Mesons in the Medium: Experiments with CLAS

<u>M. H. Wood</u> (Canisius College, Buffalo, NY, USA), M. Paolone, R. Nasseripour, P. P. Weygand, and C. Djalali for the CLAS Collaboration

Medium Modifications

Chiral Symmetry Restoration

 - 98% of hadron's mass is attributed to spontaneous breaking of chiral symmetry.

- Predictions of chiral symmetry restoration at normal nuclear density ($\rho_0=0.16$ fm⁻³)

Bernard and Meissner, NPA 489, 647 (1988) Brown and Rho, PRL 66, 2720 (1991) Hatsuda and Lee, PRC 46, R34 (1992)

- Consequences are changes to M and Γ of the hadron in the nucleus, such as 20% drop in p-meson mass in Pb.

In-medium Hadronic Interactions

In the nuclear medium, the meson-nucleon cross section is modified Leupold et al., Int. J. Mod. Phys. E19, 147 (2010)

This modification is manifested as collisional broadening or a change to the collisional width.

 $\Gamma = \Gamma_0 + \Gamma_{coll} = \Gamma_0 + \gamma v \rho \sigma_{VN}^*$

Consequence: increased absorption and reduction in detected yield.

Medium Modifications

Chiral Symmetry Restoration

 - 98% of hadron's mass is attributed to spontaneous breaking of chiral symmetry.

- Predictions of chiral symmetry restoration at normal nuclear density ($\rho_0=0.16$ fm⁻³)

Bernard and Meissner, NPA 489, 647 (1988) Brown and Rho, PRL 66, 2720 (1991) Hatsuda and Lee, PRC 46, R34 (1992)

- Consequences are changes to M and Γ of the hadron in the nucleus, such as 20% drop in p-meson mass in Pb.

In-medium Hadronic Interactions

In the nuclear medium, the meson-nucleon cross section is modified Leupold et al., Int. J. Mod. Phys. E19, 147 (2010)

This modification is manifested as collisional broadening or a change to the collisional width.

 $\Gamma = \Gamma_0 + \Gamma_{coll} = \Gamma_0 + \gamma v \rho \sigma_{VN}^*$

Consequence: increased absorption and reduction in detected yield.

CLAS Experiment

With the g7a experiment at JLab in Hall B, we had access to the inmedium properties of the light vector mesons.

Reaction: $A \rightarrow VX \rightarrow e^+e^-X$ (no FSI) ($E_8 < 4 \text{ GeV}$)

 $\rho \longrightarrow \{ R. Nasseripour et al, PRL 99, 262302 (2007) \\ M. H. Wood et al., PRC 78, 015201 (2008) \\ w and \phi \longrightarrow M. H. Wood et al., PRL 105, 112301 (2010) \}$

CLAS

Torus Magnet 6 superconducting coils for deflecting charged particles

e- : in-bending tracks e+ : out-bending tracks

Drift Chambers (Ar-CO₂) 6500 channels/sector to measure the path of a charged particle.

Time-of-Flight Hodoscope 48 scintillators/sector for measuring a particle's travel time

Electromagnetic Calorimeter for detecting electrons.

EC e/ π rejection factor: 10-²

Gas Cherenkov Counter for e/π separation.

CC e/ π rejection factor: 10⁻¹

EC/CC rejection factor: 10^{-3}

Rejection factor for e+e-: 10-6

Event Selection

Segmented Target Foils of carbon, iron, titanium, lead. Cell of LD₂ as a control.

Sample Event

Event Selection

$\begin{array}{c} & Segmented \ Target \\ \hline Foils \ of \ carbon, \ iron, \ titanium, \ lead. \\ & Cell \ of \ LD_2 \ as \ a \ control. \end{array}$

Sample Event

- Combinatorial Background subtracted
 Line shapes were simulated by GiBUU
- Lines shapes were fit to the mass spectra. Centroids and widths were fixed. The relative scale for each line was varied.
- All contributions except the p meson were subtracted.

C12

Simulation with no mass shift

Simulation with mass shift

Fe-Ti

Visually the ratio of masses are consistent with no mass shift.

Results of the p meson search:

- consistent with no mass shift (upper limit $\Delta m < 21$ MeV)

- width broadening consistent with many-body effects (~40%) (predicted by GiBUU)

wand & mesons

& Meson Absorption

Comparison to other work

SPring8: $\chi A \rightarrow \phi X \rightarrow K^{+}K^{-}X$ $E_{\chi}=1.5-2.4 \text{ GeV}$ T. Ishikawa et al., Phys. Lett. B 608, 215 (2006) Comparison to Glauber calculations

Elementary: $\sigma_{\phi N} < 10mb$ In-medium: $\sigma_{\phi N}^* = 35mb$ (SPring8) $\sigma_{\phi N}^* = 15-70mb$ (JLab)

w-Meson Absorption

gl 2: Measurement of the Elementary Process

- Pata Pata collected in Hall B in 2008.
- * Bremsstrahlung photon beam on a LH2 target ($E_x < 5.5$ GeV).
- Work conducted by Michael Paolone while at Univ. of South Carolina (now at Temple University).
- * Fit: ρ BW + ω BW + interference term
- In preparation for analysis review.

Summary

- * The CLAS experiment with x beam made valuable contributions to the field of inmedium meson modifications.
 - p meson: consistent with no mass shift in cold nuclear medium at JLab kinematics
 - meson: consistent with Spring8 result. The in-medium cross section is 2-3
 times greater than the elementary cross section.

 ω meson: large absorption (collisional width > 200 MeV).

- * How can the program continue?
 - Follow-up Hall B experiment (conditionally-approved by PAC) was canceled before the upgrade.
 - \checkmark increase the statistics
 - Momentum dependence of in-medium modifications for the vector mesons
 - Improved target: replace Pb with Nb and increase the target spacing for absorption studies.
 - \checkmark In-medium Kaon-Nucleon potentials

In-medium Kaons

Pensity dependence predictions of the KN potential

- K- effective mass decreases
- K+ effective mass increases Brown et al, NPA567, 937 (1994) Weise, NPA610, 35c (1996) Li et al, NPA625, 372 (1997)

FOPI Collaboration at GSI

Benabderrahmane et al., PRL 102, 182501 (2009) - K⁰ production in C and Pb with 1.15 GeV π beams - Data suggests a 20 MeV repulsive potential in Pb - Increase in in-medium potential : low momentum Kaons are accelerated to higher exit momenta.

ANKE Spectrometer at COSY Buescher et al., EPJA 22, 301 (2004)

- K⁺ production in D, C, Cu, Ag, and Au with 1-2.3 GeV proton beams

- Data show similar momentum dependence.

Ks Meson Absorption

- Analysis is a work in progress

- Simulations are needed for detector acceptance and vertex reconstruction

- Possible target contamination (ct = 2.68 cm and target spacing = 2.5 cm)

- Analysis of meson momentum dependence is underway

HallD

Advantages

- High-intensity photon beam
- Multi-particle final state
- Forward detector (mesonnucleus bound states?)
- Measure both ω rare decays.

Questions

- Low momentum?
- electron/pion discrimination?
- positron acceptance?
- Target vertex reconstruction?
- Kaon acceptance?

p-w Interference

Interference contribution after p-meson subtraction

Ks Meson Analysis

0.35

0.4

0.45

0.5

π⁺π⁻ Invariant Mass (GeV)

0.55

Density dependence predictions of the KN potential - K- effective mass decreases

- K+ effective mass increases Brown et al, NPA567, 937 (1994) Weise, NPA610, 35c (1996) Li et al, NPA625, 372 (1997)

FOPI Collaboration at GSI Benabderrahmane et al., PRL 102, 182501 (2009)

- K^o production in C and Pb with 1.15 GeV T beams

- Data suggests a 20 MeV repulsive potential in Pb

$K_s \rightarrow \pi^+\pi^-$ is a good candidate for JLab analysis

- $\pi^+\pi^-$ events are plentiful
- Photon beam illuminates the entire nucleus
- Target spacings are 2.5 cm
- For K⁰, ct = 2.68 cm

0.55

0.45

0.35

0.4

0.5

π⁺π⁻ Invariant Mass (GeV)

0.55