

Start Counter

Eric Pooser W. U. Boeglin L. Guo P. Khetarpal

- Experimental Setup
- SiPM Scan
- Attenuation Lengths
- Time Resolution Studies
- Future Plans

EJ-212 Scintillator Bar

- Dimensions: 3 x 15 x 600 (mm)
 - Machined to form 30 paddle design
- With and without a VM2000 placed at the tip of the scintillator mounted in dark box
 - VM2000: highly reflective material
- SiPM coupled to the scintillator
- ⁹⁰Sr source

Geometry Of Bent Scintillator

50

Experimental Set Up

VM2000 at Nose of Scintillator

The SiPM

SiPM Measurements

• Source ~ 25 cm from SiPM

• Seven measurements (SiPM scan) were made across the face of the SiPM

- These are the "relative positions"
- New Pre-Amp greatly improved rise time of signal
 - Thanks Fernando Barbosa!
 - Old rise time ~ 20 ns
 - \circ New rise time ~ 4 ns

SiPM Scan

GIUE CITATIONS PERIMENT

SiPM Scan

SiPM Scan

Coupling to SiPM (Sweet Spot)

Attenuation Lengths

- Measured attenuation lengths of all five scintillators
 With and without VM2000
 - Coupling of scintillator to "sweet spot" of SiPM
- Scintillators were rated from 1 (best) to 5 (worst)
 - Based on visual inspection of surface quality
 - Rated *prior* to measurements
- Defects on surface of scintillators
 - Buffing scratches (poor polishing techniques)
 - Worst in region of bend
 - Crazing (stress of machining or improper handling)
 - Deep gashes on surface
 - Poor milling of edges

Damaged Surface on Bend

Defective Milling of Edges

Attenuation Length Plot for Scintillator 1 (Typical Response)

• Fit Range (0.0 - 40.0 cm)

Average Attenuation Lengths

• The attenuation lengths of all five scintillators are approximately the same

Attenuation Lengths Summary

- Poor light output due to poor surface quality

 Damaged surface attributable to Plastic Craft manufacturing and polishing techniques

 Light output is worst in the region of the bend

 ~ 41.6 cm down stream of SiPM

 Small improvement with VM2000 backing
- Bent scintillator has worse attenuation length compared to straight scintillator

 3.7x without VM2000
 6.5x with VM2000

Time Resolutions Studies

- Coupling of scintillator to "sweet spot" of SiPM
- We measured the time resolution as a function of distance of source from SiPM
- Comparative measurement with straight scintillator
 - Both with and without VM2000
- Comparative time resolution measurements with FM-PMT, Old SiPM, and New SiPM

Time Resolution Plots

Comparison of Time Resolutions

Time Resolution Comparisons (Straight Bar)

Time Resolution Summary

- Without VM2000
 - Time resolution is relatively constant in nose
- With VM2000 at tip of the nose
 - Time resolution improves as a function of increasing distance
- Worst time resolution occurs in the bent region Same as light output
- Time resolution measurements were relatively consistent among all of the scintillators
- Overall we find: 230 ps < σ < 640 ps for the bent scintillators
- New Pre-Amp improved the time resolution as expected

Summary

- SiPM is suitable for timing measurements
- Geometry of nose results in:
 - Faster propagation of light (~60ns > c)
 - Relatively constant time resolution in bend
 - Better time resolution with VM2000
- Bad surface quality results in:
 - Broad range of timing resolution
 - Poor light output
 - Short attenuation lengths
- More care must be taken by Plastic Craft

Future Plans

- Scintillators have been sent back to Plastic Craft for repolishing with advised polishing techniques
 - This should improve light output and timing resolution
- Techniques of wrapping VM2000 to bent scintillators will be investigated
- Comparative measurements will be made
 - Re-polished scintillators
 - Wrapped scintillators (VM2000)
- Coupling of scintillators to light guides and SiPM
 - Associated measurements
- Final design of start counter has yet to be finalized
 0 40, 30, 24 ?

Thank you for your time!

Questions?

Propagation Studies

• We measured the speed of light within the five scintillators

 \circ With and without VM2000

- Fit two separate linear functions
 - Straight Section
 - Bent Section

Propagation Studies (Scintillator 4)

Similar traits were noticed among the five scintillators

Propagation Speed Summary

- Linear relationship was found between the time of propagation and the distance from the SiPM (as expected)
- There exists a difference in the fitted slopes when comparing the nose and the straight section
- On average the propagation speeds differed in the nose when compared to the straight section as:
 - Without VM2000
 - 4.61 cm/ns faster
 - With VM2000
 - 6.23 cm/ns faster
- Due to the change in geometry of the scintillator after the bend
 - \circ Fewer number of reflections in nose

Light Output (SiPM Scan)

Comparative Plot (Light Output)

Collaboration Meeting, Oct 6 2011: Start Counter

Collaboration Meeting, Oct 6 2011: Start Counter

Comparison of Time Resolutions

Scintillator Number	No VM2000 [Min / Max] (ps)	With VM2000 [Min / Max] (ps)
1 (best)	234 / 600	235 / 601
2	231 / 606	232 / 612
3	243 / 614	244 / 623
4	234 / 587	238 / 592
5 (worst)	270 / 623	247 / 636
Unbent Scintillator	229 / 354	229 / 353

Attenuation Lengths

Scintillator Number	No VM2000 (cm)	With VM2000 (cm)
1 (best)	18.3	19.5
2	18.9	18.7
3	18.5	18.5
4	20.0	21.4
5 (worst)	18.7	20.4
Unbent Scintillator	70.6	129.0

Trigger PMT and ⁹⁰Sr Source

