_digihit->bar <= 0) || (in_digihit->bar > TOF_NUM_BARS)) {
757 sprintf(str, "Bad layer # requested in DTOFHit_factory::GetConstant()! requested=%d , should be 1-%d", in_digihit->bar, TOF_NUM_BARS);
758 cerr << str << endl;
759 throw JException(str);
760 }
761 if( (in_digihit->end != 0) && (in_digihit->end != 1) ) {
762 sprintf(str, "Bad end # requested in DTOFHit_factory::GetConstant()! requested=%d , should be 0-1", in_digihit->end);
763 cerr << str << endl;
764 throw JException(str);
765 }
766
767 // we have two ends, indexed as 0/1
768 // could be north/south or up/down depending on the bar orientation
769 if(in_digihit->end == 0) {
770 return the_table[in_digihit->plane][in_digihit->bar-1].first;
771 } else {
772 return the_table[in_digihit->plane][in_digihit->bar-1].second;
773 }
774}
775
776/*
777 const double DTOFHit_factory::GetConstant( const tof_digi_constants_t &the_table,
778 const DTranslationTable *ttab,
779 const int in_rocid, const int in_slot, const int in_channel) const {
780
781 char str[256];
782
783 DTranslationTable::csc_t daq_index = { in_rocid, in_slot, in_channel };
784 DTranslationTable::DChannelInfo channel_info = ttab->GetDetectorIndex(daq_index);
785
786 if( (channel_info.tof.plane <= 0)
787 || (channel_info.tof.plane > static_cast<unsigned int>(TOF_NUM_PLANES))) {
788 sprintf(str, "Bad plane # requested in DTOFHit_factory::GetConstant()! requested=%d , should be 1-%d", channel_info.tof.plane, TOF_NUM_PLANES);
789 cerr << str << endl;
790 throw JException(str);
791 }
792 if( (channel_info.tof.bar <= 0)
793 || (channel_info.tof.bar > static_cast<unsigned int>(TOF_NUM_BARS))) {
794 sprintf(str, "Bad bar # requested in DTOFHit_factory::GetConstant()! requested=%d , should be 1-%d", channel_info.tof.bar, TOF_NUM_BARS);
795 cerr << str << endl;
796 throw JException(str);
797 }
798 if( (channel_info.tof.end != 0) && (channel_info.tof.end != 1) ) {
799 sprintf(str, "Bad end # requested in DTOFHit_factory::GetConstant()! requested=%d , should be 0-1", channel_info.tof.end);
800 cerr << str << endl;
801 throw JException(str);
802 }
803
804 int the_cell = DTOFGeometry::cellId(channel_info.tof.module,
805 channel_info.tof.layer,
806 channel_info.tof.sector);
807
808 if(channel_info.tof.end == DTOFGeometry::kUpstream) {
809// handle the upstream end
810return the_table.at(the_cell).first;
811} else {
812// handle the downstream end
813return the_table.at(the_cell).second;
814}
815}
816*/
817double DTOFHit_factory::CalcWalkCorrIntegral(DTOFHit* hit){
818 int id=2*TOF_NUM_BARS*hit->plane+TOF_NUM_BARS*hit->end+hit->bar-1;
819 double A=hit->dE;
820 double C0=timewalk_parameters[id][1];
821 double C1=timewalk_parameters[id][1];
822 double C2=timewalk_parameters[id][2];
823 double A0=timewalk_parameters[id][3];
824
825 double a1 = C0 + C1*pow(A,C2);
826 double a2 = C0 + C1*pow(A0,C2);
827
828 float corr = a1 - a2;
829
830 //cout<<id<<" "<<A<<" "<<a1<<" "<<a2<<" "<<corr<<endl;
831
832 return corr;
833
834
835}
836
837
838double DTOFHit_factory::CalcWalkCorrAmplitude(DTOFHit* hit){
839
840 int id=2*TOF_NUM_BARS*hit->plane+TOF_NUM_BARS*hit->end+hit->bar-1;
841 double A = hit->Amp;
842 double C0 = timewalk_parameters_AMP[id][0];
843 double C1 = timewalk_parameters_AMP[id][1];
844 double C2 = timewalk_parameters_AMP[id][2];
845 double C3 = timewalk_parameters_AMP[id][3];
846
847 double hookx = timewalk_parameters_AMP[id][4];
848 double refx = timewalk_parameters_AMP[id][5];
849 double val_at_ref = C0 + C1*pow(refx,C2);
850 double val_at_hook = C0 + C1*pow(hookx,C2);
851 double slope = (val_at_hook - C3)/hookx;
852 if (refx>hookx){
853 val_at_ref = slope * refx + C3;
854 }
855 double val_at_A = C0 + C1*pow(A,C2);
856 if (A>hookx){
857 val_at_A = slope * A + C3;
858 }
859
860 float corr = val_at_A - val_at_ref;
861
862 //cout<<id<<" "<<val_at_A<<" "<<val_at_ref<<" "<<corr<<endl;
863
864 return corr;
865
866}
867
868
869double DTOFHit_factory::CalcWalkCorrNEW(DTOFHit* hit){
870
871 int id=2*TOF_NUM_BARS*hit->plane+TOF_NUM_BARS*hit->end+hit->bar-1;
872 double ADC=hit->dE;
873
874 if (ADC<1.){
875 return 0;
876 }
877
878 double A = timewalk_parameters_NEW[id][0];
879 double B = timewalk_parameters_NEW[id][1];
880 double C = timewalk_parameters_NEW[id][2];
881 double D = timewalk_parameters_NEW[id][3];
882 double ADCREF = timewalk_parameters_NEW[id][4];
883
884 if (ADC>20000.){
885 ADC = 20000.;
886 }
887 double a1 = A + B*pow(ADC,-0.5) + C*pow(ADC,-0.33) + D*pow(ADC,-0.2);
888 double a2 = A + B*pow(ADCREF,-0.5) + C*pow(ADCREF,-0.33) + D*pow(ADCREF,-0.2);
889
890
891 float corr = a1 - a2;
892
893 //cout<<id<<" "<<a1<<" "<<a2<<" "<<corr<<endl;
894
895 return corr;
896
897}
898
899double DTOFHit_factory::CalcWalkCorrNEWAMP(DTOFHit* hit){
900
901 int id=2*TOF_NUM_BARS*hit->plane+TOF_NUM_BARS*hit->end+hit->bar-1;
902 double ADC=hit->Amp;
903 if (ADC<50.){
904 return 0;
905 }
906 double loc = timewalk_parameters_NEWAMP[id][8];
907 int offset = 0;
908 if (ADC>loc){
909 offset = 4;
910 }
911 double A = timewalk_parameters_NEWAMP[id][0+offset];
912 double B = timewalk_parameters_NEWAMP[id][1+offset];
913 double C = timewalk_parameters_NEWAMP[id][2+offset];
914 double D = timewalk_parameters_NEWAMP[id][3+offset];
915
916 double ADCREF = timewalk_parameters_NEWAMP[id][9];
917 double A2 = timewalk_parameters_NEWAMP[id][4];
918 double B2 = timewalk_parameters_NEWAMP[id][5];
919 double C2 = timewalk_parameters_NEWAMP[id][6];
920 double D2 = timewalk_parameters_NEWAMP[id][7];
921
922 double a1 = A + B*pow(ADC,-0.5) + C*pow(ADC,-0.33) + D*pow(ADC,-0.2);
923 double a2 = A2 + B2*pow(ADCREF,-0.5) + C2*pow(ADCREF,-0.33) + D2*pow(ADCREF,-0.2);
924
925 if (ADC>4095){
926 a1 += 0.6; // overflow hits are off by about 0.6ns to the regular curve.
927 }
928
929 float corr = a1 - a2;
930
931 //cout<<id<<" "<<ADC<<" "<<a1<<" "<<a2<<" "<<corr<<endl;
932
933 return corr;
934
935}
936
937double DTOFHit_factory::CalcWalkCorrNEW5PAR(DTOFHit* hit){
938
939 int id=2*TOF_NUM_BARS*hit->plane+TOF_NUM_BARS*hit->end+hit->bar-1;
940 double ADC=hit->Amp;
941 if (ADC<50.){
942 return 0;
943 }
944
945 if (ADC>4090){
946 ADC = 4090;
947 }
948 double A = timewalk_parameters_5PAR[id][0];
949 double B = timewalk_parameters_5PAR[id][1];
950 double C = timewalk_parameters_5PAR[id][2];
951 double D = timewalk_parameters_5PAR[id][3];
952 double E = timewalk_parameters_5PAR[id][4];
953
954 double ADCREF = timewalk_parameters_5PAR[id][9];
955
956 double a1 = A + B/ADC + C/ADC/ADC + D/ADC/ADC/ADC/ADC + E/sqrt(ADC);
957 double a2 = A + B/ADCREF + C/ADCREF/ADCREF + D/ADCREF/ADCREF/ADCREF/ADCREF + E/sqrt(ADCREF);
958
959 float corr = a1 - a2;
960
961 //cout<<id<<" "<<ADC<<" "<<a1<<" "<<a2<<" "<<corr<<endl;
962
963 return corr;
964
965}
966

/w/halld-scifs17exp/halld2/home/sdobbs/Software/jana/jana_0.8.2/Linux_CentOS7.7-x86_64-gcc4.8.5/include/JANA/JEventLoop.h

1// $Id: JEventLoop.h 1763 2006-05-10 14:29:25Z davidl $
2//
3// File: JEventLoop.h
4// Created: Wed Jun 8 12:30:51 EDT 2005
5// Creator: davidl (on Darwin wire129.jlab.org 7.8.0 powerpc)
6//
7
8#ifndef _JEventLoop_
9#define _JEventLoop_
10
11#include <sys/time.h>
12
13#include <vector>
14#include <list>
15#include <string>
16#include <utility>
17#include <typeinfo>
18#include <string.h>
19#include <map>
20#include <utility>
21using std::vector;
22using std::list;
23using std::string;
24using std::type_info;
25
26#include <JANA/jerror.h>
27#include <JANA/JObject.h>
28#include <JANA/JException.h>
29#include <JANA/JEvent.h>
30#include <JANA/JThread.h>
31#include <JANA/JFactory_base.h>
32#include <JANA/JCalibration.h>
33#include <JANA/JGeometry.h>
34#include <JANA/JResourceManager.h>
35#include <JANA/JStreamLog.h>
36
37// The following is here just so we can use ROOT's THtml class to generate documentation.
38#include "cint.h"
39
40
41// Place everything in JANA namespace
42namespace jana{
43
44
45template<class T> class JFactory;
46class JApplication;
47class JEventProcessor;
48
49
50class JEventLoop{
51 public:
52
53 friend class JApplication;
54
55 enum data_source_t{
56 DATA_NOT_AVAILABLE = 1,
57 DATA_FROM_CACHE,
58 DATA_FROM_SOURCE,
59 DATA_FROM_FACTORY
60 };
61
62 typedef struct{
63 string caller_name;
64 string caller_tag;
65 string callee_name;
66 string callee_tag;
67 double start_time;
68 double end_time;
69 data_source_t data_source;
70 }call_stack_t;
71
72 typedef struct{
73 const char* factory_name;
74 string tag;
75 const char* filename;
76 int line;
77 }error_call_stack_t;
78
79 JEventLoop(JApplication *app); ///< Constructor
80 virtual ~JEventLoop(); ////< Destructor
81 virtual const char* className(void){return static_className();}
82 static const char* static_className(void){return "JEventLoop";}
83
84 JApplication* GetJApplication(void) const {return app;} ///< Get pointer to the JApplication object
85 void RefreshProcessorListFromJApplication(void); ///< Re-copy the list of JEventProcessors from JApplication
86 virtual jerror_t AddFactory(JFactory_base* factory); ///< Add a factory
87 jerror_t RemoveFactory(JFactory_base* factory); ///< Remove a factory
88 JFactory_base* GetFactory(const string data_name, const char *tag="", bool allow_deftag=true); ///< Get a specific factory pointer
89 vector<JFactory_base*> GetFactories(void) const {return factories;} ///< Get all factory pointers
90 void GetFactoryNames(vector<string> &factorynames); ///< Get names of all factories in name:tag format
91 void GetFactoryNames(map<string,string> &factorynames); ///< Get names of all factories in map with key=name, value=tag
92 map<string,string> GetDefaultTags(void) const {return default_tags;}
93 jerror_t ClearFactories(void); ///< Reset all factories in preparation for next event.
94 jerror_t PrintFactories(int sparsify=0); ///< Print a list of all factories.
95 jerror_t Print(const string data_name, const char *tag=""); ///< Print the data of the given type
96
97 JCalibration* GetJCalibration();
98 template<class T> bool GetCalib(string namepath, map<string,T> &vals);
99 template<class T> bool GetCalib(string namepath, vector<T> &vals);
100 template<class T> bool GetCalib(string namepath, T &val);
101
102 JGeometry* GetJGeometry();
103 template<class T> bool GetGeom(string namepath, map<string,T> &vals);
104 template<class T> bool GetGeom(string namepath, T &val);
105
106 JResourceManager* GetJResourceManager(void);
107 string GetResource(string namepath);
108 template<class T> bool GetResource(string namepath, T vals, int event_number=0);
109
110 void Initialize(void); ///< Do initializations just before event processing starts
111 jerror_t Loop(void); ///< Loop over events
112 jerror_t OneEvent(uint64_t event_number); ///< Process a specific single event (if source supports it)
113 jerror_t OneEvent(void); ///< Process a single event
114 inline void Pause(void){pause = 1;} ///< Pause event processing
115 inline void Resume(void){pause = 0;} ///< Resume event processing
116 inline void Quit(void){quit = 1;} ///< Clean up and exit the event loop
117 inline bool GetQuit(void) const {return quit;}
118 void QuitProgram(void);
119
120 // Support for random access of events
121 bool HasRandomAccess(void);
122 void AddToEventQueue(uint64_t event_number){ next_events_to_process.push_back(event_number); }
123 void AddToEventQueue(list<uint64_t> &event_numbers) { next_events_to_process.insert(next_events_to_process.end(), event_numbers.begin(), event_numbers.end()); }
124 list<uint64_t> GetEventQueue(void){ return next_events_to_process; }
125 void ClearEventQueue(void){ next_events_to_process.clear(); }
126
127 template<class T> JFactory<T>* GetSingle(const T* &t, const char *tag="", bool exception_if_not_one=true); ///< Get pointer to first data object from (source or factory).
128 template<class T> JFactory<T>* Get(vector<const T*> &t, const char *tag="", bool allow_deftag=true); ///< Get data object pointers from (source or factory)
129 template<class T> JFactory<T>* GetFromFactory(vector<const T*> &t, const char *tag="", data_source_t &data_source=null_data_source, bool allow_deftag=true); ///< Get data object pointers from factory
130 template<class T> jerror_t GetFromSource(vector<const T*> &t, JFactory_base *factory=NULL__null); ///< Get data object pointers from source.
131 inline JEvent& GetJEvent(void){return event;} ///< Get pointer to the current JEvent object.
132 inline void SetJEvent(JEvent *event){this->event = *event;} ///< Set the JEvent pointer.
133 inline void SetAutoFree(int auto_free){this->auto_free = auto_free;} ///< Set the Auto-Free flag on/off
134 inline pthread_t GetPThreadID(void) const {return pthread_id;} ///< Get the pthread of the thread to which this JEventLoop belongs
135 double GetInstantaneousRate(void) const {return rate_instantaneous;} ///< Get the current event processing rate
136 double GetIntegratedRate(void) const {return rate_integrated;} ///< Get the current event processing rate
137 double GetLastEventProcessingTime(void) const {return delta_time_single;}
138 unsigned int GetNevents(void) const {return Nevents;}
139
140 inline bool CheckEventBoundary(uint64_t event_numberA, uint64_t event_numberB);
141
142 inline bool GetCallStackRecordingStatus(void){ return record_call_stack; }
143 inline void DisableCallStackRecording(void){ record_call_stack = false; }
144 inline void EnableCallStackRecording(void){ record_call_stack = true; }
145 inline void CallStackStart(JEventLoop::call_stack_t &cs, const string &caller_name, const string &caller_tag, const string callee_name, const string callee_tag);
146 inline void CallStackEnd(JEventLoop::call_stack_t &cs);
147 inline vector<call_stack_t> GetCallStack(void){return call_stack;} ///< Get the current factory call stack
148 inline void AddToCallStack(call_stack_t &cs){if(record_call_stack) call_stack.push_back(cs);} ///< Add specified item to call stack record but only if record_call_stack is true
149 inline void AddToErrorCallStack(error_call_stack_t &cs){error_call_stack.push_back(cs);} ///< Add layer to the factory call stack
150 inline vector<error_call_stack_t> GetErrorCallStack(void){return error_call_stack;} ///< Get the current factory error call stack
151 void PrintErrorCallStack(void); ///< Print the current factory call stack
152
153 const JObject* FindByID(JObject::oid_t id); ///< Find a data object by its identifier.
154 template<class T> const T* FindByID(JObject::oid_t id); ///< Find a data object by its type and identifier
155 JFactory_base* FindOwner(const JObject *t); ///< Find the factory that owns a data object by pointer
156 JFactory_base* FindOwner(JObject::oid_t id); ///< Find a factory that owns a data object by identifier
157
158 // User defined references
159 template<class T> void SetRef(T *t); ///< Add a user reference to this JEventLoop (must be a pointer)
160 template<class T> T* GetRef(void); ///< Get a user-defined reference of a specific type
161 template<class T> vector<T*> GetRefsT(void); ///< Get all user-defined refrences of a specicif type
162 vector<pair<const char*, void*> > GetRefs(void){ return user_refs; } ///< Get copy of full list of user-defined references
163 template<class T> void RemoveRef(T *t); ///< Remove user reference from list
164
165 // Convenience methods wrapping JEvent methods of same name
166 uint64_t GetStatus(void){return event.GetStatus();}
167 bool GetStatusBit(uint32_t bit){return event.GetStatusBit(bit);}
168 bool SetStatusBit(uint32_t bit, bool val=true){return event.SetStatusBit(bit, val);}
169 bool ClearStatusBit(uint32_t bit){return event.ClearStatusBit(bit);}
170 void ClearStatus(void){event.ClearStatus();}
171 void SetStatusBitDescription(uint32_t bit, string description){event.SetStatusBitDescription(bit, description);}
172 string GetStatusBitDescription(uint32_t bit){return event.GetStatusBitDescription(bit);}
173 void GetStatusBitDescriptions(map<uint32_t, string> &status_bit_descriptions){return event.GetStatusBitDescriptions(status_bit_descriptions);}
174 string StatusWordToString(void);
175
176 private:
177 JEvent event;
178 vector<JFactory_base*> factories;
179 vector<JEventProcessor*> processors;
180 vector<error_call_stack_t> error_call_stack;
181 vector<call_stack_t> call_stack;
182 JApplication *app;
183 JThread *jthread;
184 bool initialized;
185 bool print_parameters_called;
186 int pause;
187 int quit;
188 int auto_free;
189 pthread_t pthread_id;
190 map<string, string> default_tags;
191 vector<pair<string,string> > auto_activated_factories;
192 bool record_call_stack;
193 string caller_name;
194 string caller_tag;
195 vector<uint64_t> event_boundaries;
196 int32_t event_boundaries_run; ///< Run number boundaries were retrieved from (possbily 0)
197 list<uint64_t> next_events_to_process;
198
199 uint64_t Nevents; ///< Total events processed (this thread)
200 uint64_t Nevents_rate; ///< Num. events accumulated for "instantaneous" rate
201 double delta_time_single; ///< Time spent processing last event
202 double delta_time_rate; ///< Integrated time accumulated "instantaneous" rate (partial number of events)
203 double delta_time; ///< Total time spent processing events (this thread)
204 double rate_instantaneous; ///< Latest instantaneous rate
205 double rate_integrated; ///< Rate integrated over all events
206
207 static data_source_t null_data_source;
208
209 vector<pair<const char*, void*> > user_refs;
210};
211
212
213// The following is here just so we can use ROOT's THtml class to generate documentation.
214#ifdef G__DICTIONARY
215typedef JEventLoop::call_stack_t call_stack_t;
216typedef JEventLoop::error_call_stack_t error_call_stack_t;
217#endif
218
219#if !defined(__CINT__) && !defined(__CLING__)
220
221//-------------
222// GetSingle
223//-------------
224template<class T>
225JFactory<T>* JEventLoop::GetSingle(const T* &t, const char *tag, bool exception_if_not_one)
226{
227 /// This is a convenience method that can be used to get a pointer to the single
228 /// object of type T from the specified factory. It simply calls the Get(vector<...>) method
229 /// and copies the first pointer into "t" (or NULL if something other than 1 object is returned).
230 ///
231 /// This is intended to address the common situation in which there is an interest
232 /// in the event if and only if there is exactly 1 object of type T. If the event
233 /// has no objects of that type or more than 1 object of that type (for the specified
234 /// factory) then an exception of type "unsigned long" is thrown with the value
235 /// being the number of objects of type T. You can supress the exception by setting
236 /// exception_if_not_one to false. In that case, you will have to check if t==NULL to
237 /// know if the call succeeded.
238 vector<const T*> v;
239 JFactory<T> *fac = Get(v, tag);
2
Calling 'JEventLoop::Get'
240
241 if(v.size()!=1){
242 t = NULL__null;
243 if(exception_if_not_one) throw v.size();
244 }
245
246 t = v[0];
247
248 return fac;
249}
250
251//-------------
252// Get
253//-------------
254template<class T>
255JFactory<T>* JEventLoop::Get(vector<const T*> &t, const char *tag, bool allow_deftag)
256{
257 /// Retrieve or generate the array of objects of
258 /// type T for the curent event being processed
259 /// by this thread.
260 ///
261 /// By default, preference is given to reading the
262 /// objects from the data source(e.g. file) before generating
263 /// them in the factory. A flag exists in the factory
264 /// however to change this so that the factory is
265 /// given preference.
266 ///
267 /// Note that regardless of the setting of this flag,
268 /// the data are only either read in or generated once.
269 /// Ownership of the objects will always be with the
270 /// factory so subsequent calls will always return pointers to
271 /// the same data.
272 ///
273 /// If the factory is called on to generate the data,
274 /// it is done by calling the factory's Get() method
275 /// which, in turn, calls the evnt() method.
276 ///
277 /// First, we just call the GetFromFactory() method.
278 /// It will make the initial decision as to whether
279 /// it should look in the source first or not. If
280 /// it returns NULL, then the factory couldn't be
281 /// found so we automatically try the file.
282 ///
283 /// Note that if no factory exists to hold the objects
284 /// from the file, one can be created automatically
285 /// providing the <i>JANA:AUTOFACTORYCREATE</i>
286 /// configuration parameter is set.
287
288 // Check if a tag was specified for this data type to use for the
289 // default.
290 const char *mytag = tag
2.1
'tag' is not equal to NULL
2.1
'tag' is not equal to NULL
2.1
'tag' is not equal to NULL
==NULL__null ? "":tag; // protection against NULL tags
3
'?' condition is false
291 if(strlen(mytag)==0 && allow_deftag
3.1
'allow_deftag' is true
3.1
'allow_deftag' is true
3.1
'allow_deftag' is true
){
4
Taking true branch
292 map<string, string>::const_iterator iter = default_tags.find(T::static_className());
293 if(iter!=default_tags.end())tag = iter->second.c_str();
5
Assuming the condition is true
6
Taking true branch
7
Value assigned to 'tag'
294 }
295
296
297 // If we are trying to keep track of the call stack then we
298 // need to add a new call_stack_t object to the the list
299 // and initialize it with the start time and caller/callee
300 // info.
301 call_stack_t cs;
302
303 // Optionally record starting info of call stack entry
304 if(record_call_stack) CallStackStart(cs, caller_name, caller_tag, T::static_className(), tag);
8
Assuming field 'record_call_stack' is false
9
Taking false branch
305
306 // Get the data (or at least try to)
307 JFactory<T>* factory=NULL__null;
308 try{
309 factory = GetFromFactory(t, tag, cs.data_source, allow_deftag);
10
Passing value via 2nd parameter 'tag'
11
Calling 'JEventLoop::GetFromFactory'
310 if(!factory){
311 // No factory exists for this type and tag. It's possible
312 // that the source may be able to provide the objects
313 // but it will need a place to put them. We can create a
314 // dumb JFactory just to hold the data in case the source
315 // can provide the objects. Before we do though, make sure
316 // the user condones this via the presence of the
317 // "JANA:AUTOFACTORYCREATE" config parameter.
318 string p;
319 try{
320 gPARMS->GetParameter("JANA:AUTOFACTORYCREATE", p);
321 }catch(...){}
322 if(p.size()==0){
323 jout<<std::endl;
324 _DBG__std::cerr<<"/w/halld-scifs17exp/halld2/home/sdobbs/Software/jana/jana_0.8.2/Linux_CentOS7.7-x86_64-gcc4.8.5/include/JANA/JEventLoop.h"
<<":"<<324<<std::endl
;
325 jout<<"No factory of type \""<<T::static_className()<<"\" with tag \""<<tag<<"\" exists."<<std::endl;
326 jout<<"If you are reading objects from a file, I can auto-create a factory"<<std::endl;
327 jout<<"of the appropriate type to hold the objects, but this feature is turned"<<std::endl;
328 jout<<"off by default. To turn it on, set the \"JANA:AUTOFACTORYCREATE\""<<std::endl;
329 jout<<"configuration parameter. This can usually be done by passing the"<<std::endl;
330 jout<<"following argument to the program from the command line:"<<std::endl;
331 jout<<std::endl;
332 jout<<" -PJANA:AUTOFACTORYCREATE=1"<<std::endl;
333 jout<<std::endl;
334 jout<<"Note that since the most commonly expected occurance of this situation."<<std::endl;
335 jout<<"is an error, the program will now throw an exception so that the factory."<<std::endl;
336 jout<<"call stack can be printed."<<std::endl;
337 jout<<std::endl;
338 throw exception();
339 }else{
340 AddFactory(new JFactory<T>(tag));
341 jout<<__FILE__"/w/halld-scifs17exp/halld2/home/sdobbs/Software/jana/jana_0.8.2/Linux_CentOS7.7-x86_64-gcc4.8.5/include/JANA/JEventLoop.h"<<":"<<__LINE__341<<" Auto-created "<<T::static_className()<<":"<<tag<<" factory"<<std::endl;
342
343 // Now try once more. The GetFromFactory method will call
344 // GetFromSource since it's empty.
345 factory = GetFromFactory(t, tag, cs.data_source, allow_deftag);
346 }
347 }
348 }catch(exception &e){
349 // Uh-oh, an exception was thrown. Add us to the call stack
350 // and re-throw the exception
351 error_call_stack_t ecs;
352 ecs.factory_name = T::static_className();
353 ecs.tag = tag;
354 ecs.filename = NULL__null;
355 error_call_stack.push_back(ecs);
356 throw e;
357 }
358
359 // If recording the call stack, update the end_time field and add to stack
360 if(record_call_stack) CallStackEnd(cs);
361
362 return factory;
363}
364
365//-------------
366// GetFromFactory
367//-------------
368template<class T>
369JFactory<T>* JEventLoop::GetFromFactory(vector<const T*> &t, const char *tag, data_source_t &data_source, bool allow_deftag)
370{
371 // We need to find the factory providing data type T with
372 // tag given by "tag".
373 vector<JFactory_base*>::iterator iter=factories.begin();
374 JFactory<T> *factory = NULL__null;
375 string className(T::static_className());
376
377 // Check if a tag was specified for this data type to use for the
378 // default.
379 const char *mytag = tag==NULL__null ? "":tag; // protection against NULL tags
12
Assuming 'tag' is equal to NULL
13
Assuming pointer value is null
14
'?' condition is true
380 if(strlen(mytag)==0 && allow_deftag
14.1
'allow_deftag' is true
14.1
'allow_deftag' is true
14.1
'allow_deftag' is true
){
15
Taking true branch
381 map<string, string>::const_iterator iter = default_tags.find(className);
382 if(iter!=default_tags.end())tag = iter->second.c_str();
16
Assuming the condition is false
17
Taking false branch
383 }
384
385 for(; iter!=factories.end(); iter++){
18
Calling 'operator!=<jana::JFactory_base **, std::vector<jana::JFactory_base *>>'
21
Returning from 'operator!=<jana::JFactory_base **, std::vector<jana::JFactory_base *>>'
22
Loop condition is true. Entering loop body
386 // It turns out a long standing bug in g++ makes dynamic_cast return
387 // zero improperly when used on objects created on one side of
388 // a dynamically shared object (DSO) and the cast occurs on the
389 // other side. I saw bug reports ranging from 2001 to 2004. I saw
390 // saw it first-hand on LinuxEL4 using g++ 3.4.5. This is too bad
391 // since it is much more elegant (and safe) to use dynamic_cast.
392 // To avoid this problem which can occur with plugins, we check
393 // the name of the data classes are the same. (sigh)
394 //factory = dynamic_cast<JFactory<T> *>(*iter);
395 if(className == (*iter)->GetDataClassName())factory = (JFactory<T>*)(*iter);
23
Taking true branch
396 if(factory == NULL__null)continue;
24
Assuming 'factory' is not equal to NULL
25
Taking false branch
397 const char *factag = factory->Tag()==NULL__null ? "":factory->Tag();
26
Assuming the condition is true
27
'?' condition is true
398 if(!strcmp(factag, tag)){
28
Null pointer passed to 2nd parameter expecting 'nonnull'
399 break;
400 }else{
401 factory=NULL__null;
402 }
403 }
404
405 // If factory not found, just return now
406 if(!factory){
407 data_source = DATA_NOT_AVAILABLE;
408 return NULL__null;
409 }
410
411 // OK, we found the factory. If the evnt() routine has already
412 // been called, then just call the factory's Get() routine
413 // to return a copy of the existing data
414 if(factory->evnt_was_called()){
415 factory->CopyFrom(t);
416 data_source = DATA_FROM_CACHE;
417 return factory;
418 }
419
420 // Next option is to get the objects from the data source
421 if(factory->GetCheckSourceFirst()){
422 // If the object type/tag is found in the source, it
423 // will return NOERROR, even if there are zero instances
424 // of it. If it is not available in the source then it
425 // will return OBJECT_NOT_AVAILABLE.
426
427 jerror_t err = GetFromSource(t, factory);
428 if(err == NOERROR){
429 // A return value of NOERROR means the source had the objects
430 // even if there were zero of them.(If the source had no
431 // information about the objects OBJECT_NOT_AVAILABLE would
432 // have been returned.)
433 // The GetFromSource() call will eventually lead to a call to
434 // the GetObjects() method of the concrete class derived
435 // from JEventSource. That routine should copy the object
436 // pointers into the factory using the factory's CopyTo()
437 // method which also sets the evnt_called flag for the factory.
438 // Note also that the "t" vector is then filled with a call
439 // to the factory's CopyFrom() method in JEvent::GetObjects().
440 // All we need to do now is just set the factory pointers in
441 // the newly generated JObjects and return the factory pointer.
442
443 factory->SetFactoryPointers();
444 data_source = DATA_FROM_SOURCE;
445
446 return factory;
447 }
448 }
449
450 // OK. It looks like we have to have the factory make this.
451 // Get pointers to data from the factory.
452 factory->Get(t);
453 factory->SetFactoryPointers();
454 data_source = DATA_FROM_FACTORY;
455
456 return factory;
457}
458
459//-------------
460// GetFromSource
461//-------------
462template<class T>
463jerror_t JEventLoop::GetFromSource(vector<const T*> &t, JFactory_base *factory)
464{
465 /// This tries to get objects from the event source.
466 /// "factory" must be a valid pointer to a JFactory
467 /// object since that will take ownership of the objects
468 /// created by the source.
469 /// This should usually be called from JEventLoop::GetFromFactory
470 /// which is called from JEventLoop::Get. The latter will
471 /// create a dummy JFactory of the proper flavor and tag if
472 /// one does not already exist so if objects exist in the
473 /// file without a corresponding factory to create them, they
474 /// can still be used.
475 if(!factory)throw OBJECT_NOT_AVAILABLE;
476
477 return event.GetObjects(t, factory);
478}
479
480//-------------
481// CallStackStart
482//-------------
483inline void JEventLoop::CallStackStart(JEventLoop::call_stack_t &cs, const string &caller_name, const string &caller_tag, const string callee_name, const string callee_tag)
484{
485 /// This is used to fill initial info into a call_stack_t stucture
486 /// for recording the call stack. It should be matched with a call
487 /// to CallStackEnd. It is normally called from the Get() method
488 /// above, but may also be used by external actors to manipulate
489 /// the call stack (presumably for good and not evil).
490
491 struct itimerval tmr;
492 getitimer(ITIMER_PROFITIMER_PROF, &tmr);
493
494 cs.caller_name = this->caller_name;
495 cs.caller_tag = this->caller_tag;
496 this->caller_name = cs.callee_name = callee_name;
497 this->caller_tag = cs.callee_tag = callee_tag;
498 cs.start_time = tmr.it_value.tv_sec + tmr.it_value.tv_usec/1.0E6;
499}
500
501//-------------
502// CallStackEnd
503//-------------
504inline void JEventLoop::CallStackEnd(JEventLoop::call_stack_t &cs)
505{
506 /// Complete a call stack entry. This should be matched
507 /// with a previous call to CallStackStart which was
508 /// used to fill the cs structure.
509
510 struct itimerval tmr;
511 getitimer(ITIMER_PROFITIMER_PROF, &tmr);
512 cs.end_time = tmr.it_value.tv_sec + tmr.it_value.tv_usec/1.0E6;
513 caller_name = cs.caller_name;
514 caller_tag = cs.caller_tag;
515 call_stack.push_back(cs);
516}
517
518//-------------
519// CheckEventBoundary
520//-------------
521inline bool JEventLoop::CheckEventBoundary(uint64_t event_numberA, uint64_t event_numberB)
522{
523 /// Check whether the two event numbers span one or more boundaries
524 /// in the calibration/conditions database for the current run number.
525 /// Return true if they do and false if they don't. The first parameter
526 /// "event_numberA" is also checked if it lands on a boundary in which
527 /// case true is also returned. If event_numberB lands on a boundary,
528 /// but event_numberA does not, then false is returned.
529 ///
530 /// This method is not expected to be called by a user. It is, however called,
531 /// everytime a JFactory's Get() method is called.
532
533 // Make sure our copy of the boundaries is up to date
534 if(event.GetRunNumber()!=event_boundaries_run){
535 event_boundaries.clear(); // in case we can't get the JCalibration pointer
536 JCalibration *jcalib = GetJCalibration();
537 if(jcalib)jcalib->GetEventBoundaries(event_boundaries);
538 event_boundaries_run = event.GetRunNumber();
539 }
540
541 // Loop over boundaries
542 for(unsigned int i=0; i<event_boundaries.size(); i++){
543 uint64_t eb = event_boundaries[i];
544 if((eb - event_numberA)*(eb - event_numberB) < 0.0 || eb==event_numberA){ // think about it ....
545 // events span a boundary or is on a boundary. Return true
546 return true;
547 }
548 }
549
550 return false;
551}
552
553//-------------
554// FindByID
555//-------------
556template<class T>
557const T* JEventLoop::FindByID(JObject::oid_t id)
558{
559 /// This is a templated method that can be used in place
560 /// of the non-templated FindByID(oid_t) method if one knows
561 /// the class of the object with the specified id.
562 /// This method is faster than calling the non-templated
563 /// FindByID and dynamic_cast-ing the JObject since
564 /// this will only search the objects of factories that
565 /// produce the desired data type.
566 /// This method will cast the JObject pointer to one
567 /// of the specified type. To use this method,
568 /// a type is specified in the call as follows:
569 ///
570 /// const DMyType *t = loop->FindByID<DMyType>(id);
571
572 // Loop over factories looking for ones that provide
573 // specified data type.
574 for(unsigned int i=0; i<factories.size(); i++){
575 if(factories[i]->GetDataClassName() != T::static_className())continue;
576
577 // This factory provides data of type T. Search it for
578 // the object with the specified id.
579 const JObject *my_obj = factories[i]->GetByID(id);
580 if(my_obj)return dynamic_cast<const T*>(my_obj);
581 }
582
583 return NULL__null;
584}
585
586//-------------
587// GetCalib (map)
588//-------------
589template<class T>
590bool JEventLoop::GetCalib(string namepath, map<string,T> &vals)
591{
592 /// Get the JCalibration object from JApplication for the run number of
593 /// the current event and call its Get() method to get the constants.
594
595 // Note that we could do this by making "vals" a generic type T thus, combining
596 // this with the vector version below. However, doing this explicitly will make
597 // it easier for the user to understand how to call us.
598
599 vals.clear();
600
601 JCalibration *calib = GetJCalibration();
602 if(!calib){
603 _DBG_std::cerr<<"/w/halld-scifs17exp/halld2/home/sdobbs/Software/jana/jana_0.8.2/Linux_CentOS7.7-x86_64-gcc4.8.5/include/JANA/JEventLoop.h"
<<":"<<603<<" "
<<"Unable to get JCalibration object for run "<<event.GetRunNumber()<<std::endl;
604 return true;
605 }
606
607 return calib->Get(namepath, vals, event.GetEventNumber());
608}
609
610//-------------
611// GetCalib (vector)
612//-------------
613template<class T> bool JEventLoop::GetCalib(string namepath, vector<T> &vals)
614{
615 /// Get the JCalibration object from JApplication for the run number of
616 /// the current event and call its Get() method to get the constants.
617
618 vals.clear();
619
620 JCalibration *calib = GetJCalibration();
621 if(!calib){
622 _DBG_std::cerr<<"/w/halld-scifs17exp/halld2/home/sdobbs/Software/jana/jana_0.8.2/Linux_CentOS7.7-x86_64-gcc4.8.5/include/JANA/JEventLoop.h"
<<":"<<622<<" "
<<"Unable to get JCalibration object for run "<<event.GetRunNumber()<<std::endl;
623 return true;
624 }
625
626 return calib->Get(namepath, vals, event.GetEventNumber());
627}
628
629//-------------
630// GetCalib (single)
631//-------------
632template<class T> bool JEventLoop::GetCalib(string namepath, T &val)
633{
634 /// This is a convenience method for getting a single entry. It
635 /// simply calls the vector version and returns the first entry.
636 /// It returns true if the vector version returns true AND there
637 /// is at least one entry in the vector. No check is made for there
638 /// there being more than one entry in the vector.
639
640 vector<T> vals;
641 bool ret = GetCalib(namepath, vals);
642 if(vals.empty()) return true;
643 val = vals[0];
644
645 return ret;
646}
647
648//-------------
649// GetGeom (map)
650//-------------
651template<class T>
652bool JEventLoop::GetGeom(string namepath, map<string,T> &vals)
653{
654 /// Get the JGeometry object from JApplication for the run number of
655 /// the current event and call its Get() method to get the constants.
656
657 // Note that we could do this by making "vals" a generic type T thus, combining
658 // this with the vector version below. However, doing this explicitly will make
659 // it easier for the user to understand how to call us.
660
661 vals.clear();
662
663 JGeometry *geom = GetJGeometry();
664 if(!geom){
665 _DBG_std::cerr<<"/w/halld-scifs17exp/halld2/home/sdobbs/Software/jana/jana_0.8.2/Linux_CentOS7.7-x86_64-gcc4.8.5/include/JANA/JEventLoop.h"
<<":"<<665<<" "
<<"Unable to get JGeometry object for run "<<event.GetRunNumber()<<std::endl;
666 return true;
667 }
668
669 return geom->Get(namepath, vals);
670}
671
672//-------------
673// GetGeom (atomic)
674//-------------
675template<class T> bool JEventLoop::GetGeom(string namepath, T &val)
676{
677 /// Get the JCalibration object from JApplication for the run number of
678 /// the current event and call its Get() method to get the constants.
679
680 JGeometry *geom = GetJGeometry();
681 if(!geom){
682 _DBG_std::cerr<<"/w/halld-scifs17exp/halld2/home/sdobbs/Software/jana/jana_0.8.2/Linux_CentOS7.7-x86_64-gcc4.8.5/include/JANA/JEventLoop.h"
<<":"<<682<<" "
<<"Unable to get JGeometry object for run "<<event.GetRunNumber()<<std::endl;
683 return true;
684 }
685
686 return geom->Get(namepath, val);
687}
688
689//-------------
690// SetRef
691//-------------
692template<class T>
693void JEventLoop::SetRef(T *t)
694{
695 pair<const char*, void*> p(typeid(T).name(), (void*)t);
696 user_refs.push_back(p);
697}
698
699//-------------
700// GetResource
701//-------------
702template<class T> bool JEventLoop::GetResource(string namepath, T vals, int event_number)
703{
704 JResourceManager *resource_manager = GetJResourceManager();
705 if(!resource_manager){
706 string mess = string("Unable to get the JResourceManager object (namepath=\"")+namepath+"\")";
707 throw JException(mess);
708 }
709
710 return resource_manager->Get(namepath, vals, event_number);
711}
712
713//-------------
714// GetRef
715//-------------
716template<class T>
717T* JEventLoop::GetRef(void)
718{
719 /// Get a user-defined reference (a pointer)
720 for(unsigned int i=0; i<user_refs.size(); i++){
721 if(user_refs[i].first == typeid(T).name()) return (T*)user_refs[i].second;
722 }
723
724 return NULL__null;
725}
726
727//-------------
728// GetRefsT
729//-------------
730template<class T>
731vector<T*> JEventLoop::GetRefsT(void)
732{
733 vector<T*> refs;
734 for(unsigned int i=0; i<user_refs.size(); i++){
735 if(user_refs[i].first == typeid(T).name()){
736 refs.push_back((T*)user_refs[i].second);
737 }
738 }
739
740 return refs;
741}
742
743//-------------
744// RemoveRef
745//-------------
746template<class T>
747void JEventLoop::RemoveRef(T *t)
748{
749 vector<pair<const char*, void*> >::iterator iter;
750 for(iter=user_refs.begin(); iter!= user_refs.end(); iter++){
751 if(iter->second == (void*)t){
752 user_refs.erase(iter);
753 return;
754 }
755 }
756 _DBG_std::cerr<<"/w/halld-scifs17exp/halld2/home/sdobbs/Software/jana/jana_0.8.2/Linux_CentOS7.7-x86_64-gcc4.8.5/include/JANA/JEventLoop.h"
<<":"<<756<<" "
<<" Attempt to remove user reference not in event loop!" << std::endl;
757}
758
759
760#endif //__CINT__ __CLING__
761
762} // Close JANA namespace
763
764
765
766#endif // _JEventLoop_
767

/usr/lib/gcc/x86_64-redhat-linux/4.8.5/../../../../include/c++/4.8.5/bits/stl_iterator.h

1// Iterators -*- C++ -*-
2
3// Copyright (C) 2001-2013 Free Software Foundation, Inc.
4//
5// This file is part of the GNU ISO C++ Library. This library is free
6// software; you can redistribute it and/or modify it under the
7// terms of the GNU General Public License as published by the
8// Free Software Foundation; either version 3, or (at your option)
9// any later version.
10
11// This library is distributed in the hope that it will be useful,
12// but WITHOUT ANY WARRANTY; without even the implied warranty of
13// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14// GNU General Public License for more details.
15
16// Under Section 7 of GPL version 3, you are granted additional
17// permissions described in the GCC Runtime Library Exception, version
18// 3.1, as published by the Free Software Foundation.
19
20// You should have received a copy of the GNU General Public License and
21// a copy of the GCC Runtime Library Exception along with this program;
22// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
23// <http://www.gnu.org/licenses/>.
24
25/*
26 *
27 * Copyright (c) 1994
28 * Hewlett-Packard Company
29 *
30 * Permission to use, copy, modify, distribute and sell this software
31 * and its documentation for any purpose is hereby granted without fee,
32 * provided that the above copyright notice appear in all copies and
33 * that both that copyright notice and this permission notice appear
34 * in supporting documentation. Hewlett-Packard Company makes no
35 * representations about the suitability of this software for any
36 * purpose. It is provided "as is" without express or implied warranty.
37 *
38 *
39 * Copyright (c) 1996-1998
40 * Silicon Graphics Computer Systems, Inc.
41 *
42 * Permission to use, copy, modify, distribute and sell this software
43 * and its documentation for any purpose is hereby granted without fee,
44 * provided that the above copyright notice appear in all copies and
45 * that both that copyright notice and this permission notice appear
46 * in supporting documentation. Silicon Graphics makes no
47 * representations about the suitability of this software for any
48 * purpose. It is provided "as is" without express or implied warranty.
49 */
50
51/** @file bits/stl_iterator.h
52 * This is an internal header file, included by other library headers.
53 * Do not attempt to use it directly. @headername{iterator}
54 *
55 * This file implements reverse_iterator, back_insert_iterator,
56 * front_insert_iterator, insert_iterator, __normal_iterator, and their
57 * supporting functions and overloaded operators.
58 */
59
60#ifndef _STL_ITERATOR_H1
61#define _STL_ITERATOR_H1 1
62
63#include <bits/cpp_type_traits.h>
64#include <ext/type_traits.h>
65#include <bits/move.h>
66
67namespace std _GLIBCXX_VISIBILITY(default)__attribute__ ((__visibility__ ("default")))
68{
69_GLIBCXX_BEGIN_NAMESPACE_VERSION
70
71 /**
72 * @addtogroup iterators
73 * @{
74 */
75
76 // 24.4.1 Reverse iterators
77 /**
78 * Bidirectional and random access iterators have corresponding reverse
79 * %iterator adaptors that iterate through the data structure in the
80 * opposite direction. They have the same signatures as the corresponding
81 * iterators. The fundamental relation between a reverse %iterator and its
82 * corresponding %iterator @c i is established by the identity:
83 * @code
84 * &*(reverse_iterator(i)) == &*(i - 1)
85 * @endcode
86 *
87 * <em>This mapping is dictated by the fact that while there is always a
88 * pointer past the end of an array, there might not be a valid pointer
89 * before the beginning of an array.</em> [24.4.1]/1,2
90 *
91 * Reverse iterators can be tricky and surprising at first. Their
92 * semantics make sense, however, and the trickiness is a side effect of
93 * the requirement that the iterators must be safe.
94 */
95 template<typename _Iterator>
96 class reverse_iterator
97 : public iterator<typename iterator_traits<_Iterator>::iterator_category,
98 typename iterator_traits<_Iterator>::value_type,
99 typename iterator_traits<_Iterator>::difference_type,
100 typename iterator_traits<_Iterator>::pointer,
101 typename iterator_traits<_Iterator>::reference>
102 {
103 protected:
104 _Iterator current;
105
106 typedef iterator_traits<_Iterator> __traits_type;
107
108 public:
109 typedef _Iterator iterator_type;
110 typedef typename __traits_type::difference_type difference_type;
111 typedef typename __traits_type::pointer pointer;
112 typedef typename __traits_type::reference reference;
113
114 /**
115 * The default constructor value-initializes member @p current.
116 * If it is a pointer, that means it is zero-initialized.
117 */
118 // _GLIBCXX_RESOLVE_LIB_DEFECTS
119 // 235 No specification of default ctor for reverse_iterator
120 reverse_iterator() : current() { }
121
122 /**
123 * This %iterator will move in the opposite direction that @p x does.
124 */
125 explicit
126 reverse_iterator(iterator_type __x) : current(__x) { }
127
128 /**
129 * The copy constructor is normal.
130 */
131 reverse_iterator(const reverse_iterator& __x)
132 : current(__x.current) { }
133
134 /**
135 * A %reverse_iterator across other types can be copied if the
136 * underlying %iterator can be converted to the type of @c current.
137 */
138 template<typename _Iter>
139 reverse_iterator(const reverse_iterator<_Iter>& __x)
140 : current(__x.base()) { }
141
142 /**
143 * @return @c current, the %iterator used for underlying work.
144 */
145 iterator_type
146 base() const
147 { return current; }
148
149 /**
150 * @return A reference to the value at @c --current
151 *
152 * This requires that @c --current is dereferenceable.
153 *
154 * @warning This implementation requires that for an iterator of the
155 * underlying iterator type, @c x, a reference obtained by
156 * @c *x remains valid after @c x has been modified or
157 * destroyed. This is a bug: http://gcc.gnu.org/PR51823
158 */
159 reference
160 operator*() const
161 {
162 _Iterator __tmp = current;
163 return *--__tmp;
164 }
165
166 /**
167 * @return A pointer to the value at @c --current
168 *
169 * This requires that @c --current is dereferenceable.
170 */
171 pointer
172 operator->() const
173 { return &(operator*()); }
174
175 /**
176 * @return @c *this
177 *
178 * Decrements the underlying iterator.
179 */
180 reverse_iterator&
181 operator++()
182 {
183 --current;
184 return *this;
185 }
186
187 /**
188 * @return The original value of @c *this
189 *
190 * Decrements the underlying iterator.
191 */
192 reverse_iterator
193 operator++(int)
194 {
195 reverse_iterator __tmp = *this;
196 --current;
197 return __tmp;
198 }
199
200 /**
201 * @return @c *this
202 *
203 * Increments the underlying iterator.
204 */
205 reverse_iterator&
206 operator--()
207 {
208 ++current;
209 return *this;
210 }
211
212 /**
213 * @return A reverse_iterator with the previous value of @c *this
214 *
215 * Increments the underlying iterator.
216 */
217 reverse_iterator
218 operator--(int)
219 {
220 reverse_iterator __tmp = *this;
221 ++current;
222 return __tmp;
223 }
224
225 /**
226 * @return A reverse_iterator that refers to @c current - @a __n
227 *
228 * The underlying iterator must be a Random Access Iterator.
229 */
230 reverse_iterator
231 operator+(difference_type __n) const
232 { return reverse_iterator(current - __n); }
233
234 /**
235 * @return *this
236 *
237 * Moves the underlying iterator backwards @a __n steps.
238 * The underlying iterator must be a Random Access Iterator.
239 */
240 reverse_iterator&
241 operator+=(difference_type __n)
242 {
243 current -= __n;
244 return *this;
245 }
246
247 /**
248 * @return A reverse_iterator that refers to @c current - @a __n
249 *
250 * The underlying iterator must be a Random Access Iterator.
251 */
252 reverse_iterator
253 operator-(difference_type __n) const
254 { return reverse_iterator(current + __n); }
255
256 /**
257 * @return *this
258 *
259 * Moves the underlying iterator forwards @a __n steps.
260 * The underlying iterator must be a Random Access Iterator.
261 */
262 reverse_iterator&
263 operator-=(difference_type __n)
264 {
265 current += __n;
266 return *this;
267 }
268
269 /**
270 * @return The value at @c current - @a __n - 1
271 *
272 * The underlying iterator must be a Random Access Iterator.
273 */
274 reference
275 operator[](difference_type __n) const
276 { return *(*this + __n); }
277 };
278
279 //@{
280 /**
281 * @param __x A %reverse_iterator.
282 * @param __y A %reverse_iterator.
283 * @return A simple bool.
284 *
285 * Reverse iterators forward many operations to their underlying base()
286 * iterators. Others are implemented in terms of one another.
287 *
288 */
289 template<typename _Iterator>
290 inline bool
291 operator==(const reverse_iterator<_Iterator>& __x,
292 const reverse_iterator<_Iterator>& __y)
293 { return __x.base() == __y.base(); }
294
295 template<typename _Iterator>
296 inline bool
297 operator<(const reverse_iterator<_Iterator>& __x,
298 const reverse_iterator<_Iterator>& __y)
299 { return __y.base() < __x.base(); }
300
301 template<typename _Iterator>
302 inline bool
303 operator!=(const reverse_iterator<_Iterator>& __x,
304 const reverse_iterator<_Iterator>& __y)
305 { return !(__x == __y); }
306
307 template<typename _Iterator>
308 inline bool
309 operator>(const reverse_iterator<_Iterator>& __x,
310 const reverse_iterator<_Iterator>& __y)
311 { return __y < __x; }
312
313 template<typename _Iterator>
314 inline bool
315 operator<=(const reverse_iterator<_Iterator>& __x,
316 const reverse_iterator<_Iterator>& __y)
317 { return !(__y < __x); }
318
319 template<typename _Iterator>
320 inline bool
321 operator>=(const reverse_iterator<_Iterator>& __x,
322 const reverse_iterator<_Iterator>& __y)
323 { return !(__x < __y); }
324
325 template<typename _Iterator>
326 inline typename reverse_iterator<_Iterator>::difference_type
327 operator-(const reverse_iterator<_Iterator>& __x,
328 const reverse_iterator<_Iterator>& __y)
329 { return __y.base() - __x.base(); }
330
331 template<typename _Iterator>
332 inline reverse_iterator<_Iterator>
333 operator+(typename reverse_iterator<_Iterator>::difference_type __n,
334 const reverse_iterator<_Iterator>& __x)
335 { return reverse_iterator<_Iterator>(__x.base() - __n); }
336
337 // _GLIBCXX_RESOLVE_LIB_DEFECTS
338 // DR 280. Comparison of reverse_iterator to const reverse_iterator.
339 template<typename _IteratorL, typename _IteratorR>
340 inline bool
341 operator==(const reverse_iterator<_IteratorL>& __x,
342 const reverse_iterator<_IteratorR>& __y)
343 { return __x.base() == __y.base(); }
344
345 template<typename _IteratorL, typename _IteratorR>
346 inline bool
347 operator<(const reverse_iterator<_IteratorL>& __x,
348 const reverse_iterator<_IteratorR>& __y)
349 { return __y.base() < __x.base(); }
350
351 template<typename _IteratorL, typename _IteratorR>
352 inline bool
353 operator!=(const reverse_iterator<_IteratorL>& __x,
354 const reverse_iterator<_IteratorR>& __y)
355 { return !(__x == __y); }
356
357 template<typename _IteratorL, typename _IteratorR>
358 inline bool
359 operator>(const reverse_iterator<_IteratorL>& __x,
360 const reverse_iterator<_IteratorR>& __y)
361 { return __y < __x; }
362
363 template<typename _IteratorL, typename _IteratorR>
364 inline bool
365 operator<=(const reverse_iterator<_IteratorL>& __x,
366 const reverse_iterator<_IteratorR>& __y)
367 { return !(__y < __x); }
368
369 template<typename _IteratorL, typename _IteratorR>
370 inline bool
371 operator>=(const reverse_iterator<_IteratorL>& __x,
372 const reverse_iterator<_IteratorR>& __y)
373 { return !(__x < __y); }
374
375 template<typename _IteratorL, typename _IteratorR>
376#if __cplusplus201103L >= 201103L
377 // DR 685.
378 inline auto
379 operator-(const reverse_iterator<_IteratorL>& __x,
380 const reverse_iterator<_IteratorR>& __y)
381 -> decltype(__y.base() - __x.base())
382#else
383 inline typename reverse_iterator<_IteratorL>::difference_type
384 operator-(const reverse_iterator<_IteratorL>& __x,
385 const reverse_iterator<_IteratorR>& __y)
386#endif
387 { return __y.base() - __x.base(); }
388 //@}
389
390 // 24.4.2.2.1 back_insert_iterator
391 /**
392 * @brief Turns assignment into insertion.
393 *
394 * These are output iterators, constructed from a container-of-T.
395 * Assigning a T to the iterator appends it to the container using
396 * push_back.
397 *
398 * Tip: Using the back_inserter function to create these iterators can
399 * save typing.
400 */
401 template<typename _Container>
402 class back_insert_iterator
403 : public iterator<output_iterator_tag, void, void, void, void>
404 {
405 protected:
406 _Container* container;
407
408 public:
409 /// A nested typedef for the type of whatever container you used.
410 typedef _Container container_type;
411
412 /// The only way to create this %iterator is with a container.
413 explicit
414 back_insert_iterator(_Container& __x) : container(&__x) { }
415
416 /**
417 * @param __value An instance of whatever type
418 * container_type::const_reference is; presumably a
419 * reference-to-const T for container<T>.
420 * @return This %iterator, for chained operations.
421 *
422 * This kind of %iterator doesn't really have a @a position in the
423 * container (you can think of the position as being permanently at
424 * the end, if you like). Assigning a value to the %iterator will
425 * always append the value to the end of the container.
426 */
427#if __cplusplus201103L < 201103L
428 back_insert_iterator&
429 operator=(typename _Container::const_reference __value)
430 {
431 container->push_back(__value);
432 return *this;
433 }
434#else
435 back_insert_iterator&
436 operator=(const typename _Container::value_type& __value)
437 {
438 container->push_back(__value);
439 return *this;
440 }
441
442 back_insert_iterator&
443 operator=(typename _Container::value_type&& __value)
444 {
445 container->push_back(std::move(__value));
446 return *this;
447 }
448#endif
449
450 /// Simply returns *this.
451 back_insert_iterator&
452 operator*()
453 { return *this; }
454
455 /// Simply returns *this. (This %iterator does not @a move.)
456 back_insert_iterator&
457 operator++()
458 { return *this; }
459
460 /// Simply returns *this. (This %iterator does not @a move.)
461 back_insert_iterator
462 operator++(int)
463 { return *this; }
464 };
465
466 /**
467 * @param __x A container of arbitrary type.
468 * @return An instance of back_insert_iterator working on @p __x.
469 *
470 * This wrapper function helps in creating back_insert_iterator instances.
471 * Typing the name of the %iterator requires knowing the precise full
472 * type of the container, which can be tedious and impedes generic
473 * programming. Using this function lets you take advantage of automatic
474 * template parameter deduction, making the compiler match the correct
475 * types for you.
476 */
477 template<typename _Container>
478 inline back_insert_iterator<_Container>
479 back_inserter(_Container& __x)
480 { return back_insert_iterator<_Container>(__x); }
481
482 /**
483 * @brief Turns assignment into insertion.
484 *
485 * These are output iterators, constructed from a container-of-T.
486 * Assigning a T to the iterator prepends it to the container using
487 * push_front.
488 *
489 * Tip: Using the front_inserter function to create these iterators can
490 * save typing.
491 */
492 template<typename _Container>
493 class front_insert_iterator
494 : public iterator<output_iterator_tag, void, void, void, void>
495 {
496 protected:
497 _Container* container;
498
499 public:
500 /// A nested typedef for the type of whatever container you used.
501 typedef _Container container_type;
502
503 /// The only way to create this %iterator is with a container.
504 explicit front_insert_iterator(_Container& __x) : container(&__x) { }
505
506 /**
507 * @param __value An instance of whatever type
508 * container_type::const_reference is; presumably a
509 * reference-to-const T for container<T>.
510 * @return This %iterator, for chained operations.
511 *
512 * This kind of %iterator doesn't really have a @a position in the
513 * container (you can think of the position as being permanently at
514 * the front, if you like). Assigning a value to the %iterator will
515 * always prepend the value to the front of the container.
516 */
517#if __cplusplus201103L < 201103L
518 front_insert_iterator&
519 operator=(typename _Container::const_reference __value)
520 {
521 container->push_front(__value);
522 return *this;
523 }
524#else
525 front_insert_iterator&
526 operator=(const typename _Container::value_type& __value)
527 {
528 container->push_front(__value);
529 return *this;
530 }
531
532 front_insert_iterator&
533 operator=(typename _Container::value_type&& __value)
534 {
535 container->push_front(std::move(__value));
536 return *this;
537 }
538#endif
539
540 /// Simply returns *this.
541 front_insert_iterator&
542 operator*()
543 { return *this; }
544
545 /// Simply returns *this. (This %iterator does not @a move.)
546 front_insert_iterator&
547 operator++()
548 { return *this; }
549
550 /// Simply returns *this. (This %iterator does not @a move.)
551 front_insert_iterator
552 operator++(int)
553 { return *this; }
554 };
555
556 /**
557 * @param __x A container of arbitrary type.
558 * @return An instance of front_insert_iterator working on @p x.
559 *
560 * This wrapper function helps in creating front_insert_iterator instances.
561 * Typing the name of the %iterator requires knowing the precise full
562 * type of the container, which can be tedious and impedes generic
563 * programming. Using this function lets you take advantage of automatic
564 * template parameter deduction, making the compiler match the correct
565 * types for you.
566 */
567 template<typename _Container>
568 inline front_insert_iterator<_Container>
569 front_inserter(_Container& __x)
570 { return front_insert_iterator<_Container>(__x); }
571
572 /**
573 * @brief Turns assignment into insertion.
574 *
575 * These are output iterators, constructed from a container-of-T.
576 * Assigning a T to the iterator inserts it in the container at the
577 * %iterator's position, rather than overwriting the value at that
578 * position.
579 *
580 * (Sequences will actually insert a @e copy of the value before the
581 * %iterator's position.)
582 *
583 * Tip: Using the inserter function to create these iterators can
584 * save typing.
585 */
586 template<typename _Container>
587 class insert_iterator
588 : public iterator<output_iterator_tag, void, void, void, void>
589 {
590 protected:
591 _Container* container;
592 typename _Container::iterator iter;
593
594 public:
595 /// A nested typedef for the type of whatever container you used.
596 typedef _Container container_type;
597
598 /**
599 * The only way to create this %iterator is with a container and an
600 * initial position (a normal %iterator into the container).
601 */
602 insert_iterator(_Container& __x, typename _Container::iterator __i)
603 : container(&__x), iter(__i) {}
604
605 /**
606 * @param __value An instance of whatever type
607 * container_type::const_reference is; presumably a
608 * reference-to-const T for container<T>.
609 * @return This %iterator, for chained operations.
610 *
611 * This kind of %iterator maintains its own position in the
612 * container. Assigning a value to the %iterator will insert the
613 * value into the container at the place before the %iterator.
614 *
615 * The position is maintained such that subsequent assignments will
616 * insert values immediately after one another. For example,
617 * @code
618 * // vector v contains A and Z
619 *
620 * insert_iterator i (v, ++v.begin());
621 * i = 1;
622 * i = 2;
623 * i = 3;
624 *
625 * // vector v contains A, 1, 2, 3, and Z
626 * @endcode
627 */
628#if __cplusplus201103L < 201103L
629 insert_iterator&
630 operator=(typename _Container::const_reference __value)
631 {
632 iter = container->insert(iter, __value);
633 ++iter;
634 return *this;
635 }
636#else
637 insert_iterator&
638 operator=(const typename _Container::value_type& __value)
639 {
640 iter = container->insert(iter, __value);
641 ++iter;
642 return *this;
643 }
644
645 insert_iterator&
646 operator=(typename _Container::value_type&& __value)
647 {
648 iter = container->insert(iter, std::move(__value));
649 ++iter;
650 return *this;
651 }
652#endif
653
654 /// Simply returns *this.
655 insert_iterator&
656 operator*()
657 { return *this; }
658
659 /// Simply returns *this. (This %iterator does not @a move.)
660 insert_iterator&
661 operator++()
662 { return *this; }
663
664 /// Simply returns *this. (This %iterator does not @a move.)
665 insert_iterator&
666 operator++(int)
667 { return *this; }
668 };
669
670 /**
671 * @param __x A container of arbitrary type.
672 * @return An instance of insert_iterator working on @p __x.
673 *
674 * This wrapper function helps in creating insert_iterator instances.
675 * Typing the name of the %iterator requires knowing the precise full
676 * type of the container, which can be tedious and impedes generic
677 * programming. Using this function lets you take advantage of automatic
678 * template parameter deduction, making the compiler match the correct
679 * types for you.
680 */
681 template<typename _Container, typename _Iterator>
682 inline insert_iterator<_Container>
683 inserter(_Container& __x, _Iterator __i)
684 {
685 return insert_iterator<_Container>(__x,
686 typename _Container::iterator(__i));
687 }
688
689 // @} group iterators
690
691_GLIBCXX_END_NAMESPACE_VERSION
692} // namespace
693
694namespace __gnu_cxx _GLIBCXX_VISIBILITY(default)__attribute__ ((__visibility__ ("default")))
695{
696_GLIBCXX_BEGIN_NAMESPACE_VERSION
697
698 // This iterator adapter is @a normal in the sense that it does not
699 // change the semantics of any of the operators of its iterator
700 // parameter. Its primary purpose is to convert an iterator that is
701 // not a class, e.g. a pointer, into an iterator that is a class.
702 // The _Container parameter exists solely so that different containers
703 // using this template can instantiate different types, even if the
704 // _Iterator parameter is the same.
705 using std::iterator_traits;
706 using std::iterator;
707 template<typename _Iterator, typename _Container>
708 class __normal_iterator
709 {
710 protected:
711 _Iterator _M_current;
712
713 typedef iterator_traits<_Iterator> __traits_type;
714
715 public:
716 typedef _Iterator iterator_type;
717 typedef typename __traits_type::iterator_category iterator_category;
718 typedef typename __traits_type::value_type value_type;
719 typedef typename __traits_type::difference_type difference_type;
720 typedef typename __traits_type::reference reference;
721 typedef typename __traits_type::pointer pointer;
722
723 _GLIBCXX_CONSTEXPRconstexpr __normal_iterator() : _M_current(_Iterator()) { }
724
725 explicit
726 __normal_iterator(const _Iterator& __i) : _M_current(__i) { }
727
728 // Allow iterator to const_iterator conversion
729 template<typename _Iter>
730 __normal_iterator(const __normal_iterator<_Iter,
731 typename __enable_if<
732 (std::__are_same<_Iter, typename _Container::pointer>::__value),
733 _Container>::__type>& __i)
734 : _M_current(__i.base()) { }
735
736 // Forward iterator requirements
737 reference
738 operator*() const
739 { return *_M_current; }
740
741 pointer
742 operator->() const
743 { return _M_current; }
744
745 __normal_iterator&
746 operator++()
747 {
748 ++_M_current;
749 return *this;
750 }
751
752 __normal_iterator
753 operator++(int)
754 { return __normal_iterator(_M_current++); }
755
756 // Bidirectional iterator requirements
757 __normal_iterator&
758 operator--()
759 {
760 --_M_current;
761 return *this;
762 }
763
764 __normal_iterator
765 operator--(int)
766 { return __normal_iterator(_M_current--); }
767
768 // Random access iterator requirements
769 reference
770 operator[](const difference_type& __n) const
771 { return _M_current[__n]; }
772
773 __normal_iterator&
774 operator+=(const difference_type& __n)
775 { _M_current += __n; return *this; }
776
777 __normal_iterator
778 operator+(const difference_type& __n) const
779 { return __normal_iterator(_M_current + __n); }
780
781 __normal_iterator&
782 operator-=(const difference_type& __n)
783 { _M_current -= __n; return *this; }
784
785 __normal_iterator
786 operator-(const difference_type& __n) const
787 { return __normal_iterator(_M_current - __n); }
788
789 const _Iterator&
790 base() const
791 { return _M_current; }
792 };
793
794 // Note: In what follows, the left- and right-hand-side iterators are
795 // allowed to vary in types (conceptually in cv-qualification) so that
796 // comparison between cv-qualified and non-cv-qualified iterators be
797 // valid. However, the greedy and unfriendly operators in std::rel_ops
798 // will make overload resolution ambiguous (when in scope) if we don't
799 // provide overloads whose operands are of the same type. Can someone
800 // remind me what generic programming is about? -- Gaby
801
802 // Forward iterator requirements
803 template<typename _IteratorL, typename _IteratorR, typename _Container>
804 inline bool
805 operator==(const __normal_iterator<_IteratorL, _Container>& __lhs,
806 const __normal_iterator<_IteratorR, _Container>& __rhs)
807 { return __lhs.base() == __rhs.base(); }
808
809 template<typename _Iterator, typename _Container>
810 inline bool
811 operator==(const __normal_iterator<_Iterator, _Container>& __lhs,
812 const __normal_iterator<_Iterator, _Container>& __rhs)
813 { return __lhs.base() == __rhs.base(); }
814
815 template<typename _IteratorL, typename _IteratorR, typename _Container>
816 inline bool
817 operator!=(const __normal_iterator<_IteratorL, _Container>& __lhs,
818 const __normal_iterator<_IteratorR, _Container>& __rhs)
819 { return __lhs.base() != __rhs.base(); }
820
821 template<typename _Iterator, typename _Container>
822 inline bool
823 operator!=(const __normal_iterator<_Iterator, _Container>& __lhs,
824 const __normal_iterator<_Iterator, _Container>& __rhs)
825 { return __lhs.base() != __rhs.base(); }
19
Assuming the condition is true
20
Returning the value 1, which participates in a condition later
826
827 // Random access iterator requirements
828 template<typename _IteratorL, typename _IteratorR, typename _Container>
829 inline bool
830 operator<(const __normal_iterator<_IteratorL, _Container>& __lhs,
831 const __normal_iterator<_IteratorR, _Container>& __rhs)
832 { return __lhs.base() < __rhs.base(); }
833
834 template<typename _Iterator, typename _Container>
835 inline bool
836 operator<(const __normal_iterator<_Iterator, _Container>& __lhs,
837 const __normal_iterator<_Iterator, _Container>& __rhs)
838 { return __lhs.base() < __rhs.base(); }
839
840 template<typename _IteratorL, typename _IteratorR, typename _Container>
841 inline bool
842 operator>(const __normal_iterator<_IteratorL, _Container>& __lhs,
843 const __normal_iterator<_IteratorR, _Container>& __rhs)
844 { return __lhs.base() > __rhs.base(); }
845
846 template<typename _Iterator, typename _Container>
847 inline bool
848 operator>(const __normal_iterator<_Iterator, _Container>& __lhs,
849 const __normal_iterator<_Iterator, _Container>& __rhs)
850 { return __lhs.base() > __rhs.base(); }
851
852 template<typename _IteratorL, typename _IteratorR, typename _Container>
853 inline bool
854 operator<=(const __normal_iterator<_IteratorL, _Container>& __lhs,
855 const __normal_iterator<_IteratorR, _Container>& __rhs)
856 { return __lhs.base() <= __rhs.base(); }
857
858 template<typename _Iterator, typename _Container>
859 inline bool
860 operator<=(const __normal_iterator<_Iterator, _Container>& __lhs,
861 const __normal_iterator<_Iterator, _Container>& __rhs)
862 { return __lhs.base() <= __rhs.base(); }
863
864 template<typename _IteratorL, typename _IteratorR, typename _Container>
865 inline bool
866 operator>=(const __normal_iterator<_IteratorL, _Container>& __lhs,
867 const __normal_iterator<_IteratorR, _Container>& __rhs)
868 { return __lhs.base() >= __rhs.base(); }
869
870 template<typename _Iterator, typename _Container>
871 inline bool
872 operator>=(const __normal_iterator<_Iterator, _Container>& __lhs,
873 const __normal_iterator<_Iterator, _Container>& __rhs)
874 { return __lhs.base() >= __rhs.base(); }
875
876 // _GLIBCXX_RESOLVE_LIB_DEFECTS
877 // According to the resolution of DR179 not only the various comparison
878 // operators but also operator- must accept mixed iterator/const_iterator
879 // parameters.
880 template<typename _IteratorL, typename _IteratorR, typename _Container>
881#if __cplusplus201103L >= 201103L
882 // DR 685.
883 inline auto
884 operator-(const __normal_iterator<_IteratorL, _Container>& __lhs,
885 const __normal_iterator<_IteratorR, _Container>& __rhs)
886 -> decltype(__lhs.base() - __rhs.base())
887#else
888 inline typename __normal_iterator<_IteratorL, _Container>::difference_type
889 operator-(const __normal_iterator<_IteratorL, _Container>& __lhs,
890 const __normal_iterator<_IteratorR, _Container>& __rhs)
891#endif
892 { return __lhs.base() - __rhs.base(); }
893
894 template<typename _Iterator, typename _Container>
895 inline typename __normal_iterator<_Iterator, _Container>::difference_type
896 operator-(const __normal_iterator<_Iterator, _Container>& __lhs,
897 const __normal_iterator<_Iterator, _Container>& __rhs)
898 { return __lhs.base() - __rhs.base(); }
899
900 template<typename _Iterator, typename _Container>
901 inline __normal_iterator<_Iterator, _Container>
902 operator+(typename __normal_iterator<_Iterator, _Container>::difference_type
903 __n, const __normal_iterator<_Iterator, _Container>& __i)
904 { return __normal_iterator<_Iterator, _Container>(__i.base() + __n); }
905
906_GLIBCXX_END_NAMESPACE_VERSION
907} // namespace
908
909#if __cplusplus201103L >= 201103L
910
911namespace std _GLIBCXX_VISIBILITY(default)__attribute__ ((__visibility__ ("default")))
912{
913_GLIBCXX_BEGIN_NAMESPACE_VERSION
914
915 /**
916 * @addtogroup iterators
917 * @{
918 */
919
920 // 24.4.3 Move iterators
921 /**
922 * Class template move_iterator is an iterator adapter with the same
923 * behavior as the underlying iterator except that its dereference
924 * operator implicitly converts the value returned by the underlying
925 * iterator's dereference operator to an rvalue reference. Some
926 * generic algorithms can be called with move iterators to replace
927 * copying with moving.
928 */
929 template<typename _Iterator>
930 class move_iterator
931 {
932 protected:
933 _Iterator _M_current;
934
935 typedef iterator_traits<_Iterator> __traits_type;
936
937 public:
938 typedef _Iterator iterator_type;
939 typedef typename __traits_type::iterator_category iterator_category;
940 typedef typename __traits_type::value_type value_type;
941 typedef typename __traits_type::difference_type difference_type;
942 // NB: DR 680.
943 typedef _Iterator pointer;
944 typedef value_type&& reference;
945
946 move_iterator()
947 : _M_current() { }
948
949 explicit
950 move_iterator(iterator_type __i)
951 : _M_current(__i) { }
952
953 template<typename _Iter>
954 move_iterator(const move_iterator<_Iter>& __i)
955 : _M_current(__i.base()) { }
956
957 iterator_type
958 base() const
959 { return _M_current; }
960
961 reference
962 operator*() const
963 { return std::move(*_M_current); }
964
965 pointer
966 operator->() const
967 { return _M_current; }
968
969 move_iterator&
970 operator++()
971 {
972 ++_M_current;
973 return *this;
974 }
975
976 move_iterator
977 operator++(int)
978 {
979 move_iterator __tmp = *this;
980 ++_M_current;
981 return __tmp;
982 }
983
984 move_iterator&
985 operator--()
986 {
987 --_M_current;
988 return *this;
989 }
990
991 move_iterator
992 operator--(int)
993 {
994 move_iterator __tmp = *this;
995 --_M_current;
996 return __tmp;
997 }
998
999 move_iterator
1000 operator+(difference_type __n) const
1001 { return move_iterator(_M_current + __n); }
1002
1003 move_iterator&
1004 operator+=(difference_type __n)
1005 {
1006 _M_current += __n;
1007 return *this;
1008 }
1009
1010 move_iterator
1011 operator-(difference_type __n) const
1012 { return move_iterator(_M_current - __n); }
1013
1014 move_iterator&
1015 operator-=(difference_type __n)
1016 {
1017 _M_current -= __n;
1018 return *this;
1019 }
1020
1021 reference
1022 operator[](difference_type __n) const
1023 { return std::move(_M_current[__n]); }
1024 };
1025
1026 // Note: See __normal_iterator operators note from Gaby to understand
1027 // why there are always 2 versions for most of the move_iterator
1028 // operators.
1029 template<typename _IteratorL, typename _IteratorR>
1030 inline bool
1031 operator==(const move_iterator<_IteratorL>& __x,
1032 const move_iterator<_IteratorR>& __y)
1033 { return __x.base() == __y.base(); }
1034
1035 template<typename _Iterator>
1036 inline bool
1037 operator==(const move_iterator<_Iterator>& __x,
1038 const move_iterator<_Iterator>& __y)
1039 { return __x.base() == __y.base(); }
1040
1041 template<typename _IteratorL, typename _IteratorR>
1042 inline bool
1043 operator!=(const move_iterator<_IteratorL>& __x,
1044 const move_iterator<_IteratorR>& __y)
1045 { return !(__x == __y); }
1046
1047 template<typename _Iterator>
1048 inline bool
1049 operator!=(const move_iterator<_Iterator>& __x,
1050 const move_iterator<_Iterator>& __y)
1051 { return !(__x == __y); }
1052
1053 template<typename _IteratorL, typename _IteratorR>
1054 inline bool
1055 operator<(const move_iterator<_IteratorL>& __x,
1056 const move_iterator<_IteratorR>& __y)
1057 { return __x.base() < __y.base(); }
1058
1059 template<typename _Iterator>
1060 inline bool
1061 operator<(const move_iterator<_Iterator>& __x,
1062 const move_iterator<_Iterator>& __y)
1063 { return __x.base() < __y.base(); }
1064
1065 template<typename _IteratorL, typename _IteratorR>
1066 inline bool
1067 operator<=(const move_iterator<_IteratorL>& __x,
1068 const move_iterator<_IteratorR>& __y)
1069 { return !(__y < __x); }
1070
1071 template<typename _Iterator>
1072 inline bool
1073 operator<=(const move_iterator<_Iterator>& __x,
1074 const move_iterator<_Iterator>& __y)
1075 { return !(__y < __x); }
1076
1077 template<typename _IteratorL, typename _IteratorR>
1078 inline bool
1079 operator>(const move_iterator<_IteratorL>& __x,
1080 const move_iterator<_IteratorR>& __y)
1081 { return __y < __x; }
1082
1083 template<typename _Iterator>
1084 inline bool
1085 operator>(const move_iterator<_Iterator>& __x,
1086 const move_iterator<_Iterator>& __y)
1087 { return __y < __x; }
1088
1089 template<typename _IteratorL, typename _IteratorR>
1090 inline bool
1091 operator>=(const move_iterator<_IteratorL>& __x,
1092 const move_iterator<_IteratorR>& __y)
1093 { return !(__x < __y); }
1094
1095 template<typename _Iterator>
1096 inline bool
1097 operator>=(const move_iterator<_Iterator>& __x,
1098 const move_iterator<_Iterator>& __y)
1099 { return !(__x < __y); }
1100
1101 // DR 685.
1102 template<typename _IteratorL, typename _IteratorR>
1103 inline auto
1104 operator-(const move_iterator<_IteratorL>& __x,
1105 const move_iterator<_IteratorR>& __y)
1106 -> decltype(__x.base() - __y.base())
1107 { return __x.base() - __y.base(); }
1108
1109 template<typename _Iterator>
1110 inline auto
1111 operator-(const move_iterator<_Iterator>& __x,
1112 const move_iterator<_Iterator>& __y)
1113 -> decltype(__x.base() - __y.base())
1114 { return __x.base() - __y.base(); }
1115
1116 template<typename _Iterator>
1117 inline move_iterator<_Iterator>
1118 operator+(typename move_iterator<_Iterator>::difference_type __n,
1119 const move_iterator<_Iterator>& __x)
1120 { return __x + __n; }
1121
1122 template<typename _Iterator>
1123 inline move_iterator<_Iterator>
1124 make_move_iterator(_Iterator __i)
1125 { return move_iterator<_Iterator>(__i); }
1126
1127 template<typename _Iterator, typename _ReturnType
1128 = typename conditional<__move_if_noexcept_cond
1129 <typename iterator_traits<_Iterator>::value_type>::value,
1130 _Iterator, move_iterator<_Iterator>>::type>
1131 inline _ReturnType
1132 __make_move_if_noexcept_iterator(_Iterator __i)
1133 { return _ReturnType(__i); }
1134
1135 // @} group iterators
1136
1137_GLIBCXX_END_NAMESPACE_VERSION
1138} // namespace
1139
1140#define _GLIBCXX_MAKE_MOVE_ITERATOR(_Iter)std::make_move_iterator(_Iter) std::make_move_iterator(_Iter)
1141#define _GLIBCXX_MAKE_MOVE_IF_NOEXCEPT_ITERATOR(_Iter)std::__make_move_if_noexcept_iterator(_Iter) \
1142 std::__make_move_if_noexcept_iterator(_Iter)
1143#else
1144#define _GLIBCXX_MAKE_MOVE_ITERATOR(_Iter)std::make_move_iterator(_Iter) (_Iter)
1145#define _GLIBCXX_MAKE_MOVE_IF_NOEXCEPT_ITERATOR(_Iter)std::__make_move_if_noexcept_iterator(_Iter) (_Iter)
1146#endif // C++11
1147
1148#endif