Bug Summary

File:alld2/home/sdobbs/Software/jana/jana_0.8.2/Linux_CentOS7.7-x86_64-gcc4.8.5/include/JANA/JEventLoop.h
Warning:line 398, column 7
Null pointer passed to 2nd parameter expecting 'nonnull'

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-unknown-linux-gnu -analyze -disable-free -main-file-name DBCALCluster_factory.cc -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -mrelocation-model pic -pic-level 2 -fhalf-no-semantic-interposition -mframe-pointer=none -fmath-errno -fno-rounding-math -mconstructor-aliases -munwind-tables -target-cpu x86-64 -tune-cpu generic -fno-split-dwarf-inlining -debugger-tuning=gdb -resource-dir /w/halld-scifs17exp/home/sdobbs/clang/llvm-project/install/lib/clang/12.0.0 -D HAVE_CCDB -D HAVE_RCDB -D HAVE_EVIO -D HAVE_TMVA=1 -D RCDB_MYSQL=1 -D RCDB_SQLITE=1 -D SQLITE_USE_LEGACY_STRUCT=ON -I .Linux_CentOS7.7-x86_64-gcc4.8.5/libraries/BCAL -I libraries/BCAL -I . -I libraries -I libraries/include -I /w/halld-scifs17exp/home/sdobbs/clang/halld_recon/Linux_CentOS7.7-x86_64-gcc4.8.5/include -I external/xstream/include -I /usr/include/tirpc -I /group/halld/Software/builds/Linux_CentOS7.7-x86_64-gcc4.8.5/root/root-6.08.06/include -I /w/halld-scifs17exp/halld2/home/sdobbs/Software/jana/jana_0.8.2/Linux_CentOS7.7-x86_64-gcc4.8.5/include -I /group/halld/Software/builds/Linux_CentOS7.7-x86_64-gcc4.8.5/ccdb/ccdb_1.06.06/include -I /group/halld/Software/builds/Linux_CentOS7.7-x86_64-gcc4.8.5/rcdb/rcdb_0.06.00/cpp/include -I /usr/include/mysql -I /group/halld/Software/builds/Linux_CentOS7.7-x86_64-gcc4.8.5/sqlitecpp/SQLiteCpp-2.2.0^bs130/include -I /group/halld/Software/builds/Linux_CentOS7.7-x86_64-gcc4.8.5/sqlite/sqlite-3.13.0^bs130/include -I /group/halld/Software/builds/Linux_CentOS7.7-x86_64-gcc4.8.5/hdds/hdds-4.9.0/Linux_CentOS7.7-x86_64-gcc4.8.5/src -I /group/halld/Software/builds/Linux_CentOS7.7-x86_64-gcc4.8.5/xerces-c/xerces-c-3.1.4/include -I /group/halld/Software/builds/Linux_CentOS7.7-x86_64-gcc4.8.5/evio/evio-4.4.6/Linux-x86_64/include -internal-isystem /usr/lib/gcc/x86_64-redhat-linux/4.8.5/../../../../include/c++/4.8.5 -internal-isystem /usr/lib/gcc/x86_64-redhat-linux/4.8.5/../../../../include/c++/4.8.5/x86_64-redhat-linux -internal-isystem /usr/lib/gcc/x86_64-redhat-linux/4.8.5/../../../../include/c++/4.8.5/backward -internal-isystem /usr/local/include -internal-isystem /w/halld-scifs17exp/home/sdobbs/clang/llvm-project/install/lib/clang/12.0.0/include -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -std=c++11 -fdeprecated-macro -fdebug-compilation-dir /home/sdobbs/work/clang/halld_recon/src -ferror-limit 19 -fgnuc-version=4.2.1 -fcxx-exceptions -fexceptions -vectorize-loops -vectorize-slp -analyzer-output=html -faddrsig -o /tmp/scan-build-2021-01-21-110224-160369-1 -x c++ libraries/BCAL/DBCALCluster_factory.cc

libraries/BCAL/DBCALCluster_factory.cc

1/*
2 * DBCALCluster_factory.cc
3 *
4 * Created by Matthew Shepherd on 3/12/11.
5 *
6 */
7
8#include <iostream>
9
10using namespace std;
11
12#include "DANA/DApplication.h"
13#include "BCAL/DBCALGeometry.h"
14#include "BCAL/DBCALHit.h"
15#include "BCAL/DBCALUnifiedHit.h"
16
17#include "BCAL/DBCALCluster_factory.h"
18
19#include "units.h"
20#include <TMath.h>
21
22bool PointSort( const DBCALPoint* p1, const DBCALPoint* p2 ){
23
24 return ( p1->E() > p2->E() );
25}
26
27bool ClusterSort( const DBCALCluster* c1, const DBCALCluster* c2 ){
28
29 return ( c1->E() > c2->E() );
30}
31
32DBCALCluster_factory::DBCALCluster_factory() :
33 m_mergeSig( 5 ),
34 m_moliereRadius( 3.7*k_cm ),
35 m_clust_hit_timecut ( 20.0*k_nsec ),
36 m_timeCut( 8.0*k_nsec ){
37
38 // The phi and theta direction inclusion curves are described in:
39 // http://argus.phys.uregina.ca/gluex/DocDB/0029/002998/003/CAL_meeting_may5.pdf.
40 // The theta direction inclusion curve needs to be a function of theta. C1_parm and
41 // C2_parm are parameters [0] and [1] in dtheta_inclusion_curve.
42 }
43
44jerror_t
45DBCALCluster_factory::init(void){
46
47 m_BCALGeom = NULL__null;
48 return NOERROR;
49
50}
51
52jerror_t
53DBCALCluster_factory::fini( void ){
54
55 return NOERROR;
56}
57
58jerror_t DBCALCluster_factory::brun(JEventLoop *loop, int32_t runnumber) {
59 DApplication* app = dynamic_cast<DApplication*>(loop->GetJApplication());
60 DGeometry* geom = app->GetDGeometry(runnumber);
61 geom->GetTargetZ(m_z_target_center);
62
63 // load BCAL Geometry
64 vector<const DBCALGeometry *> BCALGeomVec;
65 loop->Get(BCALGeomVec);
66 if(BCALGeomVec.size() == 0)
67 throw JException("Could not load DBCALGeometry object!");
68 m_BCALGeom = BCALGeomVec[0];
69
70
71 loop->GetCalib("/BCAL/effective_velocities", effective_velocities);
72
73 loop->GetCalib("/BCAL/attenuation_parameters",attenuation_parameters);
74
75 BCALCLUSTERVERBOSE = 0;
76 gPARMS->SetDefaultParameter("BCALCLUSTERVERBOSE", BCALCLUSTERVERBOSE, "VERBOSE level for BCAL Cluster overlap success and conditions");
77 //command line parameter to investigate what points are being added to clusters and what clusters are being merged together. // Track fitterer helper class
78
79
80 vector<const DTrackFitter *> fitters;
81 loop->Get(fitters);
82
83 if(fitters.size()<1){
84 _DBG_std::cerr<<"libraries/BCAL/DBCALCluster_factory.cc"<<
":"<<84<<" "
<<"Unable to get a DTrackFinder object!"<<endl;
85 return RESOURCE_UNAVAILABLE;
86 }
87
88 fitter = fitters[0];
89
90 return NOERROR;
91}
92
93jerror_t
94DBCALCluster_factory::evnt( JEventLoop *loop, uint64_t eventnumber ){
95
96 vector< const DBCALPoint* > twoEndPoint;
97 vector< const DBCALPoint* > usedPoints;
98 loop->Get(twoEndPoint);
1
Calling 'JEventLoop::Get'
99
100 // Want to add singled-ended hits to the Clusters.
101
102 // Looking for hits that are single-ended.
103
104 vector< const DBCALUnifiedHit* > hits;
105 loop->Get(hits);
106
107 vector< const DTrackWireBased* > tracks;
108 loop->Get(tracks);
109
110 // first arrange the list of hits so they are grouped by cell
111 map< int, vector< const DBCALUnifiedHit* > > cellHitMap;
112 for( vector< const DBCALUnifiedHit* >::const_iterator hitPtr = hits.begin();
113 hitPtr != hits.end();
114 ++hitPtr ){
115
116 const DBCALUnifiedHit& hit = (**hitPtr);
117
118 int id = m_BCALGeom->cellId( hit.module, hit.layer, hit.sector );
119
120 if( cellHitMap.find( id ) == cellHitMap.end() ){
121
122 cellHitMap[id] = vector< const DBCALUnifiedHit* >();
123 }
124
125 cellHitMap[id].push_back( *hitPtr );
126 }
127
128 // now we should try to add on single-ended hits ...
129 vector< const DBCALUnifiedHit* > single_ended_hits;
130
131 for( map< int, vector< const DBCALUnifiedHit* > >::iterator mapItr = cellHitMap.begin();
132 mapItr != cellHitMap.end();
133 ++mapItr ){
134
135 if( mapItr->second.size() == 1 ){
136 // only one hit in the cell
137
138 const DBCALUnifiedHit* hit = mapItr->second[0];
139
140 single_ended_hits.push_back(hit);
141
142 }
143 }
144
145 vector<DBCALCluster*> clusters = clusterize( twoEndPoint, usedPoints, single_ended_hits, tracks );
146
147 // load our vector of clusters into the factory member data
148 for( vector<DBCALCluster*>::iterator clust = clusters.begin();
149 clust != clusters.end();
150 ++clust ){
151
152 if( isnan((**clust).t()) == 1 || isnan((**clust).phi()) == 1 || isnan((**clust).theta()) == 1 ) continue;
153 // put in an energy threshold for clusters
154 if( (**clust).E() < 5*k_MeV ) {
155 delete *clust;
156 continue;
157 }
158 vector<const DBCALPoint*>points=(**clust).points();
159 for (unsigned int i=0;i<points.size();i++){
160 (**clust).AddAssociatedObject(points[i]);
161 }
162 _data.push_back(*clust);
163 }
164 return NOERROR;
165}
166
167vector<DBCALCluster*>
168DBCALCluster_factory::clusterize( vector< const DBCALPoint* > points , vector< const DBCALPoint* > usedPoints , vector< const DBCALUnifiedHit* > hits, vector< const DTrackWireBased* > tracks ) const {
169
170 // first sort the points by energy
171 sort( points.begin(), points.end(), PointSort );
172
173 vector<DBCALCluster*> clusters(0);
174
175 // ahh.. more hard coded numbers that should probably
176 // come from a database or something
177 float seedThresh = 1.*k_GeV;
178 float minSeed = 10*k_MeV;
179 //We have a big problem with noise in the outer layer of the detector
180 //(the noise is the greatest in the outer layer, since the number of SiPMs
181 //being summed is also the greatest here).
182 //Thus there are a lot of DBCALPoint's in this layer that are pure noise hits.
183 //The simplest way to deal with this is to prevent outer layer points
184 //from seeding clusters. So hits in the outer layer can be associated
185 //with existing clusters, but cannot create their own cluster.
186 //This is okay since since isolated hits in the outer layer
187 //is not really a signature we expect for many physical showers.
188 //However, if a hit is sufficiently energetic, it is unlikely to be a noise
189 //hit. For this reason, we allow 4th layer hits to seed clusters,
190 //but we need a different (higher) minimum seed energy.
191 float layer4_minSeed = 50*k_MeV;
192 float tracked_phi = 0.;
193 float matched_dphi = .175;
194 float matched_dtheta = .087;
195
196 while( seedThresh > minSeed ) {
197
198 bool usedPoint = false;
199
200 for( vector< const DBCALPoint* >::iterator pt = points.begin();
201 pt != points.end();
202 ++pt ){
203
204 // first see if point should be added to an existing
205 // cluster
206
207 int q = 0;
208
209 // Check if a point is matched to a track
210 for( vector< const DTrackWireBased* >::iterator trk = tracks.begin();
211 trk != tracks.end();
212 ++trk ){
213 DVector3 track_pos(0.0, 0.0, 0.0);
214 double point_r = (**pt).r();
215 double point_z = (**pt).z();
216 vector<DTrackFitter::Extrapolation_t>extrapolations=(*trk)->extrapolations.at(SYS_BCAL);
217 if (fitter->ExtrapolateToRadius(point_r,extrapolations,track_pos)){
218 double dPhi=track_pos.Phi()-(**pt).phi();
219 if (dPhi<-M_PI3.14159265358979323846) dPhi+=2.*M_PI3.14159265358979323846;
220 if (dPhi>M_PI3.14159265358979323846) dPhi-=2.*M_PI3.14159265358979323846;
221 double point_theta_global = fabs(atan2(point_r,point_z + m_z_target_center )); // convert point z-position origin to global frame to match tracks origin
222 double dTheta = fabs(point_theta_global - track_pos.Theta());
223 matched_dphi=0.175+0.175*exp(-0.8*extrapolations[0].momentum.Mag());
224 if(fabs(dPhi) < matched_dphi && dTheta < matched_dtheta){
225 q = 1; // if point and track are matched then set q = 1
226 tracked_phi = extrapolations[0].position.Phi();
227 break;
228 }
229 }
230 }
231
232 for( vector<DBCALCluster*>::iterator clust = clusters.begin();
233 clust != clusters.end();
234 ++clust ){
235
236 if((**clust).Q()==1){
237 if(overlap_charged( **clust,*pt, tracked_phi ) ){
238 usedPoints.push_back( *pt );
239 int point_q = 1;
240 (**clust).addPoint( *pt, point_q );
241 points.erase( pt );
242 usedPoint = true;
243 break;
244 }
245 }
246 if( overlap( **clust, *pt ) ){
247 if (q==1 && (**pt).layer()!=1) q=0;
248 // assign point q=1 if it's in layer 1 because track matching tends to be improved in layer 1 than later layers where the cluster seed is. This would allow us to jump into the charged clustering routines on the fly.
249 usedPoints.push_back( *pt );
250 (**clust).addPoint( *pt , q);
251 points.erase( pt );
252 usedPoint = true;
253 break;
254 }
255 // once we erase a point the iterator is no longer useful
256 // and we start the loop over, so that a point doesn't get added to
257 // multiple clusters. We will recycle through points later to
258 // check if a point was added to its closest cluster.
259 }
260
261 if( usedPoint ) break;
262
263 // if the point doesn't overlap with a cluster see if it can become a
264 // new seed
265 if( (**pt).E() > seedThresh && ((**pt).layer() != 4 || (**pt).E() > layer4_minSeed) ){
266 clusters.push_back(new DBCALCluster( *pt, m_z_target_center, q, m_BCALGeom ) );
267 usedPoints.push_back( *pt );
268 points.erase( pt );
269 usedPoint = true;
270 break;
271 }
272 }
273
274 recycle_points( usedPoints, clusters);
275 // recycle through points that were added to a cluster and check if they
276 // were added to their closest cluster. If they weren't then we remove
277 // the point from its original cluster and add it to its closest cluster.
278
279 double point_reatten_E = 0.;
280 merge( clusters, point_reatten_E );
281 // lower the threshold to look for new seeds if none of
282 // the existing points were used as new clusters or assigned
283 // to existing clusters
284 if( !usedPoint ) seedThresh /= 2;
285 }
286
287 // add the single-ended hits that overlap with a cluster that was made from points
288 for( vector< const DBCALUnifiedHit* >::iterator ht = hits.begin();
289 ht != hits.end();
290 ++ht){
291 bool usedHit = false;
292
293 for( vector<DBCALCluster*>::iterator clust = clusters.begin();
294 clust != clusters.end();
295 ++clust ){
296
297 if( overlap( **clust, *ht ) ){
298
299 int channel_calib = 16*((**ht).module-1)+4*((**ht).layer-1)+(**ht).sector-1; // need to use cellID for objects in DBCALGeometry but the CCDB uses a different channel numbering scheme, so use channel_calib when accessing CCDB tables.
300
301 // given the location of the cluster, we need the best guess
302 // for z with respect to target at this radius
303
304 double z = (**clust).rho()*cos((**clust).theta()) + m_z_target_center;
305 double d = ( ((**ht).end == 0) ? (z - m_BCALGeom->GetBCAL_center() + m_BCALGeom->GetBCAL_length()/2.0) : (m_BCALGeom->GetBCAL_center() + m_BCALGeom->GetBCAL_length()/2.0 - z)); // d gives the distance to upstream or downstream end of BCAL depending on where the hit was with respect to the cluster z position.
306 double lambda = attenuation_parameters[channel_calib][0];
307 double hit_E = (**ht).E;
308 double hit_E_unattenuated = hit_E/exp(-d/lambda); // hit energy unattenuated wrt the cluster z position
309
310 (**clust).addHit( *ht, hit_E_unattenuated );
311 usedHit = true;
312 }
313 if( usedHit ) break;
314 }
315 }
316 return clusters;
317}
318
319void
320DBCALCluster_factory::recycle_points( vector<const DBCALPoint*> usedPoints, vector<DBCALCluster*>& clusters) const{
321
322 if ( clusters.size() <= 1 ) return;
323
324 int q = 2;
325
326 sort( clusters.begin(), clusters.end(), ClusterSort );
327
328 for( vector<const DBCALPoint*>::const_iterator usedpt = usedPoints.begin();
329 usedpt != usedPoints.end();
330 ++usedpt ){
331
332 bool got_overlap=false;
333 double min_phi=1e6;
334
335 for( vector<DBCALCluster*>::iterator clust = clusters.begin();
336 clust != clusters.end();
337 ++clust ){
338
339 if( overlap( **clust, *usedpt ) ){
340 got_overlap=true;
341
342 float deltaPhi = (**clust).phi() - (*usedpt)->phi();
343 if (deltaPhi<-M_PI3.14159265358979323846) deltaPhi+=2.*M_PI3.14159265358979323846;
344 if (deltaPhi>M_PI3.14159265358979323846) deltaPhi-=2.*M_PI3.14159265358979323846;
345 if (fabs(deltaPhi)<min_phi){
346 min_phi=fabs(deltaPhi);
347 }
348 }
349 }
350
351 if(got_overlap==false) break;
352
353 // Find the points closest cluster in distance along the sphere and in phi
354 for( vector<DBCALCluster*>::iterator clust = clusters.begin();
355 clust != clusters.end();
356 ++clust ){
357 bool best_clust = false;
358 vector<const DBCALPoint*>associated_points=(**clust).points();
359
360 float deltaPhi = (**clust).phi() - (*usedpt)->phi();
361 if (deltaPhi<-M_PI3.14159265358979323846) deltaPhi+=2.*M_PI3.14159265358979323846;
362 if (deltaPhi>M_PI3.14159265358979323846) deltaPhi-=2.*M_PI3.14159265358979323846;
363 deltaPhi=fabs(deltaPhi);
364
365 for(unsigned int j = 0 ; j < associated_points.size(); j++){
366 // Check to see if the point we are comparing to the cluster
367 // is already in that cluster.
368 if (fabs((*usedpt)->E()-associated_points[j]->E())<1e-4
369 && fabs(deltaPhi-min_phi)<1e-4) best_clust=true;
370 if(BCALCLUSTERVERBOSE>1)cout << " clust E = " << (**clust).E() <<" assoc point E = " << associated_points[j]->E() << " points E = " << (*usedpt)->E() << " clust match = " << best_clust << endl;
371 }
372 if(best_clust==true) break;
373 // if the point was originally placed in its "best" cluster then we don't want to touch it.
374 if(best_clust==0){
375 int added_point = 0;
376 int removed_point = 0;
377 for(unsigned int i = 0 ; i < associated_points.size(); i++){
378 bool point_match = (fabs((*usedpt)->E()-associated_points[i]->E())<1e-4);
379 if( point_match==0 && added_point==0 && fabs(deltaPhi-min_phi)<1e-4){
380 (**clust).addPoint( *usedpt , q );
381 // if the point found a closer cluster then we add it to the closer cluster.
382 // The point is now an associated object of the closer cluster.
383 added_point=1;
384 }
385 if( point_match==1 && removed_point==0 && fabs(deltaPhi-min_phi)>1e-4){
386 (**clust).removePoint( *usedpt );
387 // Now we remove the point from its original cluster since it has been added
388 // to its closest cluster. The point is no longer an associated object of
389 // the original cluster.
390 removed_point=1;
391 }
392 }
393 }
394 }
395 }
396}
397
398void
399DBCALCluster_factory::merge( vector<DBCALCluster*>& clusters, double point_reatten_E ) const {
400
401 if( clusters.size() <= 1 ) return;
402
403 sort( clusters.begin(), clusters.end(), ClusterSort );
404
405 bool stillMerging = true;
406
407 float low_z_lim = -100.;
408 float high_z_lim = 500.;
409
410 while( stillMerging ){
411
412 stillMerging = false;
413 for( vector<DBCALCluster*>::iterator hClust = clusters.begin();
414 hClust != clusters.end() - 1;
415 ++hClust ){
416
417 vector<const DBCALPoint*>hClust_points=(**hClust).points();
418
419 for( vector<DBCALCluster*>::iterator lClust = hClust + 1;
420 lClust != clusters.end();
421 ++lClust ){
422
423 vector<const DBCALPoint*>lClust_points=(**lClust).points();
424 vector<const DBCALPoint*>hClust_points=(**hClust).points();
425
426 if( overlap( **hClust, **lClust ) ){
427
428 point_reatten_E = 0.;
429
430 if (hClust_points.size() == 1) {
431
432 for( unsigned int i = 0 ; i < hClust_points.size() ; i++){
433
434 if (hClust_points[i]->z() > low_z_lim && hClust_points[i]->z() < high_z_lim) point_reatten_E = 0.;
435 else {
436 int channel_calib = 16*(hClust_points[i]->module()-1)+4*(hClust_points[i]->layer()-1)+hClust_points[i]->sector()-1;
437
438 double fibLen = m_BCALGeom->GetBCAL_length();
439
440 double point_z = hClust_points[i]->z();
441 double zLocal = point_z + m_z_target_center - m_BCALGeom->GetBCAL_center();
442
443 double dUp = 0.5 * fibLen + zLocal;
444 double dDown = 0.5 * fibLen - zLocal;
445 if (dUp>fibLen) dUp=fibLen;
446 if (dUp<0) dUp=0;
447 if (dDown>fibLen) dDown=fibLen;
448 if (dDown<0) dDown=0;
449
450 double lambda = attenuation_parameters[channel_calib][0];
451 double attUp = exp( -dUp / lambda );
452 double attDown = exp( -dDown / lambda );
453
454 double US_unatten_E = hClust_points[i]->E_US()*attUp;
455 double DS_unatten_E = hClust_points[i]->E_DS()*attDown;
456
457 double zLocal_clust = m_BCALGeom->GetBCAL_inner_rad()/tan((**lClust).theta()) + m_z_target_center - m_BCALGeom->GetBCAL_center();
458 double dUp_clust = 0.5 * fibLen + zLocal_clust;
459 double dDown_clust = 0.5 * fibLen - zLocal_clust;
460
461 double attUp_clust = exp( -dUp_clust / lambda );
462 double attDown_clust = exp( -dDown_clust / lambda );
463
464 double US_reattn_E = US_unatten_E/attUp_clust;
465 double DS_reattn_E = DS_unatten_E/attDown_clust;
466 point_reatten_E = 0.5 * ( US_reattn_E + DS_reattn_E);
467
468 }
469 }
470 }
471
472 if (lClust_points.size() == 1) {
473
474 for( unsigned int i = 0 ; i < lClust_points.size() ; i++){
475
476 if (lClust_points[i]->z() > low_z_lim && lClust_points[i]->z() < high_z_lim) point_reatten_E = 0.;
477 else{
478 int channel_calib = 16*(lClust_points[i]->module()-1)+4*(lClust_points[i]->layer()-1)+lClust_points[i]->sector()-1;
479
480 double fibLen = m_BCALGeom->GetBCAL_length();
481
482 double point_z = lClust_points[i]->z();
483 double zLocal = point_z + m_z_target_center - m_BCALGeom->GetBCAL_center();
484
485 double dUp = 0.5 * fibLen + zLocal;
486 double dDown = 0.5 * fibLen - zLocal;
487 if (dUp>fibLen) dUp=fibLen;
488 if (dUp<0) dUp=0;
489 if (dDown>fibLen) dDown=fibLen;
490 if (dDown<0) dDown=0;
491
492 double lambda = attenuation_parameters[channel_calib][0];
493 double attUp = exp( -dUp / lambda );
494 double attDown = exp( -dDown / lambda );
495
496 double US_unatten_E = lClust_points[i]->E_US()*attUp;
497 double DS_unatten_E = lClust_points[i]->E_DS()*attDown;
498
499 double zLocal_clust = m_BCALGeom->GetBCAL_inner_rad()/tan((**hClust).theta()) + m_z_target_center - m_BCALGeom->GetBCAL_center();
500 double dUp_clust = 0.5 * fibLen + zLocal_clust;
501 double dDown_clust = 0.5 * fibLen - zLocal_clust;
502
503 double attUp_clust = exp( -dUp_clust / lambda );
504 double attDown_clust = exp( -dDown_clust / lambda );
505
506 double US_reattn_E = US_unatten_E/attUp_clust;
507 double DS_reattn_E = DS_unatten_E/attDown_clust;
508 point_reatten_E = 0.5 * ( US_reattn_E + DS_reattn_E);
509
510 }
511 }
512 }
513
514 if( (**lClust).Q() == 1 && (**hClust).Q() == 0) {
515 (**lClust).mergeClust(**hClust, point_reatten_E);
516 delete *hClust;
517 clusters.erase( hClust );
518 }
519
520 else {
521 (**hClust).mergeClust(**lClust, point_reatten_E);
522 delete *lClust;
523 clusters.erase( lClust );
524 }
525
526 // now iterators are invalid and we need to bail out of loops
527 stillMerging = true;
528 break;
529 }
530 }
531 if( stillMerging ) break;
532 }
533 }
534}
535
536bool
537DBCALCluster_factory::overlap( const DBCALCluster& highEClust,
538 const DBCALCluster& lowEClust ) const {
539
540 float sigTheta = fabs( highEClust.theta() - lowEClust.theta() ) /
541 sqrt( highEClust.sigTheta() * highEClust.sigTheta() +
542 lowEClust.sigTheta() * lowEClust.sigTheta() );
543
544 // difference in phi is tricky due to overlap at 0/2pi
545 // order based on phi and then take the minimum of the difference
546 // and the difference with 2pi added to the smallest
547
548 float deltaPhi = highEClust.phi() - lowEClust.phi();
549 float deltaPhiAlt = ( highEClust.phi() > lowEClust.phi() ?
550 highEClust.phi() - lowEClust.phi() - 2*TMath::Pi() :
551 lowEClust.phi() - highEClust.phi() - 2*TMath::Pi() );
552
553 deltaPhi = min( fabs( deltaPhi ), fabs( deltaPhiAlt ) );
554
555 float sigPhi = deltaPhi /
556 sqrt( highEClust.sigPhi() * highEClust.sigPhi() +
557 lowEClust.sigPhi() * lowEClust.sigPhi() );
558
559 //We can't rely entirely on sigTheta and sigPhi as defined above.
560 //For high-energy clusters, the position uncertainties will be very small,
561 //so sigTheta/sigPhi will be large, and clusters may not merge properly.
562 //To fix this, force clusters to merge if delta_z and delta_phi are both
563 //very small. This is hopefully only a temporary fix.
564
565 //deltaPhi_force_merge and delta_z_force_merge were determined by looking
566 //at the separation of decay photons from pi0's from a pythia sample.
567 //There are no events where the decay photons have separation
568 //(delta_phi < 0.2 && delta_z < 25 cm), so in most cases it should be safe
569 //to merge clusters together if they are so close.
570 const double deltaPhi_force_merge = 0.1; //radians
571 const double delta_z_force_merge = 15.0*k_cm;
572
573 //A major cause of extra clusters are lower energy hits, which have poor
574 //z-resolution and so are not properly merged. Treat low energy
575 //clusters (< 40 MeV) as a special case. Again, hopefully this is only
576 //a temporary fix until we have a more comprehensive solution.
577 const double delta_z_force_merge_low_E = 40.0*k_cm;
578 const double low_E = .04*k_GeV;
579
580 double z1 = m_BCALGeom->GetBCAL_inner_rad()/tan(highEClust.theta());
581 double z2 = m_BCALGeom->GetBCAL_inner_rad()/tan(lowEClust.theta());
582 double delta_z = fabs(z1-z2);
583
584 bool theta_match = (sigTheta < m_mergeSig) || (delta_z < delta_z_force_merge) || (delta_z < delta_z_force_merge_low_E && lowEClust.E() < low_E);
585
586 bool phi_match = (sigPhi < m_mergeSig) || (deltaPhi < deltaPhi_force_merge);
587
588 //very loose cut to check that the two clusters are in time
589 bool time_match = (highEClust.t() - lowEClust.t()) < m_timeCut;
590
591 if(BCALCLUSTERVERBOSE>1) cout << " clust merge: " << " theta match success = " << theta_match << " phi match = " << phi_match << " time match = " << time_match << " high E = " << highEClust.E() << " low E = " << lowEClust.E() << " highE z = " << z1 << " lowE z = " << z2 << " deltaTheta = " << fabs(highEClust.theta()-lowEClust.theta()) << " sigTheta = " << sigTheta << " highE sigTheta = " << highEClust.sigTheta() << " lowE sigTheta = " << lowEClust.sigTheta() << endl;
592
593 vector<const DBCALPoint*> highE_points;
594 highE_points = (highEClust).points();
595
596 vector<const DBCALPoint*> lowE_points;
597 lowE_points = (lowEClust).points();
598
599 double highE_summed_z = 0.;
600 double highE_summed_phi = 0.;
601 double highE_summed_zphi = 0.;
602 double highE_summed_z_sq = 0.;
603 double highE_slope = 0.;
604 double highE_y_intercept = 0.;
605
606 double lowE_summed_z = 0.;
607 double lowE_summed_phi = 0.;
608 double lowE_summed_zphi = 0.;
609 double lowE_summed_z_sq = 0.;
610 double lowE_slope = 0.;
611 double lowE_y_intercept = 0.;
612
613 int connected = 0;
614// double z_match = 50.;
615 double slope_match = 0.01;
616 double intercept_match = 1.8;
617 double deltaPhi_match = 0.2;
618
619 int lowE_global_sector = 0;
620 int highE_global_sector = 0;
621 int lowE_point_layer = 0;
622
623 for(unsigned int i = 0 ; i < lowE_points.size() ; i ++){
624 // adjust the points phi position to be close to the cluster phi position at the 0/2pi phi boundary
625 if(lowEClust.phi() > lowE_points[i]->phi() ){
626 if( fabs( lowEClust.phi() - lowE_points[i]->phi() - 2*TMath::Pi() ) < TMath::Pi() ) lowE_points[i]->add2Pi();
627 }
628 else{
629 if( fabs( lowE_points[i]->phi() - lowEClust.phi() - 2*TMath::Pi() ) < TMath::Pi() ) lowE_points[i]->sub2Pi();
630 }
631
632 // compute quantities to be used to calculate the direction of the lower energy cluster if we need it for merging.
633 lowE_summed_z += lowE_points[i]->z();
634 lowE_summed_phi += lowE_points[i]->phi();;
635 lowE_summed_zphi += lowE_points[i]->z()*lowE_points[i]->phi();
636 lowE_summed_z_sq += lowE_points[i]->z()*lowE_points[i]->z();
637 if(lowE_points.size()==1) {
638 lowE_global_sector = 4*(lowE_points[i]->module()-1) + lowE_points[i]->sector();
639 lowE_point_layer = lowE_points[i]->layer();
640 }
641 }
642
643 for(unsigned int i = 0 ; i < highE_points.size() ; i ++){
644 // adjust the points phi position to be close to the cluster phi position at the 0/2pi phi boundary
645 if(highEClust.phi() > highE_points[i]->phi() ){
646 if( fabs( highEClust.phi() - highE_points[i]->phi() - 2*TMath::Pi() ) < TMath::Pi() ) highE_points[i]->add2Pi();
647 }
648 else{
649 if( fabs( highE_points[i]->phi() - highEClust.phi() - 2*TMath::Pi() ) < TMath::Pi() ) highE_points[i]->sub2Pi();
650 }
651 // compute quantities to be used to calculate the direction of the higher energy cluster if we need it for merging.
652 highE_summed_z += highE_points[i]->z();
653 highE_summed_phi += highE_points[i]->phi();;
654 highE_summed_zphi += highE_points[i]->z()*highE_points[i]->phi();
655 highE_summed_z_sq += highE_points[i]->z()*highE_points[i]->z();
656 highE_global_sector = 4*(highE_points[i]->module()-1) + highE_points[i]->sector();
657 if(lowE_points.size()==1 && lowE_point_layer == highE_points[i]->layer() && ( lowE_global_sector+1 == highE_global_sector || lowE_global_sector-1 == highE_global_sector ) ) connected = 1; // clustesr that contain only a single point won't have any fit parameters and will make it hard for them to merge, this connected int will force a merge if a single point cluster is connected to a cluster without any points adjacent to it.
658 }
659
660 // calculate slopes and intercepts of the 2 clusters direction and if one of the clusters is matched to a track then we will require their fit parameter quantities
661 // to match for their merging criteria. This allows us to relax their phi position proximity merging criteria since split clusters matched to tracks tend to be
662 // further distributed in the azimuthal direction than neutral clusters.
663
664 highE_slope = (highE_summed_z*highE_summed_phi - highE_points.size()*highE_summed_zphi)/(highE_summed_z*highE_summed_z - highE_points.size()*highE_summed_z_sq);
665 highE_y_intercept = (highE_summed_zphi*highE_summed_z - highE_summed_phi*highE_summed_z_sq)/(highE_summed_z*highE_summed_z - highE_points.size()*highE_summed_z_sq);
666
667 lowE_slope = (lowE_summed_z*lowE_summed_phi - lowE_points.size()*lowE_summed_zphi)/(lowE_summed_z*lowE_summed_z - lowE_points.size()*lowE_summed_z_sq);
668 lowE_y_intercept = (lowE_summed_zphi*lowE_summed_z - lowE_summed_phi*lowE_summed_z_sq)/(lowE_summed_z*lowE_summed_z - lowE_points.size()*lowE_summed_z_sq);
669
670 double delta_slope = fabs(highE_slope - lowE_slope) ;
671 double delta_intercept = fabs(highE_y_intercept - lowE_y_intercept) ;
672
673 highE_points.clear();
674 lowE_points.clear();
675
676
677 // If both clusters trying to merge together were NOT matched to a track then use neutral clusterizer merging critera of theta and phi matching.
678 // If EITHER of the 2 clusters trying to merge together were amtched to a track then use the information about the direction of the cluster for merging.
679
680 if (highEClust.Q() == 0 && lowEClust.Q() == 0 ) return theta_match && phi_match && time_match;
681
682 else return ( ( delta_slope < slope_match && delta_intercept < intercept_match && deltaPhi < deltaPhi_match ) || connected == 1 ) ;
683
684
685}
686
687bool
688DBCALCluster_factory::overlap( const DBCALCluster& clust,
689 const DBCALPoint* point ) const {
690
691
692 float deltaTheta = fabs( clust.theta() - point->theta() );
693 /* sigTheta not used
694 float sigTheta = deltaTheta / sqrt( clust.sigTheta() * clust.sigTheta() +
695 point->sigTheta() * point->sigTheta() );
696 */
697
698 // difference in phi is tricky due to overlap at 0/2pi
699 // order based on phi and then take the minimum of the difference
700 // and the difference with 2pi added to the smallest
701
702 float deltaPhi = clust.phi() - point->phi();
703 float deltaPhiAlt = ( clust.phi() > point->phi() ?
704 clust.phi() - point->phi() - 2*TMath::Pi() :
705 point->phi() - clust.phi() - 2*TMath::Pi() );
706
707 deltaPhi = min( fabs( deltaPhi ), fabs( deltaPhiAlt ) );
708
709 /* sigPhi not used
710 float sigPhi = deltaPhi /
711 sqrt( clust.sigPhi() * clust.sigPhi() +
712 point->sigPhi() * point->sigPhi() );
713 */
714
715 float rho = ( clust.rho() + point->rho() ) / 2;
716 float theta = ( clust.theta() + point->theta() ) / 2;
717
718 float sep = sqrt( ( rho * deltaTheta ) * ( rho * deltaTheta ) +
719 ( rho * sin( theta ) * deltaPhi ) * ( rho * sin( theta ) * deltaPhi ) );
720
721 float sep_term1 = rho*deltaTheta;
722 float sep_term2 = rho*sin(theta)*deltaPhi;
723
724 //very loose cuts to make sure the two hits are in time
725 bool time_match = fabs(clust.t() - point->t()) < m_timeCut;
726
727 double clust_z = clust.rho()*cos(clust.theta());
728
729 //double c1 = C1_parm->Eval(clust_z);
730 double c1=23.389+19.093*tanh(-0.0104*(clust_z-201.722));
731
732 //double c2 = C2_parm->Eval(clust_z);
733 double c2=0.151+0.149*tanh(-0.016*(clust_z-275.194));
734
735 //dtheta_inclusion_curve->SetParameter(0,c1);
736 //dtheta_inclusion_curve->SetParameter(1,c2);
737
738 //double inclusion_val = sep_inclusion_curve->Eval(sep);
739 double inclusion_val=exp(-sep/30.)-0.1;
740
741 //double inclusion_val1 = dtheta_inclusion_curve->Eval(sep_term1);
742 double inclusion_val1=exp(-(sep_term1-0.1)/c1)-c2+.15;
743
744 //double inclusion_val2 = dphi_inclusion_curve->Eval(sep_term2);
745 double inclusion_val2=exp(-(sep_term2-2.)/2.5)-sep_term2*0.002+0.07;
746
747 // We consider fractional energy (point.E/Clust.E) as a function of spatial separation between
748 // a point and cluster to determine if the point should be included in the cluster.
749 // These distributions are tighter in the phihat direction than along thetahat. For more details
750 // on how the selection criteria for cluster,point overlap function go to logbook entry 3396018.
751
752 if(BCALCLUSTERVERBOSE>0) cout << "(m,l,s) = (" <<point->module()<<","<<point->layer()<<","<<point->sector()<<")" << " sep = " << sep << "sep1 = " << sep_term1 << " sep2 = " << sep_term2 << " inclusion value = " << inclusion_val << " inclusion val1= " << inclusion_val1 << " inclusion val2= " << inclusion_val2<< " time match = " << time_match << " clust E = " << clust.E() << " point E = " << point->E() << " energy ratio = " << point->E()/(point->E()+clust.E()) << " clust theta = " << clust.theta()*180./3.14159 << " point theta = " << point->theta()*180./3.14159 << " sep rho*deltaTheta = " << ( rho * deltaTheta ) << endl;
753
754 if(sep>m_moliereRadius && sep<7.*m_moliereRadius &&sep_term2>=2.*m_moliereRadius){
755 return ((point->E()/(point->E()+clust.E())) < inclusion_val1 ) && ((point->E()/(point->E()+clust.E())) < inclusion_val2 ) && time_match && deltaPhi*180./3.14159<10.;
756 }
757
758 else{
759 return ((point->E()/(point->E()+clust.E())) < (inclusion_val1+.2)) && sep < 10.*m_moliereRadius && time_match && sep_term2<2.*m_moliereRadius;
760 }
761
762}
763
764
765bool
766DBCALCluster_factory::overlap_charged( const DBCALCluster& clust,
767 const DBCALPoint* point, float tracked_phi) const {
768
769
770 // difference in phi is tricky due to overlap at 0/2pi
771 // order based on phi and then take the minimum of the difference
772 // and the difference with 2pi added to the smallest
773
774 float phiCut = 0.65417;
775
776 vector<const DBCALPoint*> assoc_points;
777 assoc_points = (clust).points();
778
779 double summed_r = 0.;
780 double summed_phi = 0.;
781 double summed_rphi = 0.;
782 double summed_r_sq = 0.;
783
784 double summed_z = 0.;
785 double summed_zphi = 0.;
786 double summed_z_sq = 0.;
787
788 double slope = 0.;
789 double y_intercept = 0.;
790
791 int point_global_sector = 4*(point->module()-1) + point->sector();
792 int point_layer = point->layer();
793 int connected = 0;
794
795 for(unsigned int i = 0 ; i < assoc_points.size() ; i ++){
796 int assoc_point_global_sector = 4*(assoc_points[i]->module() - 1) + assoc_points[i]->sector();
797 if( point_layer == assoc_points[i]->layer() && ( point_global_sector + 1 == assoc_point_global_sector || point_global_sector - 1 == assoc_point_global_sector) ) connected = 1;
798 summed_r += assoc_points[i]->r();
799 summed_z += assoc_points[i]->z();
800 if( tracked_phi > assoc_points[i]->phi() ){
801 if( fabs( tracked_phi - assoc_points[i]->phi() - 2*TMath::Pi() ) < TMath::Pi() ) assoc_points[i]->add2Pi();
802 }
803 else{
804 if( fabs( assoc_points[i]->phi() - tracked_phi - 2*TMath::Pi() ) < TMath::Pi() ) assoc_points[i]->sub2Pi();
805 }
806
807 summed_phi += assoc_points[i]->phi();
808 summed_rphi += assoc_points[i]->r()*assoc_points[i]->phi();
809 summed_r_sq += assoc_points[i]->r()*assoc_points[i]->r();
810 summed_zphi += assoc_points[i]->z()*assoc_points[i]->phi();
811 summed_z_sq += assoc_points[i]->z()*assoc_points[i]->z();
812
813 }
814
815 if(assoc_points.size()<2){
816 slope = (tracked_phi - summed_phi)/(m_BCALGeom->GetBCAL_inner_rad() - summed_r);
817 y_intercept = tracked_phi - slope*m_BCALGeom->GetBCAL_inner_rad();
818 }
819
820 else{
821 slope = (summed_z*summed_phi - assoc_points.size()*summed_zphi)/(summed_z*summed_z - assoc_points.size()*summed_z_sq);
822 y_intercept = (summed_zphi*summed_z - summed_phi*summed_z_sq)/(summed_z*summed_z - assoc_points.size()*summed_z_sq);
823 }
824
825 float fit_phi = 0.;
826
827 if(assoc_points.size() < 2) fit_phi = slope*point->r() + y_intercept;
828 else fit_phi = slope*point->z() + y_intercept;
829
830 assoc_points.clear();
831
832 float deltaPhi = fit_phi-point->phi();
833 float deltaPhiAlt = ( fit_phi > point->phi() ?
834 fit_phi - point->phi() - 2*TMath::Pi() :
835 point->phi() - fit_phi - 2*TMath::Pi() );
836
837 deltaPhi = min( fabs( deltaPhi ), fabs( deltaPhiAlt ) );
838
839 float rho = point->rho();
840 float theta = point->theta();
841
842 float deltaTheta = fabs( clust.theta() - point->theta() );
843
844 float sep = sqrt( ( rho * deltaTheta ) * ( rho * deltaTheta ) +
845 ( rho * sin( theta ) * deltaPhi ) * ( rho * sin( theta ) * deltaPhi ) );
846
847 float sep_term1 = rho*deltaTheta;
848 float sep_term2 = rho*sin(theta)*deltaPhi;
849
850 //very loose cuts to make sure the two hits are in time
851 bool time_match = fabs(clust.t() - point->t()) < m_timeCut;
852
853 bool phi_match = fabs( clust.phi() - point->phi() ) < phiCut;
854
855 double clust_z = clust.rho()*cos(clust.theta());
856
857 //double c1 = C1_parm->Eval(clust_z);
858 double c1=23.389+19.093*tanh(-0.0104*(clust_z-201.722));
859
860 //double c2 = C2_parm->Eval(clust_z);
861 double c2=0.151+0.149*tanh(-0.016*(clust_z-275.194));
862
863 //dtheta_inclusion_curve->SetParameter(0,c1);
864 //dtheta_inclusion_curve->SetParameter(1,c2);
865
866 //double inclusion_val = sep_inclusion_curve->Eval(sep);
867 double inclusion_val=exp(-sep/30.)-0.1;
868
869 //double inclusion_val1 = dtheta_inclusion_curve->Eval(sep_term1);
870 double inclusion_val1=exp(-(sep_term1-0.1)/c1)-c2+.15;
871
872 double inclusion_val2 = exp(-(sep_term2-2.)/1.5) - sep_term2*.007 + .15;
873
874 // We consider fractional energy (point.E/Clust.E) as a function of spatial separation between
875 // a point and cluster to determine if the point should be included in the cluster.
876 // These distributions are tighter in the phihat direction than along thetahat. For more details
877 // on how the selection criteria for cluster,point overlap function go to logbook entry 3396018.
878
879 if(BCALCLUSTERVERBOSE>1) cout << "(m,l,s) = (" <<point->module()<<","<<point->layer()<<","<<point->sector()<<")" << " sep = " << sep << "sep1 = " << sep_term1 << " sep2 = " << sep_term2 << " inclusion value = " << inclusion_val << " inclusion val1= " << inclusion_val1 << " inclusion val2= " << inclusion_val2<< " time match = " << time_match << " clust E = " << clust.E() << " point E = " << point->E() << " energy ratio = " << point->E()/(point->E()+clust.E()) << " clust theta = " << clust.theta()*180./3.14159 << " point theta = " << point->theta()*180./3.14159 << " sep rho*deltaTheta = " << ( rho * deltaTheta ) << endl;
880
881 if(sep>m_moliereRadius && sep<7.*m_moliereRadius &&sep_term2>=2.*m_moliereRadius){
882 return ((point->E()/(point->E()+clust.E())) < (inclusion_val1) ) && ((point->E()/(point->E()+clust.E())) < (inclusion_val2) ) && time_match && phi_match;
883 }
884
885 else{
886 return ((point->E()/(point->E()+clust.E())) < (inclusion_val1 + .2)) && sep < 10.*m_moliereRadius && time_match && sep_term2<2.*m_moliereRadius;
887 }
888
889 return connected == 1;
890
891}
892
893
894bool
895DBCALCluster_factory::overlap( const DBCALCluster& clust,
896 const DBCALUnifiedHit* hit ) const {
897
898 int cellId = m_BCALGeom->cellId( hit->module, hit->layer, hit->sector );
899
900 float cellPhi = m_BCALGeom->phi( cellId );
901 float cellSigPhi = m_BCALGeom->phiSize( cellId );
902
903 // annoying +- 2pi business to try to find the best delta phi
904
905 float deltaPhi = clust.phi() - cellPhi;
906 float deltaPhiAlt = ( clust.phi() > cellPhi ?
907 clust.phi() - cellPhi - 2*TMath::Pi() :
908 cellPhi - clust.phi() - 2*TMath::Pi() );
909 deltaPhi = min( fabs( deltaPhi ), fabs( deltaPhiAlt ) );
910
911 float sigPhi = deltaPhi /
912 sqrt( clust.sigPhi() * clust.sigPhi() + cellSigPhi * cellSigPhi );
913
914 int channel_calib = 16*(hit->module-1)+4*(hit->layer-1)+hit->sector-1; // need to use cellID for objects in DBCALGeometry but the CCDB uses a different channel numbering scheme, so use channel_calib when accessing CCDB tables.
915 // given the location of the cluster, we need the best guess
916 // for z with respect to target at this radius
917 double z = clust.rho()*cos(clust.theta()) + m_z_target_center;
918 double d = ( (hit->end == 0) ? (z - m_BCALGeom->GetBCAL_center() + m_BCALGeom->GetBCAL_length()/2.0) : (m_BCALGeom->GetBCAL_center() + m_BCALGeom->GetBCAL_length()/2.0 - z)); // d gives the distance to upstream or downstream end of BCAL depending on where the hit was with respect to the cluster z position.
919 double time_corr = hit->t - d/effective_velocities[channel_calib]; // hit time corrected to the interaction point in the bar.
920 double time_diff = TMath::Abs(clust.t() - time_corr); // time cut between cluster time and hit time - 20 ns is a very loose time cut.
921
922 return( sigPhi < m_mergeSig && time_diff < m_clust_hit_timecut );
923
924}

/w/halld-scifs17exp/halld2/home/sdobbs/Software/jana/jana_0.8.2/Linux_CentOS7.7-x86_64-gcc4.8.5/include/JANA/JEventLoop.h

1// $Id: JEventLoop.h 1763 2006-05-10 14:29:25Z davidl $
2//
3// File: JEventLoop.h
4// Created: Wed Jun 8 12:30:51 EDT 2005
5// Creator: davidl (on Darwin wire129.jlab.org 7.8.0 powerpc)
6//
7
8#ifndef _JEventLoop_
9#define _JEventLoop_
10
11#include <sys/time.h>
12
13#include <vector>
14#include <list>
15#include <string>
16#include <utility>
17#include <typeinfo>
18#include <string.h>
19#include <map>
20#include <utility>
21using std::vector;
22using std::list;
23using std::string;
24using std::type_info;
25
26#include <JANA/jerror.h>
27#include <JANA/JObject.h>
28#include <JANA/JException.h>
29#include <JANA/JEvent.h>
30#include <JANA/JThread.h>
31#include <JANA/JFactory_base.h>
32#include <JANA/JCalibration.h>
33#include <JANA/JGeometry.h>
34#include <JANA/JResourceManager.h>
35#include <JANA/JStreamLog.h>
36
37// The following is here just so we can use ROOT's THtml class to generate documentation.
38#include "cint.h"
39
40
41// Place everything in JANA namespace
42namespace jana{
43
44
45template<class T> class JFactory;
46class JApplication;
47class JEventProcessor;
48
49
50class JEventLoop{
51 public:
52
53 friend class JApplication;
54
55 enum data_source_t{
56 DATA_NOT_AVAILABLE = 1,
57 DATA_FROM_CACHE,
58 DATA_FROM_SOURCE,
59 DATA_FROM_FACTORY
60 };
61
62 typedef struct{
63 string caller_name;
64 string caller_tag;
65 string callee_name;
66 string callee_tag;
67 double start_time;
68 double end_time;
69 data_source_t data_source;
70 }call_stack_t;
71
72 typedef struct{
73 const char* factory_name;
74 string tag;
75 const char* filename;
76 int line;
77 }error_call_stack_t;
78
79 JEventLoop(JApplication *app); ///< Constructor
80 virtual ~JEventLoop(); ////< Destructor
81 virtual const char* className(void){return static_className();}
82 static const char* static_className(void){return "JEventLoop";}
83
84 JApplication* GetJApplication(void) const {return app;} ///< Get pointer to the JApplication object
85 void RefreshProcessorListFromJApplication(void); ///< Re-copy the list of JEventProcessors from JApplication
86 virtual jerror_t AddFactory(JFactory_base* factory); ///< Add a factory
87 jerror_t RemoveFactory(JFactory_base* factory); ///< Remove a factory
88 JFactory_base* GetFactory(const string data_name, const char *tag="", bool allow_deftag=true); ///< Get a specific factory pointer
89 vector<JFactory_base*> GetFactories(void) const {return factories;} ///< Get all factory pointers
90 void GetFactoryNames(vector<string> &factorynames); ///< Get names of all factories in name:tag format
91 void GetFactoryNames(map<string,string> &factorynames); ///< Get names of all factories in map with key=name, value=tag
92 map<string,string> GetDefaultTags(void) const {return default_tags;}
93 jerror_t ClearFactories(void); ///< Reset all factories in preparation for next event.
94 jerror_t PrintFactories(int sparsify=0); ///< Print a list of all factories.
95 jerror_t Print(const string data_name, const char *tag=""); ///< Print the data of the given type
96
97 JCalibration* GetJCalibration();
98 template<class T> bool GetCalib(string namepath, map<string,T> &vals);
99 template<class T> bool GetCalib(string namepath, vector<T> &vals);
100 template<class T> bool GetCalib(string namepath, T &val);
101
102 JGeometry* GetJGeometry();
103 template<class T> bool GetGeom(string namepath, map<string,T> &vals);
104 template<class T> bool GetGeom(string namepath, T &val);
105
106 JResourceManager* GetJResourceManager(void);
107 string GetResource(string namepath);
108 template<class T> bool GetResource(string namepath, T vals, int event_number=0);
109
110 void Initialize(void); ///< Do initializations just before event processing starts
111 jerror_t Loop(void); ///< Loop over events
112 jerror_t OneEvent(uint64_t event_number); ///< Process a specific single event (if source supports it)
113 jerror_t OneEvent(void); ///< Process a single event
114 inline void Pause(void){pause = 1;} ///< Pause event processing
115 inline void Resume(void){pause = 0;} ///< Resume event processing
116 inline void Quit(void){quit = 1;} ///< Clean up and exit the event loop
117 inline bool GetQuit(void) const {return quit;}
118 void QuitProgram(void);
119
120 // Support for random access of events
121 bool HasRandomAccess(void);
122 void AddToEventQueue(uint64_t event_number){ next_events_to_process.push_back(event_number); }
123 void AddToEventQueue(list<uint64_t> &event_numbers) { next_events_to_process.insert(next_events_to_process.end(), event_numbers.begin(), event_numbers.end()); }
124 list<uint64_t> GetEventQueue(void){ return next_events_to_process; }
125 void ClearEventQueue(void){ next_events_to_process.clear(); }
126
127 template<class T> JFactory<T>* GetSingle(const T* &t, const char *tag="", bool exception_if_not_one=true); ///< Get pointer to first data object from (source or factory).
128 template<class T> JFactory<T>* Get(vector<const T*> &t, const char *tag="", bool allow_deftag=true); ///< Get data object pointers from (source or factory)
129 template<class T> JFactory<T>* GetFromFactory(vector<const T*> &t, const char *tag="", data_source_t &data_source=null_data_source, bool allow_deftag=true); ///< Get data object pointers from factory
130 template<class T> jerror_t GetFromSource(vector<const T*> &t, JFactory_base *factory=NULL__null); ///< Get data object pointers from source.
131 inline JEvent& GetJEvent(void){return event;} ///< Get pointer to the current JEvent object.
132 inline void SetJEvent(JEvent *event){this->event = *event;} ///< Set the JEvent pointer.
133 inline void SetAutoFree(int auto_free){this->auto_free = auto_free;} ///< Set the Auto-Free flag on/off
134 inline pthread_t GetPThreadID(void) const {return pthread_id;} ///< Get the pthread of the thread to which this JEventLoop belongs
135 double GetInstantaneousRate(void) const {return rate_instantaneous;} ///< Get the current event processing rate
136 double GetIntegratedRate(void) const {return rate_integrated;} ///< Get the current event processing rate
137 double GetLastEventProcessingTime(void) const {return delta_time_single;}
138 unsigned int GetNevents(void) const {return Nevents;}
139
140 inline bool CheckEventBoundary(uint64_t event_numberA, uint64_t event_numberB);
141
142 inline bool GetCallStackRecordingStatus(void){ return record_call_stack; }
143 inline void DisableCallStackRecording(void){ record_call_stack = false; }
144 inline void EnableCallStackRecording(void){ record_call_stack = true; }
145 inline void CallStackStart(JEventLoop::call_stack_t &cs, const string &caller_name, const string &caller_tag, const string callee_name, const string callee_tag);
146 inline void CallStackEnd(JEventLoop::call_stack_t &cs);
147 inline vector<call_stack_t> GetCallStack(void){return call_stack;} ///< Get the current factory call stack
148 inline void AddToCallStack(call_stack_t &cs){if(record_call_stack) call_stack.push_back(cs);} ///< Add specified item to call stack record but only if record_call_stack is true
149 inline void AddToErrorCallStack(error_call_stack_t &cs){error_call_stack.push_back(cs);} ///< Add layer to the factory call stack
150 inline vector<error_call_stack_t> GetErrorCallStack(void){return error_call_stack;} ///< Get the current factory error call stack
151 void PrintErrorCallStack(void); ///< Print the current factory call stack
152
153 const JObject* FindByID(JObject::oid_t id); ///< Find a data object by its identifier.
154 template<class T> const T* FindByID(JObject::oid_t id); ///< Find a data object by its type and identifier
155 JFactory_base* FindOwner(const JObject *t); ///< Find the factory that owns a data object by pointer
156 JFactory_base* FindOwner(JObject::oid_t id); ///< Find a factory that owns a data object by identifier
157
158 // User defined references
159 template<class T> void SetRef(T *t); ///< Add a user reference to this JEventLoop (must be a pointer)
160 template<class T> T* GetRef(void); ///< Get a user-defined reference of a specific type
161 template<class T> vector<T*> GetRefsT(void); ///< Get all user-defined refrences of a specicif type
162 vector<pair<const char*, void*> > GetRefs(void){ return user_refs; } ///< Get copy of full list of user-defined references
163 template<class T> void RemoveRef(T *t); ///< Remove user reference from list
164
165 // Convenience methods wrapping JEvent methods of same name
166 uint64_t GetStatus(void){return event.GetStatus();}
167 bool GetStatusBit(uint32_t bit){return event.GetStatusBit(bit);}
168 bool SetStatusBit(uint32_t bit, bool val=true){return event.SetStatusBit(bit, val);}
169 bool ClearStatusBit(uint32_t bit){return event.ClearStatusBit(bit);}
170 void ClearStatus(void){event.ClearStatus();}
171 void SetStatusBitDescription(uint32_t bit, string description){event.SetStatusBitDescription(bit, description);}
172 string GetStatusBitDescription(uint32_t bit){return event.GetStatusBitDescription(bit);}
173 void GetStatusBitDescriptions(map<uint32_t, string> &status_bit_descriptions){return event.GetStatusBitDescriptions(status_bit_descriptions);}
174 string StatusWordToString(void);
175
176 private:
177 JEvent event;
178 vector<JFactory_base*> factories;
179 vector<JEventProcessor*> processors;
180 vector<error_call_stack_t> error_call_stack;
181 vector<call_stack_t> call_stack;
182 JApplication *app;
183 JThread *jthread;
184 bool initialized;
185 bool print_parameters_called;
186 int pause;
187 int quit;
188 int auto_free;
189 pthread_t pthread_id;
190 map<string, string> default_tags;
191 vector<pair<string,string> > auto_activated_factories;
192 bool record_call_stack;
193 string caller_name;
194 string caller_tag;
195 vector<uint64_t> event_boundaries;
196 int32_t event_boundaries_run; ///< Run number boundaries were retrieved from (possbily 0)
197 list<uint64_t> next_events_to_process;
198
199 uint64_t Nevents; ///< Total events processed (this thread)
200 uint64_t Nevents_rate; ///< Num. events accumulated for "instantaneous" rate
201 double delta_time_single; ///< Time spent processing last event
202 double delta_time_rate; ///< Integrated time accumulated "instantaneous" rate (partial number of events)
203 double delta_time; ///< Total time spent processing events (this thread)
204 double rate_instantaneous; ///< Latest instantaneous rate
205 double rate_integrated; ///< Rate integrated over all events
206
207 static data_source_t null_data_source;
208
209 vector<pair<const char*, void*> > user_refs;
210};
211
212
213// The following is here just so we can use ROOT's THtml class to generate documentation.
214#ifdef G__DICTIONARY
215typedef JEventLoop::call_stack_t call_stack_t;
216typedef JEventLoop::error_call_stack_t error_call_stack_t;
217#endif
218
219#if !defined(__CINT__) && !defined(__CLING__)
220
221//-------------
222// GetSingle
223//-------------
224template<class T>
225JFactory<T>* JEventLoop::GetSingle(const T* &t, const char *tag, bool exception_if_not_one)
226{
227 /// This is a convenience method that can be used to get a pointer to the single
228 /// object of type T from the specified factory. It simply calls the Get(vector<...>) method
229 /// and copies the first pointer into "t" (or NULL if something other than 1 object is returned).
230 ///
231 /// This is intended to address the common situation in which there is an interest
232 /// in the event if and only if there is exactly 1 object of type T. If the event
233 /// has no objects of that type or more than 1 object of that type (for the specified
234 /// factory) then an exception of type "unsigned long" is thrown with the value
235 /// being the number of objects of type T. You can supress the exception by setting
236 /// exception_if_not_one to false. In that case, you will have to check if t==NULL to
237 /// know if the call succeeded.
238 vector<const T*> v;
239 JFactory<T> *fac = Get(v, tag);
240
241 if(v.size()!=1){
242 t = NULL__null;
243 if(exception_if_not_one) throw v.size();
244 }
245
246 t = v[0];
247
248 return fac;
249}
250
251//-------------
252// Get
253//-------------
254template<class T>
255JFactory<T>* JEventLoop::Get(vector<const T*> &t, const char *tag, bool allow_deftag)
256{
257 /// Retrieve or generate the array of objects of
258 /// type T for the curent event being processed
259 /// by this thread.
260 ///
261 /// By default, preference is given to reading the
262 /// objects from the data source(e.g. file) before generating
263 /// them in the factory. A flag exists in the factory
264 /// however to change this so that the factory is
265 /// given preference.
266 ///
267 /// Note that regardless of the setting of this flag,
268 /// the data are only either read in or generated once.
269 /// Ownership of the objects will always be with the
270 /// factory so subsequent calls will always return pointers to
271 /// the same data.
272 ///
273 /// If the factory is called on to generate the data,
274 /// it is done by calling the factory's Get() method
275 /// which, in turn, calls the evnt() method.
276 ///
277 /// First, we just call the GetFromFactory() method.
278 /// It will make the initial decision as to whether
279 /// it should look in the source first or not. If
280 /// it returns NULL, then the factory couldn't be
281 /// found so we automatically try the file.
282 ///
283 /// Note that if no factory exists to hold the objects
284 /// from the file, one can be created automatically
285 /// providing the <i>JANA:AUTOFACTORYCREATE</i>
286 /// configuration parameter is set.
287
288 // Check if a tag was specified for this data type to use for the
289 // default.
290 const char *mytag = tag
1.1
'tag' is not equal to NULL
1.1
'tag' is not equal to NULL
1.1
'tag' is not equal to NULL
==NULL__null ? "":tag; // protection against NULL tags
2
'?' condition is false
291 if(strlen(mytag)==0 && allow_deftag
2.1
'allow_deftag' is true
2.1
'allow_deftag' is true
2.1
'allow_deftag' is true
){
3
Taking true branch
292 map<string, string>::const_iterator iter = default_tags.find(T::static_className());
293 if(iter!=default_tags.end())tag = iter->second.c_str();
4
Assuming the condition is true
5
Taking true branch
6
Value assigned to 'tag'
294 }
295
296
297 // If we are trying to keep track of the call stack then we
298 // need to add a new call_stack_t object to the the list
299 // and initialize it with the start time and caller/callee
300 // info.
301 call_stack_t cs;
302
303 // Optionally record starting info of call stack entry
304 if(record_call_stack) CallStackStart(cs, caller_name, caller_tag, T::static_className(), tag);
7
Assuming field 'record_call_stack' is false
8
Taking false branch
305
306 // Get the data (or at least try to)
307 JFactory<T>* factory=NULL__null;
308 try{
309 factory = GetFromFactory(t, tag, cs.data_source, allow_deftag);
9
Passing value via 2nd parameter 'tag'
10
Calling 'JEventLoop::GetFromFactory'
310 if(!factory){
311 // No factory exists for this type and tag. It's possible
312 // that the source may be able to provide the objects
313 // but it will need a place to put them. We can create a
314 // dumb JFactory just to hold the data in case the source
315 // can provide the objects. Before we do though, make sure
316 // the user condones this via the presence of the
317 // "JANA:AUTOFACTORYCREATE" config parameter.
318 string p;
319 try{
320 gPARMS->GetParameter("JANA:AUTOFACTORYCREATE", p);
321 }catch(...){}
322 if(p.size()==0){
323 jout<<std::endl;
324 _DBG__std::cerr<<"/w/halld-scifs17exp/halld2/home/sdobbs/Software/jana/jana_0.8.2/Linux_CentOS7.7-x86_64-gcc4.8.5/include/JANA/JEventLoop.h"
<<":"<<324<<std::endl
;
325 jout<<"No factory of type \""<<T::static_className()<<"\" with tag \""<<tag<<"\" exists."<<std::endl;
326 jout<<"If you are reading objects from a file, I can auto-create a factory"<<std::endl;
327 jout<<"of the appropriate type to hold the objects, but this feature is turned"<<std::endl;
328 jout<<"off by default. To turn it on, set the \"JANA:AUTOFACTORYCREATE\""<<std::endl;
329 jout<<"configuration parameter. This can usually be done by passing the"<<std::endl;
330 jout<<"following argument to the program from the command line:"<<std::endl;
331 jout<<std::endl;
332 jout<<" -PJANA:AUTOFACTORYCREATE=1"<<std::endl;
333 jout<<std::endl;
334 jout<<"Note that since the most commonly expected occurance of this situation."<<std::endl;
335 jout<<"is an error, the program will now throw an exception so that the factory."<<std::endl;
336 jout<<"call stack can be printed."<<std::endl;
337 jout<<std::endl;
338 throw exception();
339 }else{
340 AddFactory(new JFactory<T>(tag));
341 jout<<__FILE__"/w/halld-scifs17exp/halld2/home/sdobbs/Software/jana/jana_0.8.2/Linux_CentOS7.7-x86_64-gcc4.8.5/include/JANA/JEventLoop.h"<<":"<<__LINE__341<<" Auto-created "<<T::static_className()<<":"<<tag<<" factory"<<std::endl;
342
343 // Now try once more. The GetFromFactory method will call
344 // GetFromSource since it's empty.
345 factory = GetFromFactory(t, tag, cs.data_source, allow_deftag);
346 }
347 }
348 }catch(exception &e){
349 // Uh-oh, an exception was thrown. Add us to the call stack
350 // and re-throw the exception
351 error_call_stack_t ecs;
352 ecs.factory_name = T::static_className();
353 ecs.tag = tag;
354 ecs.filename = NULL__null;
355 error_call_stack.push_back(ecs);
356 throw e;
357 }
358
359 // If recording the call stack, update the end_time field and add to stack
360 if(record_call_stack) CallStackEnd(cs);
361
362 return factory;
363}
364
365//-------------
366// GetFromFactory
367//-------------
368template<class T>
369JFactory<T>* JEventLoop::GetFromFactory(vector<const T*> &t, const char *tag, data_source_t &data_source, bool allow_deftag)
370{
371 // We need to find the factory providing data type T with
372 // tag given by "tag".
373 vector<JFactory_base*>::iterator iter=factories.begin();
374 JFactory<T> *factory = NULL__null;
375 string className(T::static_className());
376
377 // Check if a tag was specified for this data type to use for the
378 // default.
379 const char *mytag = tag==NULL__null ? "":tag; // protection against NULL tags
11
Assuming 'tag' is equal to NULL
12
Assuming pointer value is null
13
'?' condition is true
380 if(strlen(mytag)==0 && allow_deftag
13.1
'allow_deftag' is true
13.1
'allow_deftag' is true
13.1
'allow_deftag' is true
){
14
Taking true branch
381 map<string, string>::const_iterator iter = default_tags.find(className);
382 if(iter!=default_tags.end())tag = iter->second.c_str();
15
Assuming the condition is false
16
Taking false branch
383 }
384
385 for(; iter!=factories.end(); iter++){
17
Calling 'operator!=<jana::JFactory_base **, std::vector<jana::JFactory_base *>>'
20
Returning from 'operator!=<jana::JFactory_base **, std::vector<jana::JFactory_base *>>'
21
Loop condition is true. Entering loop body
386 // It turns out a long standing bug in g++ makes dynamic_cast return
387 // zero improperly when used on objects created on one side of
388 // a dynamically shared object (DSO) and the cast occurs on the
389 // other side. I saw bug reports ranging from 2001 to 2004. I saw
390 // saw it first-hand on LinuxEL4 using g++ 3.4.5. This is too bad
391 // since it is much more elegant (and safe) to use dynamic_cast.
392 // To avoid this problem which can occur with plugins, we check
393 // the name of the data classes are the same. (sigh)
394 //factory = dynamic_cast<JFactory<T> *>(*iter);
395 if(className == (*iter)->GetDataClassName())factory = (JFactory<T>*)(*iter);
22
Taking true branch
396 if(factory == NULL__null)continue;
23
Assuming 'factory' is not equal to NULL
24
Taking false branch
397 const char *factag = factory->Tag()==NULL__null ? "":factory->Tag();
25
Assuming the condition is true
26
'?' condition is true
398 if(!strcmp(factag, tag)){
27
Null pointer passed to 2nd parameter expecting 'nonnull'
399 break;
400 }else{
401 factory=NULL__null;
402 }
403 }
404
405 // If factory not found, just return now
406 if(!factory){
407 data_source = DATA_NOT_AVAILABLE;
408 return NULL__null;
409 }
410
411 // OK, we found the factory. If the evnt() routine has already
412 // been called, then just call the factory's Get() routine
413 // to return a copy of the existing data
414 if(factory->evnt_was_called()){
415 factory->CopyFrom(t);
416 data_source = DATA_FROM_CACHE;
417 return factory;
418 }
419
420 // Next option is to get the objects from the data source
421 if(factory->GetCheckSourceFirst()){
422 // If the object type/tag is found in the source, it
423 // will return NOERROR, even if there are zero instances
424 // of it. If it is not available in the source then it
425 // will return OBJECT_NOT_AVAILABLE.
426
427 jerror_t err = GetFromSource(t, factory);
428 if(err == NOERROR){
429 // A return value of NOERROR means the source had the objects
430 // even if there were zero of them.(If the source had no
431 // information about the objects OBJECT_NOT_AVAILABLE would
432 // have been returned.)
433 // The GetFromSource() call will eventually lead to a call to
434 // the GetObjects() method of the concrete class derived
435 // from JEventSource. That routine should copy the object
436 // pointers into the factory using the factory's CopyTo()
437 // method which also sets the evnt_called flag for the factory.
438 // Note also that the "t" vector is then filled with a call
439 // to the factory's CopyFrom() method in JEvent::GetObjects().
440 // All we need to do now is just set the factory pointers in
441 // the newly generated JObjects and return the factory pointer.
442
443 factory->SetFactoryPointers();
444 data_source = DATA_FROM_SOURCE;
445
446 return factory;
447 }
448 }
449
450 // OK. It looks like we have to have the factory make this.
451 // Get pointers to data from the factory.
452 factory->Get(t);
453 factory->SetFactoryPointers();
454 data_source = DATA_FROM_FACTORY;
455
456 return factory;
457}
458
459//-------------
460// GetFromSource
461//-------------
462template<class T>
463jerror_t JEventLoop::GetFromSource(vector<const T*> &t, JFactory_base *factory)
464{
465 /// This tries to get objects from the event source.
466 /// "factory" must be a valid pointer to a JFactory
467 /// object since that will take ownership of the objects
468 /// created by the source.
469 /// This should usually be called from JEventLoop::GetFromFactory
470 /// which is called from JEventLoop::Get. The latter will
471 /// create a dummy JFactory of the proper flavor and tag if
472 /// one does not already exist so if objects exist in the
473 /// file without a corresponding factory to create them, they
474 /// can still be used.
475 if(!factory)throw OBJECT_NOT_AVAILABLE;
476
477 return event.GetObjects(t, factory);
478}
479
480//-------------
481// CallStackStart
482//-------------
483inline void JEventLoop::CallStackStart(JEventLoop::call_stack_t &cs, const string &caller_name, const string &caller_tag, const string callee_name, const string callee_tag)
484{
485 /// This is used to fill initial info into a call_stack_t stucture
486 /// for recording the call stack. It should be matched with a call
487 /// to CallStackEnd. It is normally called from the Get() method
488 /// above, but may also be used by external actors to manipulate
489 /// the call stack (presumably for good and not evil).
490
491 struct itimerval tmr;
492 getitimer(ITIMER_PROFITIMER_PROF, &tmr);
493
494 cs.caller_name = this->caller_name;
495 cs.caller_tag = this->caller_tag;
496 this->caller_name = cs.callee_name = callee_name;
497 this->caller_tag = cs.callee_tag = callee_tag;
498 cs.start_time = tmr.it_value.tv_sec + tmr.it_value.tv_usec/1.0E6;
499}
500
501//-------------
502// CallStackEnd
503//-------------
504inline void JEventLoop::CallStackEnd(JEventLoop::call_stack_t &cs)
505{
506 /// Complete a call stack entry. This should be matched
507 /// with a previous call to CallStackStart which was
508 /// used to fill the cs structure.
509
510 struct itimerval tmr;
511 getitimer(ITIMER_PROFITIMER_PROF, &tmr);
512 cs.end_time = tmr.it_value.tv_sec + tmr.it_value.tv_usec/1.0E6;
513 caller_name = cs.caller_name;
514 caller_tag = cs.caller_tag;
515 call_stack.push_back(cs);
516}
517
518//-------------
519// CheckEventBoundary
520//-------------
521inline bool JEventLoop::CheckEventBoundary(uint64_t event_numberA, uint64_t event_numberB)
522{
523 /// Check whether the two event numbers span one or more boundaries
524 /// in the calibration/conditions database for the current run number.
525 /// Return true if they do and false if they don't. The first parameter
526 /// "event_numberA" is also checked if it lands on a boundary in which
527 /// case true is also returned. If event_numberB lands on a boundary,
528 /// but event_numberA does not, then false is returned.
529 ///
530 /// This method is not expected to be called by a user. It is, however called,
531 /// everytime a JFactory's Get() method is called.
532
533 // Make sure our copy of the boundaries is up to date
534 if(event.GetRunNumber()!=event_boundaries_run){
535 event_boundaries.clear(); // in case we can't get the JCalibration pointer
536 JCalibration *jcalib = GetJCalibration();
537 if(jcalib)jcalib->GetEventBoundaries(event_boundaries);
538 event_boundaries_run = event.GetRunNumber();
539 }
540
541 // Loop over boundaries
542 for(unsigned int i=0; i<event_boundaries.size(); i++){
543 uint64_t eb = event_boundaries[i];
544 if((eb - event_numberA)*(eb - event_numberB) < 0.0 || eb==event_numberA){ // think about it ....
545 // events span a boundary or is on a boundary. Return true
546 return true;
547 }
548 }
549
550 return false;
551}
552
553//-------------
554// FindByID
555//-------------
556template<class T>
557const T* JEventLoop::FindByID(JObject::oid_t id)
558{
559 /// This is a templated method that can be used in place
560 /// of the non-templated FindByID(oid_t) method if one knows
561 /// the class of the object with the specified id.
562 /// This method is faster than calling the non-templated
563 /// FindByID and dynamic_cast-ing the JObject since
564 /// this will only search the objects of factories that
565 /// produce the desired data type.
566 /// This method will cast the JObject pointer to one
567 /// of the specified type. To use this method,
568 /// a type is specified in the call as follows:
569 ///
570 /// const DMyType *t = loop->FindByID<DMyType>(id);
571
572 // Loop over factories looking for ones that provide
573 // specified data type.
574 for(unsigned int i=0; i<factories.size(); i++){
575 if(factories[i]->GetDataClassName() != T::static_className())continue;
576
577 // This factory provides data of type T. Search it for
578 // the object with the specified id.
579 const JObject *my_obj = factories[i]->GetByID(id);
580 if(my_obj)return dynamic_cast<const T*>(my_obj);
581 }
582
583 return NULL__null;
584}
585
586//-------------
587// GetCalib (map)
588//-------------
589template<class T>
590bool JEventLoop::GetCalib(string namepath, map<string,T> &vals)
591{
592 /// Get the JCalibration object from JApplication for the run number of
593 /// the current event and call its Get() method to get the constants.
594
595 // Note that we could do this by making "vals" a generic type T thus, combining
596 // this with the vector version below. However, doing this explicitly will make
597 // it easier for the user to understand how to call us.
598
599 vals.clear();
600
601 JCalibration *calib = GetJCalibration();
602 if(!calib){
603 _DBG_std::cerr<<"/w/halld-scifs17exp/halld2/home/sdobbs/Software/jana/jana_0.8.2/Linux_CentOS7.7-x86_64-gcc4.8.5/include/JANA/JEventLoop.h"
<<":"<<603<<" "
<<"Unable to get JCalibration object for run "<<event.GetRunNumber()<<std::endl;
604 return true;
605 }
606
607 return calib->Get(namepath, vals, event.GetEventNumber());
608}
609
610//-------------
611// GetCalib (vector)
612//-------------
613template<class T> bool JEventLoop::GetCalib(string namepath, vector<T> &vals)
614{
615 /// Get the JCalibration object from JApplication for the run number of
616 /// the current event and call its Get() method to get the constants.
617
618 vals.clear();
619
620 JCalibration *calib = GetJCalibration();
621 if(!calib){
622 _DBG_std::cerr<<"/w/halld-scifs17exp/halld2/home/sdobbs/Software/jana/jana_0.8.2/Linux_CentOS7.7-x86_64-gcc4.8.5/include/JANA/JEventLoop.h"
<<":"<<622<<" "
<<"Unable to get JCalibration object for run "<<event.GetRunNumber()<<std::endl;
623 return true;
624 }
625
626 return calib->Get(namepath, vals, event.GetEventNumber());
627}
628
629//-------------
630// GetCalib (single)
631//-------------
632template<class T> bool JEventLoop::GetCalib(string namepath, T &val)
633{
634 /// This is a convenience method for getting a single entry. It
635 /// simply calls the vector version and returns the first entry.
636 /// It returns true if the vector version returns true AND there
637 /// is at least one entry in the vector. No check is made for there
638 /// there being more than one entry in the vector.
639
640 vector<T> vals;
641 bool ret = GetCalib(namepath, vals);
642 if(vals.empty()) return true;
643 val = vals[0];
644
645 return ret;
646}
647
648//-------------
649// GetGeom (map)
650//-------------
651template<class T>
652bool JEventLoop::GetGeom(string namepath, map<string,T> &vals)
653{
654 /// Get the JGeometry object from JApplication for the run number of
655 /// the current event and call its Get() method to get the constants.
656
657 // Note that we could do this by making "vals" a generic type T thus, combining
658 // this with the vector version below. However, doing this explicitly will make
659 // it easier for the user to understand how to call us.
660
661 vals.clear();
662
663 JGeometry *geom = GetJGeometry();
664 if(!geom){
665 _DBG_std::cerr<<"/w/halld-scifs17exp/halld2/home/sdobbs/Software/jana/jana_0.8.2/Linux_CentOS7.7-x86_64-gcc4.8.5/include/JANA/JEventLoop.h"
<<":"<<665<<" "
<<"Unable to get JGeometry object for run "<<event.GetRunNumber()<<std::endl;
666 return true;
667 }
668
669 return geom->Get(namepath, vals);
670}
671
672//-------------
673// GetGeom (atomic)
674//-------------
675template<class T> bool JEventLoop::GetGeom(string namepath, T &val)
676{
677 /// Get the JCalibration object from JApplication for the run number of
678 /// the current event and call its Get() method to get the constants.
679
680 JGeometry *geom = GetJGeometry();
681 if(!geom){
682 _DBG_std::cerr<<"/w/halld-scifs17exp/halld2/home/sdobbs/Software/jana/jana_0.8.2/Linux_CentOS7.7-x86_64-gcc4.8.5/include/JANA/JEventLoop.h"
<<":"<<682<<" "
<<"Unable to get JGeometry object for run "<<event.GetRunNumber()<<std::endl;
683 return true;
684 }
685
686 return geom->Get(namepath, val);
687}
688
689//-------------
690// SetRef
691//-------------
692template<class T>
693void JEventLoop::SetRef(T *t)
694{
695 pair<const char*, void*> p(typeid(T).name(), (void*)t);
696 user_refs.push_back(p);
697}
698
699//-------------
700// GetResource
701//-------------
702template<class T> bool JEventLoop::GetResource(string namepath, T vals, int event_number)
703{
704 JResourceManager *resource_manager = GetJResourceManager();
705 if(!resource_manager){
706 string mess = string("Unable to get the JResourceManager object (namepath=\"")+namepath+"\")";
707 throw JException(mess);
708 }
709
710 return resource_manager->Get(namepath, vals, event_number);
711}
712
713//-------------
714// GetRef
715//-------------
716template<class T>
717T* JEventLoop::GetRef(void)
718{
719 /// Get a user-defined reference (a pointer)
720 for(unsigned int i=0; i<user_refs.size(); i++){
721 if(user_refs[i].first == typeid(T).name()) return (T*)user_refs[i].second;
722 }
723
724 return NULL__null;
725}
726
727//-------------
728// GetRefsT
729//-------------
730template<class T>
731vector<T*> JEventLoop::GetRefsT(void)
732{
733 vector<T*> refs;
734 for(unsigned int i=0; i<user_refs.size(); i++){
735 if(user_refs[i].first == typeid(T).name()){
736 refs.push_back((T*)user_refs[i].second);
737 }
738 }
739
740 return refs;
741}
742
743//-------------
744// RemoveRef
745//-------------
746template<class T>
747void JEventLoop::RemoveRef(T *t)
748{
749 vector<pair<const char*, void*> >::iterator iter;
750 for(iter=user_refs.begin(); iter!= user_refs.end(); iter++){
751 if(iter->second == (void*)t){
752 user_refs.erase(iter);
753 return;
754 }
755 }
756 _DBG_std::cerr<<"/w/halld-scifs17exp/halld2/home/sdobbs/Software/jana/jana_0.8.2/Linux_CentOS7.7-x86_64-gcc4.8.5/include/JANA/JEventLoop.h"
<<":"<<756<<" "
<<" Attempt to remove user reference not in event loop!" << std::endl;
757}
758
759
760#endif //__CINT__ __CLING__
761
762} // Close JANA namespace
763
764
765
766#endif // _JEventLoop_
767

/usr/lib/gcc/x86_64-redhat-linux/4.8.5/../../../../include/c++/4.8.5/bits/stl_iterator.h

1// Iterators -*- C++ -*-
2
3// Copyright (C) 2001-2013 Free Software Foundation, Inc.
4//
5// This file is part of the GNU ISO C++ Library. This library is free
6// software; you can redistribute it and/or modify it under the
7// terms of the GNU General Public License as published by the
8// Free Software Foundation; either version 3, or (at your option)
9// any later version.
10
11// This library is distributed in the hope that it will be useful,
12// but WITHOUT ANY WARRANTY; without even the implied warranty of
13// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14// GNU General Public License for more details.
15
16// Under Section 7 of GPL version 3, you are granted additional
17// permissions described in the GCC Runtime Library Exception, version
18// 3.1, as published by the Free Software Foundation.
19
20// You should have received a copy of the GNU General Public License and
21// a copy of the GCC Runtime Library Exception along with this program;
22// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
23// <http://www.gnu.org/licenses/>.
24
25/*
26 *
27 * Copyright (c) 1994
28 * Hewlett-Packard Company
29 *
30 * Permission to use, copy, modify, distribute and sell this software
31 * and its documentation for any purpose is hereby granted without fee,
32 * provided that the above copyright notice appear in all copies and
33 * that both that copyright notice and this permission notice appear
34 * in supporting documentation. Hewlett-Packard Company makes no
35 * representations about the suitability of this software for any
36 * purpose. It is provided "as is" without express or implied warranty.
37 *
38 *
39 * Copyright (c) 1996-1998
40 * Silicon Graphics Computer Systems, Inc.
41 *
42 * Permission to use, copy, modify, distribute and sell this software
43 * and its documentation for any purpose is hereby granted without fee,
44 * provided that the above copyright notice appear in all copies and
45 * that both that copyright notice and this permission notice appear
46 * in supporting documentation. Silicon Graphics makes no
47 * representations about the suitability of this software for any
48 * purpose. It is provided "as is" without express or implied warranty.
49 */
50
51/** @file bits/stl_iterator.h
52 * This is an internal header file, included by other library headers.
53 * Do not attempt to use it directly. @headername{iterator}
54 *
55 * This file implements reverse_iterator, back_insert_iterator,
56 * front_insert_iterator, insert_iterator, __normal_iterator, and their
57 * supporting functions and overloaded operators.
58 */
59
60#ifndef _STL_ITERATOR_H1
61#define _STL_ITERATOR_H1 1
62
63#include <bits/cpp_type_traits.h>
64#include <ext/type_traits.h>
65#include <bits/move.h>
66
67namespace std _GLIBCXX_VISIBILITY(default)__attribute__ ((__visibility__ ("default")))
68{
69_GLIBCXX_BEGIN_NAMESPACE_VERSION
70
71 /**
72 * @addtogroup iterators
73 * @{
74 */
75
76 // 24.4.1 Reverse iterators
77 /**
78 * Bidirectional and random access iterators have corresponding reverse
79 * %iterator adaptors that iterate through the data structure in the
80 * opposite direction. They have the same signatures as the corresponding
81 * iterators. The fundamental relation between a reverse %iterator and its
82 * corresponding %iterator @c i is established by the identity:
83 * @code
84 * &*(reverse_iterator(i)) == &*(i - 1)
85 * @endcode
86 *
87 * <em>This mapping is dictated by the fact that while there is always a
88 * pointer past the end of an array, there might not be a valid pointer
89 * before the beginning of an array.</em> [24.4.1]/1,2
90 *
91 * Reverse iterators can be tricky and surprising at first. Their
92 * semantics make sense, however, and the trickiness is a side effect of
93 * the requirement that the iterators must be safe.
94 */
95 template<typename _Iterator>
96 class reverse_iterator
97 : public iterator<typename iterator_traits<_Iterator>::iterator_category,
98 typename iterator_traits<_Iterator>::value_type,
99 typename iterator_traits<_Iterator>::difference_type,
100 typename iterator_traits<_Iterator>::pointer,
101 typename iterator_traits<_Iterator>::reference>
102 {
103 protected:
104 _Iterator current;
105
106 typedef iterator_traits<_Iterator> __traits_type;
107
108 public:
109 typedef _Iterator iterator_type;
110 typedef typename __traits_type::difference_type difference_type;
111 typedef typename __traits_type::pointer pointer;
112 typedef typename __traits_type::reference reference;
113
114 /**
115 * The default constructor value-initializes member @p current.
116 * If it is a pointer, that means it is zero-initialized.
117 */
118 // _GLIBCXX_RESOLVE_LIB_DEFECTS
119 // 235 No specification of default ctor for reverse_iterator
120 reverse_iterator() : current() { }
121
122 /**
123 * This %iterator will move in the opposite direction that @p x does.
124 */
125 explicit
126 reverse_iterator(iterator_type __x) : current(__x) { }
127
128 /**
129 * The copy constructor is normal.
130 */
131 reverse_iterator(const reverse_iterator& __x)
132 : current(__x.current) { }
133
134 /**
135 * A %reverse_iterator across other types can be copied if the
136 * underlying %iterator can be converted to the type of @c current.
137 */
138 template<typename _Iter>
139 reverse_iterator(const reverse_iterator<_Iter>& __x)
140 : current(__x.base()) { }
141
142 /**
143 * @return @c current, the %iterator used for underlying work.
144 */
145 iterator_type
146 base() const
147 { return current; }
148
149 /**
150 * @return A reference to the value at @c --current
151 *
152 * This requires that @c --current is dereferenceable.
153 *
154 * @warning This implementation requires that for an iterator of the
155 * underlying iterator type, @c x, a reference obtained by
156 * @c *x remains valid after @c x has been modified or
157 * destroyed. This is a bug: http://gcc.gnu.org/PR51823
158 */
159 reference
160 operator*() const
161 {
162 _Iterator __tmp = current;
163 return *--__tmp;
164 }
165
166 /**
167 * @return A pointer to the value at @c --current
168 *
169 * This requires that @c --current is dereferenceable.
170 */
171 pointer
172 operator->() const
173 { return &(operator*()); }
174
175 /**
176 * @return @c *this
177 *
178 * Decrements the underlying iterator.
179 */
180 reverse_iterator&
181 operator++()
182 {
183 --current;
184 return *this;
185 }
186
187 /**
188 * @return The original value of @c *this
189 *
190 * Decrements the underlying iterator.
191 */
192 reverse_iterator
193 operator++(int)
194 {
195 reverse_iterator __tmp = *this;
196 --current;
197 return __tmp;
198 }
199
200 /**
201 * @return @c *this
202 *
203 * Increments the underlying iterator.
204 */
205 reverse_iterator&
206 operator--()
207 {
208 ++current;
209 return *this;
210 }
211
212 /**
213 * @return A reverse_iterator with the previous value of @c *this
214 *
215 * Increments the underlying iterator.
216 */
217 reverse_iterator
218 operator--(int)
219 {
220 reverse_iterator __tmp = *this;
221 ++current;
222 return __tmp;
223 }
224
225 /**
226 * @return A reverse_iterator that refers to @c current - @a __n
227 *
228 * The underlying iterator must be a Random Access Iterator.
229 */
230 reverse_iterator
231 operator+(difference_type __n) const
232 { return reverse_iterator(current - __n); }
233
234 /**
235 * @return *this
236 *
237 * Moves the underlying iterator backwards @a __n steps.
238 * The underlying iterator must be a Random Access Iterator.
239 */
240 reverse_iterator&
241 operator+=(difference_type __n)
242 {
243 current -= __n;
244 return *this;
245 }
246
247 /**
248 * @return A reverse_iterator that refers to @c current - @a __n
249 *
250 * The underlying iterator must be a Random Access Iterator.
251 */
252 reverse_iterator
253 operator-(difference_type __n) const
254 { return reverse_iterator(current + __n); }
255
256 /**
257 * @return *this
258 *
259 * Moves the underlying iterator forwards @a __n steps.
260 * The underlying iterator must be a Random Access Iterator.
261 */
262 reverse_iterator&
263 operator-=(difference_type __n)
264 {
265 current += __n;
266 return *this;
267 }
268
269 /**
270 * @return The value at @c current - @a __n - 1
271 *
272 * The underlying iterator must be a Random Access Iterator.
273 */
274 reference
275 operator[](difference_type __n) const
276 { return *(*this + __n); }
277 };
278
279 //@{
280 /**
281 * @param __x A %reverse_iterator.
282 * @param __y A %reverse_iterator.
283 * @return A simple bool.
284 *
285 * Reverse iterators forward many operations to their underlying base()
286 * iterators. Others are implemented in terms of one another.
287 *
288 */
289 template<typename _Iterator>
290 inline bool
291 operator==(const reverse_iterator<_Iterator>& __x,
292 const reverse_iterator<_Iterator>& __y)
293 { return __x.base() == __y.base(); }
294
295 template<typename _Iterator>
296 inline bool
297 operator<(const reverse_iterator<_Iterator>& __x,
298 const reverse_iterator<_Iterator>& __y)
299 { return __y.base() < __x.base(); }
300
301 template<typename _Iterator>
302 inline bool
303 operator!=(const reverse_iterator<_Iterator>& __x,
304 const reverse_iterator<_Iterator>& __y)
305 { return !(__x == __y); }
306
307 template<typename _Iterator>
308 inline bool
309 operator>(const reverse_iterator<_Iterator>& __x,
310 const reverse_iterator<_Iterator>& __y)
311 { return __y < __x; }
312
313 template<typename _Iterator>
314 inline bool
315 operator<=(const reverse_iterator<_Iterator>& __x,
316 const reverse_iterator<_Iterator>& __y)
317 { return !(__y < __x); }
318
319 template<typename _Iterator>
320 inline bool
321 operator>=(const reverse_iterator<_Iterator>& __x,
322 const reverse_iterator<_Iterator>& __y)
323 { return !(__x < __y); }
324
325 template<typename _Iterator>
326 inline typename reverse_iterator<_Iterator>::difference_type
327 operator-(const reverse_iterator<_Iterator>& __x,
328 const reverse_iterator<_Iterator>& __y)
329 { return __y.base() - __x.base(); }
330
331 template<typename _Iterator>
332 inline reverse_iterator<_Iterator>
333 operator+(typename reverse_iterator<_Iterator>::difference_type __n,
334 const reverse_iterator<_Iterator>& __x)
335 { return reverse_iterator<_Iterator>(__x.base() - __n); }
336
337 // _GLIBCXX_RESOLVE_LIB_DEFECTS
338 // DR 280. Comparison of reverse_iterator to const reverse_iterator.
339 template<typename _IteratorL, typename _IteratorR>
340 inline bool
341 operator==(const reverse_iterator<_IteratorL>& __x,
342 const reverse_iterator<_IteratorR>& __y)
343 { return __x.base() == __y.base(); }
344
345 template<typename _IteratorL, typename _IteratorR>
346 inline bool
347 operator<(const reverse_iterator<_IteratorL>& __x,
348 const reverse_iterator<_IteratorR>& __y)
349 { return __y.base() < __x.base(); }
350
351 template<typename _IteratorL, typename _IteratorR>
352 inline bool
353 operator!=(const reverse_iterator<_IteratorL>& __x,
354 const reverse_iterator<_IteratorR>& __y)
355 { return !(__x == __y); }
356
357 template<typename _IteratorL, typename _IteratorR>
358 inline bool
359 operator>(const reverse_iterator<_IteratorL>& __x,
360 const reverse_iterator<_IteratorR>& __y)
361 { return __y < __x; }
362
363 template<typename _IteratorL, typename _IteratorR>
364 inline bool
365 operator<=(const reverse_iterator<_IteratorL>& __x,
366 const reverse_iterator<_IteratorR>& __y)
367 { return !(__y < __x); }
368
369 template<typename _IteratorL, typename _IteratorR>
370 inline bool
371 operator>=(const reverse_iterator<_IteratorL>& __x,
372 const reverse_iterator<_IteratorR>& __y)
373 { return !(__x < __y); }
374
375 template<typename _IteratorL, typename _IteratorR>
376#if __cplusplus201103L >= 201103L
377 // DR 685.
378 inline auto
379 operator-(const reverse_iterator<_IteratorL>& __x,
380 const reverse_iterator<_IteratorR>& __y)
381 -> decltype(__y.base() - __x.base())
382#else
383 inline typename reverse_iterator<_IteratorL>::difference_type
384 operator-(const reverse_iterator<_IteratorL>& __x,
385 const reverse_iterator<_IteratorR>& __y)
386#endif
387 { return __y.base() - __x.base(); }
388 //@}
389
390 // 24.4.2.2.1 back_insert_iterator
391 /**
392 * @brief Turns assignment into insertion.
393 *
394 * These are output iterators, constructed from a container-of-T.
395 * Assigning a T to the iterator appends it to the container using
396 * push_back.
397 *
398 * Tip: Using the back_inserter function to create these iterators can
399 * save typing.
400 */
401 template<typename _Container>
402 class back_insert_iterator
403 : public iterator<output_iterator_tag, void, void, void, void>
404 {
405 protected:
406 _Container* container;
407
408 public:
409 /// A nested typedef for the type of whatever container you used.
410 typedef _Container container_type;
411
412 /// The only way to create this %iterator is with a container.
413 explicit
414 back_insert_iterator(_Container& __x) : container(&__x) { }
415
416 /**
417 * @param __value An instance of whatever type
418 * container_type::const_reference is; presumably a
419 * reference-to-const T for container<T>.
420 * @return This %iterator, for chained operations.
421 *
422 * This kind of %iterator doesn't really have a @a position in the
423 * container (you can think of the position as being permanently at
424 * the end, if you like). Assigning a value to the %iterator will
425 * always append the value to the end of the container.
426 */
427#if __cplusplus201103L < 201103L
428 back_insert_iterator&
429 operator=(typename _Container::const_reference __value)
430 {
431 container->push_back(__value);
432 return *this;
433 }
434#else
435 back_insert_iterator&
436 operator=(const typename _Container::value_type& __value)
437 {
438 container->push_back(__value);
439 return *this;
440 }
441
442 back_insert_iterator&
443 operator=(typename _Container::value_type&& __value)
444 {
445 container->push_back(std::move(__value));
446 return *this;
447 }
448#endif
449
450 /// Simply returns *this.
451 back_insert_iterator&
452 operator*()
453 { return *this; }
454
455 /// Simply returns *this. (This %iterator does not @a move.)
456 back_insert_iterator&
457 operator++()
458 { return *this; }
459
460 /// Simply returns *this. (This %iterator does not @a move.)
461 back_insert_iterator
462 operator++(int)
463 { return *this; }
464 };
465
466 /**
467 * @param __x A container of arbitrary type.
468 * @return An instance of back_insert_iterator working on @p __x.
469 *
470 * This wrapper function helps in creating back_insert_iterator instances.
471 * Typing the name of the %iterator requires knowing the precise full
472 * type of the container, which can be tedious and impedes generic
473 * programming. Using this function lets you take advantage of automatic
474 * template parameter deduction, making the compiler match the correct
475 * types for you.
476 */
477 template<typename _Container>
478 inline back_insert_iterator<_Container>
479 back_inserter(_Container& __x)
480 { return back_insert_iterator<_Container>(__x); }
481
482 /**
483 * @brief Turns assignment into insertion.
484 *
485 * These are output iterators, constructed from a container-of-T.
486 * Assigning a T to the iterator prepends it to the container using
487 * push_front.
488 *
489 * Tip: Using the front_inserter function to create these iterators can
490 * save typing.
491 */
492 template<typename _Container>
493 class front_insert_iterator
494 : public iterator<output_iterator_tag, void, void, void, void>
495 {
496 protected:
497 _Container* container;
498
499 public:
500 /// A nested typedef for the type of whatever container you used.
501 typedef _Container container_type;
502
503 /// The only way to create this %iterator is with a container.
504 explicit front_insert_iterator(_Container& __x) : container(&__x) { }
505
506 /**
507 * @param __value An instance of whatever type
508 * container_type::const_reference is; presumably a
509 * reference-to-const T for container<T>.
510 * @return This %iterator, for chained operations.
511 *
512 * This kind of %iterator doesn't really have a @a position in the
513 * container (you can think of the position as being permanently at
514 * the front, if you like). Assigning a value to the %iterator will
515 * always prepend the value to the front of the container.
516 */
517#if __cplusplus201103L < 201103L
518 front_insert_iterator&
519 operator=(typename _Container::const_reference __value)
520 {
521 container->push_front(__value);
522 return *this;
523 }
524#else
525 front_insert_iterator&
526 operator=(const typename _Container::value_type& __value)
527 {
528 container->push_front(__value);
529 return *this;
530 }
531
532 front_insert_iterator&
533 operator=(typename _Container::value_type&& __value)
534 {
535 container->push_front(std::move(__value));
536 return *this;
537 }
538#endif
539
540 /// Simply returns *this.
541 front_insert_iterator&
542 operator*()
543 { return *this; }
544
545 /// Simply returns *this. (This %iterator does not @a move.)
546 front_insert_iterator&
547 operator++()
548 { return *this; }
549
550 /// Simply returns *this. (This %iterator does not @a move.)
551 front_insert_iterator
552 operator++(int)
553 { return *this; }
554 };
555
556 /**
557 * @param __x A container of arbitrary type.
558 * @return An instance of front_insert_iterator working on @p x.
559 *
560 * This wrapper function helps in creating front_insert_iterator instances.
561 * Typing the name of the %iterator requires knowing the precise full
562 * type of the container, which can be tedious and impedes generic
563 * programming. Using this function lets you take advantage of automatic
564 * template parameter deduction, making the compiler match the correct
565 * types for you.
566 */
567 template<typename _Container>
568 inline front_insert_iterator<_Container>
569 front_inserter(_Container& __x)
570 { return front_insert_iterator<_Container>(__x); }
571
572 /**
573 * @brief Turns assignment into insertion.
574 *
575 * These are output iterators, constructed from a container-of-T.
576 * Assigning a T to the iterator inserts it in the container at the
577 * %iterator's position, rather than overwriting the value at that
578 * position.
579 *
580 * (Sequences will actually insert a @e copy of the value before the
581 * %iterator's position.)
582 *
583 * Tip: Using the inserter function to create these iterators can
584 * save typing.
585 */
586 template<typename _Container>
587 class insert_iterator
588 : public iterator<output_iterator_tag, void, void, void, void>
589 {
590 protected:
591 _Container* container;
592 typename _Container::iterator iter;
593
594 public:
595 /// A nested typedef for the type of whatever container you used.
596 typedef _Container container_type;
597
598 /**
599 * The only way to create this %iterator is with a container and an
600 * initial position (a normal %iterator into the container).
601 */
602 insert_iterator(_Container& __x, typename _Container::iterator __i)
603 : container(&__x), iter(__i) {}
604
605 /**
606 * @param __value An instance of whatever type
607 * container_type::const_reference is; presumably a
608 * reference-to-const T for container<T>.
609 * @return This %iterator, for chained operations.
610 *
611 * This kind of %iterator maintains its own position in the
612 * container. Assigning a value to the %iterator will insert the
613 * value into the container at the place before the %iterator.
614 *
615 * The position is maintained such that subsequent assignments will
616 * insert values immediately after one another. For example,
617 * @code
618 * // vector v contains A and Z
619 *
620 * insert_iterator i (v, ++v.begin());
621 * i = 1;
622 * i = 2;
623 * i = 3;
624 *
625 * // vector v contains A, 1, 2, 3, and Z
626 * @endcode
627 */
628#if __cplusplus201103L < 201103L
629 insert_iterator&
630 operator=(typename _Container::const_reference __value)
631 {
632 iter = container->insert(iter, __value);
633 ++iter;
634 return *this;
635 }
636#else
637 insert_iterator&
638 operator=(const typename _Container::value_type& __value)
639 {
640 iter = container->insert(iter, __value);
641 ++iter;
642 return *this;
643 }
644
645 insert_iterator&
646 operator=(typename _Container::value_type&& __value)
647 {
648 iter = container->insert(iter, std::move(__value));
649 ++iter;
650 return *this;
651 }
652#endif
653
654 /// Simply returns *this.
655 insert_iterator&
656 operator*()
657 { return *this; }
658
659 /// Simply returns *this. (This %iterator does not @a move.)
660 insert_iterator&
661 operator++()
662 { return *this; }
663
664 /// Simply returns *this. (This %iterator does not @a move.)
665 insert_iterator&
666 operator++(int)
667 { return *this; }
668 };
669
670 /**
671 * @param __x A container of arbitrary type.
672 * @return An instance of insert_iterator working on @p __x.
673 *
674 * This wrapper function helps in creating insert_iterator instances.
675 * Typing the name of the %iterator requires knowing the precise full
676 * type of the container, which can be tedious and impedes generic
677 * programming. Using this function lets you take advantage of automatic
678 * template parameter deduction, making the compiler match the correct
679 * types for you.
680 */
681 template<typename _Container, typename _Iterator>
682 inline insert_iterator<_Container>
683 inserter(_Container& __x, _Iterator __i)
684 {
685 return insert_iterator<_Container>(__x,
686 typename _Container::iterator(__i));
687 }
688
689 // @} group iterators
690
691_GLIBCXX_END_NAMESPACE_VERSION
692} // namespace
693
694namespace __gnu_cxx _GLIBCXX_VISIBILITY(default)__attribute__ ((__visibility__ ("default")))
695{
696_GLIBCXX_BEGIN_NAMESPACE_VERSION
697
698 // This iterator adapter is @a normal in the sense that it does not
699 // change the semantics of any of the operators of its iterator
700 // parameter. Its primary purpose is to convert an iterator that is
701 // not a class, e.g. a pointer, into an iterator that is a class.
702 // The _Container parameter exists solely so that different containers
703 // using this template can instantiate different types, even if the
704 // _Iterator parameter is the same.
705 using std::iterator_traits;
706 using std::iterator;
707 template<typename _Iterator, typename _Container>
708 class __normal_iterator
709 {
710 protected:
711 _Iterator _M_current;
712
713 typedef iterator_traits<_Iterator> __traits_type;
714
715 public:
716 typedef _Iterator iterator_type;
717 typedef typename __traits_type::iterator_category iterator_category;
718 typedef typename __traits_type::value_type value_type;
719 typedef typename __traits_type::difference_type difference_type;
720 typedef typename __traits_type::reference reference;
721 typedef typename __traits_type::pointer pointer;
722
723 _GLIBCXX_CONSTEXPRconstexpr __normal_iterator() : _M_current(_Iterator()) { }
724
725 explicit
726 __normal_iterator(const _Iterator& __i) : _M_current(__i) { }
727
728 // Allow iterator to const_iterator conversion
729 template<typename _Iter>
730 __normal_iterator(const __normal_iterator<_Iter,
731 typename __enable_if<
732 (std::__are_same<_Iter, typename _Container::pointer>::__value),
733 _Container>::__type>& __i)
734 : _M_current(__i.base()) { }
735
736 // Forward iterator requirements
737 reference
738 operator*() const
739 { return *_M_current; }
740
741 pointer
742 operator->() const
743 { return _M_current; }
744
745 __normal_iterator&
746 operator++()
747 {
748 ++_M_current;
749 return *this;
750 }
751
752 __normal_iterator
753 operator++(int)
754 { return __normal_iterator(_M_current++); }
755
756 // Bidirectional iterator requirements
757 __normal_iterator&
758 operator--()
759 {
760 --_M_current;
761 return *this;
762 }
763
764 __normal_iterator
765 operator--(int)
766 { return __normal_iterator(_M_current--); }
767
768 // Random access iterator requirements
769 reference
770 operator[](const difference_type& __n) const
771 { return _M_current[__n]; }
772
773 __normal_iterator&
774 operator+=(const difference_type& __n)
775 { _M_current += __n; return *this; }
776
777 __normal_iterator
778 operator+(const difference_type& __n) const
779 { return __normal_iterator(_M_current + __n); }
780
781 __normal_iterator&
782 operator-=(const difference_type& __n)
783 { _M_current -= __n; return *this; }
784
785 __normal_iterator
786 operator-(const difference_type& __n) const
787 { return __normal_iterator(_M_current - __n); }
788
789 const _Iterator&
790 base() const
791 { return _M_current; }
792 };
793
794 // Note: In what follows, the left- and right-hand-side iterators are
795 // allowed to vary in types (conceptually in cv-qualification) so that
796 // comparison between cv-qualified and non-cv-qualified iterators be
797 // valid. However, the greedy and unfriendly operators in std::rel_ops
798 // will make overload resolution ambiguous (when in scope) if we don't
799 // provide overloads whose operands are of the same type. Can someone
800 // remind me what generic programming is about? -- Gaby
801
802 // Forward iterator requirements
803 template<typename _IteratorL, typename _IteratorR, typename _Container>
804 inline bool
805 operator==(const __normal_iterator<_IteratorL, _Container>& __lhs,
806 const __normal_iterator<_IteratorR, _Container>& __rhs)
807 { return __lhs.base() == __rhs.base(); }
808
809 template<typename _Iterator, typename _Container>
810 inline bool
811 operator==(const __normal_iterator<_Iterator, _Container>& __lhs,
812 const __normal_iterator<_Iterator, _Container>& __rhs)
813 { return __lhs.base() == __rhs.base(); }
814
815 template<typename _IteratorL, typename _IteratorR, typename _Container>
816 inline bool
817 operator!=(const __normal_iterator<_IteratorL, _Container>& __lhs,
818 const __normal_iterator<_IteratorR, _Container>& __rhs)
819 { return __lhs.base() != __rhs.base(); }
820
821 template<typename _Iterator, typename _Container>
822 inline bool
823 operator!=(const __normal_iterator<_Iterator, _Container>& __lhs,
824 const __normal_iterator<_Iterator, _Container>& __rhs)
825 { return __lhs.base() != __rhs.base(); }
18
Assuming the condition is true
19
Returning the value 1, which participates in a condition later
826
827 // Random access iterator requirements
828 template<typename _IteratorL, typename _IteratorR, typename _Container>
829 inline bool
830 operator<(const __normal_iterator<_IteratorL, _Container>& __lhs,
831 const __normal_iterator<_IteratorR, _Container>& __rhs)
832 { return __lhs.base() < __rhs.base(); }
833
834 template<typename _Iterator, typename _Container>
835 inline bool
836 operator<(const __normal_iterator<_Iterator, _Container>& __lhs,
837 const __normal_iterator<_Iterator, _Container>& __rhs)
838 { return __lhs.base() < __rhs.base(); }
839
840 template<typename _IteratorL, typename _IteratorR, typename _Container>
841 inline bool
842 operator>(const __normal_iterator<_IteratorL, _Container>& __lhs,
843 const __normal_iterator<_IteratorR, _Container>& __rhs)
844 { return __lhs.base() > __rhs.base(); }
845
846 template<typename _Iterator, typename _Container>
847 inline bool
848 operator>(const __normal_iterator<_Iterator, _Container>& __lhs,
849 const __normal_iterator<_Iterator, _Container>& __rhs)
850 { return __lhs.base() > __rhs.base(); }
851
852 template<typename _IteratorL, typename _IteratorR, typename _Container>
853 inline bool
854 operator<=(const __normal_iterator<_IteratorL, _Container>& __lhs,
855 const __normal_iterator<_IteratorR, _Container>& __rhs)
856 { return __lhs.base() <= __rhs.base(); }
857
858 template<typename _Iterator, typename _Container>
859 inline bool
860 operator<=(const __normal_iterator<_Iterator, _Container>& __lhs,
861 const __normal_iterator<_Iterator, _Container>& __rhs)
862 { return __lhs.base() <= __rhs.base(); }
863
864 template<typename _IteratorL, typename _IteratorR, typename _Container>
865 inline bool
866 operator>=(const __normal_iterator<_IteratorL, _Container>& __lhs,
867 const __normal_iterator<_IteratorR, _Container>& __rhs)
868 { return __lhs.base() >= __rhs.base(); }
869
870 template<typename _Iterator, typename _Container>
871 inline bool
872 operator>=(const __normal_iterator<_Iterator, _Container>& __lhs,
873 const __normal_iterator<_Iterator, _Container>& __rhs)
874 { return __lhs.base() >= __rhs.base(); }
875
876 // _GLIBCXX_RESOLVE_LIB_DEFECTS
877 // According to the resolution of DR179 not only the various comparison
878 // operators but also operator- must accept mixed iterator/const_iterator
879 // parameters.
880 template<typename _IteratorL, typename _IteratorR, typename _Container>
881#if __cplusplus201103L >= 201103L
882 // DR 685.
883 inline auto
884 operator-(const __normal_iterator<_IteratorL, _Container>& __lhs,
885 const __normal_iterator<_IteratorR, _Container>& __rhs)
886 -> decltype(__lhs.base() - __rhs.base())
887#else
888 inline typename __normal_iterator<_IteratorL, _Container>::difference_type
889 operator-(const __normal_iterator<_IteratorL, _Container>& __lhs,
890 const __normal_iterator<_IteratorR, _Container>& __rhs)
891#endif
892 { return __lhs.base() - __rhs.base(); }
893
894 template<typename _Iterator, typename _Container>
895 inline typename __normal_iterator<_Iterator, _Container>::difference_type
896 operator-(const __normal_iterator<_Iterator, _Container>& __lhs,
897 const __normal_iterator<_Iterator, _Container>& __rhs)
898 { return __lhs.base() - __rhs.base(); }
899
900 template<typename _Iterator, typename _Container>
901 inline __normal_iterator<_Iterator, _Container>
902 operator+(typename __normal_iterator<_Iterator, _Container>::difference_type
903 __n, const __normal_iterator<_Iterator, _Container>& __i)
904 { return __normal_iterator<_Iterator, _Container>(__i.base() + __n); }
905
906_GLIBCXX_END_NAMESPACE_VERSION
907} // namespace
908
909#if __cplusplus201103L >= 201103L
910
911namespace std _GLIBCXX_VISIBILITY(default)__attribute__ ((__visibility__ ("default")))
912{
913_GLIBCXX_BEGIN_NAMESPACE_VERSION
914
915 /**
916 * @addtogroup iterators
917 * @{
918 */
919
920 // 24.4.3 Move iterators
921 /**
922 * Class template move_iterator is an iterator adapter with the same
923 * behavior as the underlying iterator except that its dereference
924 * operator implicitly converts the value returned by the underlying
925 * iterator's dereference operator to an rvalue reference. Some
926 * generic algorithms can be called with move iterators to replace
927 * copying with moving.
928 */
929 template<typename _Iterator>
930 class move_iterator
931 {
932 protected:
933 _Iterator _M_current;
934
935 typedef iterator_traits<_Iterator> __traits_type;
936
937 public:
938 typedef _Iterator iterator_type;
939 typedef typename __traits_type::iterator_category iterator_category;
940 typedef typename __traits_type::value_type value_type;
941 typedef typename __traits_type::difference_type difference_type;
942 // NB: DR 680.
943 typedef _Iterator pointer;
944 typedef value_type&& reference;
945
946 move_iterator()
947 : _M_current() { }
948
949 explicit
950 move_iterator(iterator_type __i)
951 : _M_current(__i) { }
952
953 template<typename _Iter>
954 move_iterator(const move_iterator<_Iter>& __i)
955 : _M_current(__i.base()) { }
956
957 iterator_type
958 base() const
959 { return _M_current; }
960
961 reference
962 operator*() const
963 { return std::move(*_M_current); }
964
965 pointer
966 operator->() const
967 { return _M_current; }
968
969 move_iterator&
970 operator++()
971 {
972 ++_M_current;
973 return *this;
974 }
975
976 move_iterator
977 operator++(int)
978 {
979 move_iterator __tmp = *this;
980 ++_M_current;
981 return __tmp;
982 }
983
984 move_iterator&
985 operator--()
986 {
987 --_M_current;
988 return *this;
989 }
990
991 move_iterator
992 operator--(int)
993 {
994 move_iterator __tmp = *this;
995 --_M_current;
996 return __tmp;
997 }
998
999 move_iterator
1000 operator+(difference_type __n) const
1001 { return move_iterator(_M_current + __n); }
1002
1003 move_iterator&
1004 operator+=(difference_type __n)
1005 {
1006 _M_current += __n;
1007 return *this;
1008 }
1009
1010 move_iterator
1011 operator-(difference_type __n) const
1012 { return move_iterator(_M_current - __n); }
1013
1014 move_iterator&
1015 operator-=(difference_type __n)
1016 {
1017 _M_current -= __n;
1018 return *this;
1019 }
1020
1021 reference
1022 operator[](difference_type __n) const
1023 { return std::move(_M_current[__n]); }
1024 };
1025
1026 // Note: See __normal_iterator operators note from Gaby to understand
1027 // why there are always 2 versions for most of the move_iterator
1028 // operators.
1029 template<typename _IteratorL, typename _IteratorR>
1030 inline bool
1031 operator==(const move_iterator<_IteratorL>& __x,
1032 const move_iterator<_IteratorR>& __y)
1033 { return __x.base() == __y.base(); }
1034
1035 template<typename _Iterator>
1036 inline bool
1037 operator==(const move_iterator<_Iterator>& __x,
1038 const move_iterator<_Iterator>& __y)
1039 { return __x.base() == __y.base(); }
1040
1041 template<typename _IteratorL, typename _IteratorR>
1042 inline bool
1043 operator!=(const move_iterator<_IteratorL>& __x,
1044 const move_iterator<_IteratorR>& __y)
1045 { return !(__x == __y); }
1046
1047 template<typename _Iterator>
1048 inline bool
1049 operator!=(const move_iterator<_Iterator>& __x,
1050 const move_iterator<_Iterator>& __y)
1051 { return !(__x == __y); }
1052
1053 template<typename _IteratorL, typename _IteratorR>
1054 inline bool
1055 operator<(const move_iterator<_IteratorL>& __x,
1056 const move_iterator<_IteratorR>& __y)
1057 { return __x.base() < __y.base(); }
1058
1059 template<typename _Iterator>
1060 inline bool
1061 operator<(const move_iterator<_Iterator>& __x,
1062 const move_iterator<_Iterator>& __y)
1063 { return __x.base() < __y.base(); }
1064
1065 template<typename _IteratorL, typename _IteratorR>
1066 inline bool
1067 operator<=(const move_iterator<_IteratorL>& __x,
1068 const move_iterator<_IteratorR>& __y)
1069 { return !(__y < __x); }
1070
1071 template<typename _Iterator>
1072 inline bool
1073 operator<=(const move_iterator<_Iterator>& __x,
1074 const move_iterator<_Iterator>& __y)
1075 { return !(__y < __x); }
1076
1077 template<typename _IteratorL, typename _IteratorR>
1078 inline bool
1079 operator>(const move_iterator<_IteratorL>& __x,
1080 const move_iterator<_IteratorR>& __y)
1081 { return __y < __x; }
1082
1083 template<typename _Iterator>
1084 inline bool
1085 operator>(const move_iterator<_Iterator>& __x,
1086 const move_iterator<_Iterator>& __y)
1087 { return __y < __x; }
1088
1089 template<typename _IteratorL, typename _IteratorR>
1090 inline bool
1091 operator>=(const move_iterator<_IteratorL>& __x,
1092 const move_iterator<_IteratorR>& __y)
1093 { return !(__x < __y); }
1094
1095 template<typename _Iterator>
1096 inline bool
1097 operator>=(const move_iterator<_Iterator>& __x,
1098 const move_iterator<_Iterator>& __y)
1099 { return !(__x < __y); }
1100
1101 // DR 685.
1102 template<typename _IteratorL, typename _IteratorR>
1103 inline auto
1104 operator-(const move_iterator<_IteratorL>& __x,
1105 const move_iterator<_IteratorR>& __y)
1106 -> decltype(__x.base() - __y.base())
1107 { return __x.base() - __y.base(); }
1108
1109 template<typename _Iterator>
1110 inline auto
1111 operator-(const move_iterator<_Iterator>& __x,
1112 const move_iterator<_Iterator>& __y)
1113 -> decltype(__x.base() - __y.base())
1114 { return __x.base() - __y.base(); }
1115
1116 template<typename _Iterator>
1117 inline move_iterator<_Iterator>
1118 operator+(typename move_iterator<_Iterator>::difference_type __n,
1119 const move_iterator<_Iterator>& __x)
1120 { return __x + __n; }
1121
1122 template<typename _Iterator>
1123 inline move_iterator<_Iterator>
1124 make_move_iterator(_Iterator __i)
1125 { return move_iterator<_Iterator>(__i); }
1126
1127 template<typename _Iterator, typename _ReturnType
1128 = typename conditional<__move_if_noexcept_cond
1129 <typename iterator_traits<_Iterator>::value_type>::value,
1130 _Iterator, move_iterator<_Iterator>>::type>
1131 inline _ReturnType
1132 __make_move_if_noexcept_iterator(_Iterator __i)
1133 { return _ReturnType(__i); }
1134
1135 // @} group iterators
1136
1137_GLIBCXX_END_NAMESPACE_VERSION
1138} // namespace
1139
1140#define _GLIBCXX_MAKE_MOVE_ITERATOR(_Iter)std::make_move_iterator(_Iter) std::make_move_iterator(_Iter)
1141#define _GLIBCXX_MAKE_MOVE_IF_NOEXCEPT_ITERATOR(_Iter)std::__make_move_if_noexcept_iterator(_Iter) \
1142 std::__make_move_if_noexcept_iterator(_Iter)
1143#else
1144#define _GLIBCXX_MAKE_MOVE_ITERATOR(_Iter)std::make_move_iterator(_Iter) (_Iter)
1145#define _GLIBCXX_MAKE_MOVE_IF_NOEXCEPT_ITERATOR(_Iter)std::__make_move_if_noexcept_iterator(_Iter) (_Iter)
1146#endif // C++11
1147
1148#endif