ST Propagation Time Correction Studies

05/21/2015

ROOT Fitter Method (Straight Section)

For Straight Section:
 – Veff ≈ 13.7 cm/ns

ProfileX Method (Straight Section)

- Calculates the mean value of δt and its error for each bin (500 μm) along δz
 - The error calculated is the standard error on the mean
- Veff ≈ 13.35 cm/ns

FitSlicesY (Straight Section)

- Project slices along δt and fits them with a Gaussian for each bin (500 μm) along δz
 - The error calculated is the error on the mean as calculated by the fit
- Veff ≈ 12.86 cm/ns

Custom Method (Straight Section)

- Project slices along δt and fit them with a Gaussian for each bin (500 μm) along δz
 - Require that the number of entries for each projection be grater than some predefined value (100 entries)
 - Other cuts are obviously possible
 - The error calculated is σ returned by the fit
- Veff ≈ 12.79 cm/ns

Which Method Is Best?

- ROOT Fitter (Minuit & Fumili) is a black box
 Outliers have same weight as "good" data points
- ProfileX underestimates the error
- FitSlicesY underestimates the error
- Custom method provides much more control – Cuts on σ , χ^2 / ndf, number of entries etc.
- What about binning?
 - Current binning scheme:
 - 500 µm in Z, 60 ps in TDC time
 - Analysis is extremely sensitive to binning