IU Mini Data Challenge

Kei Moriya Indiana University GlueX Offline Meeting October 30, 2013

Generation Summary

- Processed 50M bggen events 10 hrs worth of data¹
- 10k events x 5000 files
- All events had primary vertex smeared (smear_thrown_vertex)
- E_Y range was 8.4 9.0 GeV
- No EM background added
- Using 192 nodes on IU cluster, can process 2000 files/day = 20M events/day (hdgeant, mcsmear, REST)
- 4739 files had usable REST output (94.8%)
- 161 files got stuck at REST, remaining 100 finished REST but had unusable output (more detailed logs available)

1. according to GlueX Data Challenge Report, $10^7 \gamma/s$

Details of Failures, File Size

File size	Number of files	Usable
20MB	22	22
I9MB	4719	4717
10-18MB	39	0
I-I0MB	52	0
<imb< td=""><td>7</td><td>0</td></imb<>	7	0
REST fail	161	0
TOTAL	5000	4739

- Most unusable files are identifiable from file size
- Use hddm_merge_files (modified to work on hddm_r files)
- Sometimes REST will finish, but file will be unusable
- If this is the case, hddm_merge_files will crash
- In most failures, REST will get stuck at a particular event and stay in the queue until the job is killed

Question on Run Number

- I generated all events without specifying the run number, and this gives me RunNumber 2 for all files
- This is rather inconvenient when I merge files together for ease of analysis, since I can't tell which file the event came from
- How do I change the run number, and will the CCDB complain if the number is not within a given range?

Analysis Summary

- Analysis speed depends strongly on processor (channel to analyze) -I~20 Hz
- For IHz, to analyze 50M events takes 2.89 days using 200 cores → Will need to use grid to do more
- REST output files are 19MB each, so that 50M events ~100GB on disk
- Analysis Trees created by GlueX software will be rather large
 → 250GB 3TB for 50M events/analysis channel (10 hrs of data!!)
- Currently only have minimal cuts on events -DReaction::Set_MinCombinedTrackingFOM(I.e-5)

	channel	file size/IM events
no photons	K ⁺ Λ	5.5GB
	Κ*Σ0	2IGB
no photons	K⁺Σ⁺π⁻ (Σ⁺→pπ⁰)	62GB
	Κ*Σ-π+	IOGB
	K⁺Λη	65GB

K⁺Analysis on bggen

- Run K⁺Λ processor on 50M bggen events, check potential backgrounds
- Processor will run at ~20Hz, can run relatively quickly
- After processing 50M events, 165 events were left with kfit CL > 0.01 (includes vertex constraints) [5.4M combos with converging kfit]
- Ι20 pπ⁺π⁻, 22 K⁺Λ, 2 pπ⁺π⁻π⁰, 2 pπ⁺π⁻π⁰ω
- Other single backgrounds: $p\pi^+\pi^-\rho^+$, $K^+\Lambda\pi^0$, $pp\overline{p}\pi^0$, $p\rho^+\pi^+2\pi^-\pi^0$, $n\pi^+\rho^0$, $p\pi^+\pi^-\omega$, $p\eta\pi^0$, ...
- Most pressing background issue is π,K separation
- Previous studies show that $p\pi^+\pi^-$ (mostly through ρ^0) is ~10% of total cross section, main background, rejection of 120/5M ~ 10⁻⁴

K⁺Σ⁰ Analysis on bggen

- Run K⁺Λ processor on 50M bggen events, check potential backgrounds
- Processor will run at ~4Hz
- After processing 50M events, 31 events were left with kfit CL > 0.01 (includes vertex constraints) [6.1M combos with converging kfit]
- I5 pπ⁺π⁻, 5 p π⁺ ρ⁻, 3 pπ⁺π⁻π⁻ρ⁺, 3 K⁺Σ⁺(I385)π⁻, 2 K⁺Λ

K⁺Σ⁺π⁻ Analysis on bggen

- Run K⁺Σ⁺π⁻ processor on 4M bggen events, check potential backgrounds (final state: pK⁺π⁻π⁰)
- Processor will run at ~IHz, rather slow
- After processing 4M events, 661 events were left with kfit CL > 0.01 (includes vertex constraints) [642k combos with converging kfit]
- 432 pπ⁺π⁻π⁰, 53 K⁺Σ⁺π⁻, 37 pK^{*+}K⁻, 33 pp⁺π⁻π⁰, 28 pπ⁺π⁻
- Seems like reasonable backgrounds ($\pi \leftrightarrow K$ confusion)

Also processing other channels such as $K^+\Sigma^0$, $K^+\Lambda\eta$, $K^+\Sigma^-\pi^+$

Summary

- Processed 50M bggen events at IU using 192 CPUs
- Generation took 3 days, 95% success rate
- Analysis is slow without cuts, file sizes are large
- Currently using more than 2TB of disk from this data challenge (mostly analysis)
- Truth information on background events can be reconstructed for most cases; complicated final states are difficult but rare
- Further generation/analysis would require running at either Big Red II (IU-wide cluster), or scientific grid
- Have started looking into setting these options