

Time-of-Flight reconstruction

Simon Taylor JLab

Reconstruction chain

More details

•In *DTOFHit*, thresholds applied in software based on ADC values, but currently hits below the threshold are still kept... with many parameters (t_{mean} , etc.) set to NaN

•Code also computes corrected energy deposition in the bars:

 $E_{n} = E_{n,ADC} \cdot e^{(\frac{L}{2} - x)/a}$ $E_{s} = E_{s,ADC} \cdot e^{(\frac{L}{2} + x)/a}$ $E = \frac{E_{s} + E_{n}}{2}$ L=length of paddle a = attenuation length $I=\frac{E_{s} + E_{n}}{2}$ $I=\frac{DTOFHit}{(geometric average in DTOFPoint)}$

•In *DTOFPoint*, $E \rightarrow (E_x + E_y)/2$ (except for matches involving single-ended paddles)

In *DTOFPoint*, for intersections involving single-ended paddles:
Mean time from matched double-ended paddle is used for *t*Center of single-ended paddle used for coordinate (x or y)

Matching between tracks and TOF

•The helper class DParticleID provides many useful utilities related to particle ID

•For matching to the TOF wall, it provides *DParticleID::MatchToTOF*

•Match using distance d between track projection to the TOF z-plane and (x,y) position reported by **DTOFPoint**

•Momentum-dependent cut: d<3.624+0.488/p

Projected time at the "vertex"

π⁺'s thrown from center of target, θ < 11°
 Thrown start time = 0
 TOF resolution per PMT = 100 ps
 t = t - t

 $\bullet t_{\rm proj} = t_{\rm TOF} - t_{\rm flight, \ from \ tracking}$

Missing pieces

No time-walk correction algorithm implemented
Cases where track crosses two adjacent paddles in a view not explicitly treated

