Plans to measure J/ψ photoproduction on the proton with CLAS12

Pawel Nadel-Turonski

Jefferson Lab

Nuclear Photoproduction with GlueX, April 28-29, 2016, JLab Outline

Introduction

 J/ψ on the proton in CLAS12

Opportunities for nuclear targets

Charmonium is a probe of the nucleon's color field

At high $Q^2 c\bar{c}$ is produced in small-size configurations

- *c.f.* color transparency
- Local probe of color field

J/ψ photoproduction

- Probes distances $\approx 1/\sqrt{Q^2 + M_{J/\psi}^2} \approx 1/M_{J/\psi}$
- J/ ψ radius still smaller than nucleon: $r_{J/\psi} \sim 0.2 0.3$ fm << 1 fm

J/ ψ production at high vs. low W (= \sqrt{s})

J/ψ production at high W

- Access to nucleon's gluon GPD at small *x*
 - t_{min} and ζ small, well understood diffractive process
 - Measurements at EIC, HERA, COMPASS, FNAL

J/ψ production near threshold

- t_{min} and ζ large, implies large skewness $x_1 x_2$
- Natural interpretation in terms of a gluonic form factor sensitive to non-perturbative gluon field
 - analogous to high-*t* elastic *eN* scattering
- Amplitude constant, but cross section near threshold suppressed by large t_{min} Weiss, Strikman

 $A(\gamma + p \rightarrow J/\psi + p) \propto F_{2g}(t)$ aluonic form factor

Enhancement instead of suppression near threshold?

• But should we expect an enhancement instead, despite the impact of a large t_{min}?

• Need theory input for interpretation of data, which will soon be here!

• Also need theory predictions for nuclear targets (both coherent and incoherent case)

Exclusive J/ ψ kinematics near threshold

Four-momentum transfer to the nucleon

$$t = -(\zeta^2 m_N^2 + \Delta_T^2) / (1 - \zeta)$$

- ζ is the "plus" momentum transfer
 light cone variables
- $\Delta_{\rm T}$ is the transverse momentum transfer
- t_{min} at threshold is 2.2 GeV²

C. Weiss, Non-perturbative forces in QCD, Temple U., 26-28 March 2012

Approved CLAS12 experiments

	Proposal	Physics	Contact	Rating	Days	Group	New equipment	Energy	Run Group	Target
	E12-06-108	Hard exclusive electro-production of π^{q},η	Stoler	В	80		RICH (1 sector) Forward tagger			liquid
	E12-06-112	Proton's quark dynamics in SIDIS pion production	Avaklan	A	60					H ₂
1	E12-06-119	Deeply Virtual Compton Scattering	Sabatie	A	80					
- 1	E12-09-003	Excitation of nucleon resonances at high Q ²	Gothe	B+	40					
- 1	E12-11-005	Hadron spectroscopy with forward tagger	Bettaglieri	A-	119	139		11	F. Sabatié	
\triangleleft	E12-12-001	Timelike Compton Scatt. & J/ψ production in e+e-	Nadel-Turonski	A-	120					
	E12-12-007	Exclusive ϕ meson electroproduction with CLAS12	Stoler, Weiss	B+	60					
	PR12-12-008	Photoproduction of the very strangest baryon	Guo	-	80					
	E12-07-104	Neutron magnetic form factor	Gilfoyle	A-	30	90	Neutron detector RICH (1 sector) Forward tagger	11		liquid
1	PR12-11-109 (a)	Dihadron DIS production	Avakian						в	D ₂ target
	E12-09-007a	Study of partonic distributions in SIDIS kaon production	Hafidi	A-	56				K. Halidi	
- 1	E12-09-008	Boer-Mulders asymmetry in K SIDIS w/ H and D targets	Contalbrigo	A-	TBA					
- 1	E12-11-003	DVCS on neutron target	Niccolai	A	90					
	E12-06-109	Longitudinal Spin Structure of the Nucleon	Kuhn	A	80	170	Polarized target RICH (1 sector) Forward tagger	11		NH
	E12-06- 119(b)	DVCS on longitudinally polarized proton target	Sabatie	A	120					ND ₃
	E12-07-107	Spin-Orbit Correl, with Longitudinally polarized target	Avakian	A-	103				С	
	PR12-11-109 (b)	Dihadron studies on long, polarized target	Avakian	-					S. Kuhn	
	E12-09-007(b)	Study of partonic distributions using SIDIS K production	Hafidi	A.	110					
	E12-09-009	Spin-Orbit correlations in K production w/ pol. targets	Avakian	B+	103					
	E12-06-106	Color transparency in exclusive vector meson production	Hafidi	B+	60	60		11	D	Nuclear
	E12-06-117	Quark propagation and hadron formation	Brooks	A-	60	60		11	E	Nuclear
	E12-10-102	Fine Neutron structure at large x	Bueltman	A	40	40	Radial TPC	11	F	Gas D ₂
	TOTAL approved run time (PAC days)				1491	559				

E12-12-001

Approved for 100 PAC days as part of Run Group A, plus an additional 20 days with reverse torus polarity $\begin{array}{c} \mbox{Jefferson Lab PAC 39 Proposal}\\ \mbox{Timelike Compton Scattering and } J/\psi \mbox{ photoproduction on the proton}\\ \mbox{in } e^+e^- \mbox{ pair production with CLAS12 at 11 GeV} \end{array}$

I. Albayrak,¹ V. Burkert,² E. Chudakov,² N. Dashyan,³ C. Desnault,⁴ N. Gevorgyan,³ Y. Ghandilyan,³ B. Guegan,⁴ M. Guidal^{*},⁴ V. Guzey,^{2,5} K. Hicks,⁶ T. Horn^{*},¹ C. Hyde,⁷ Y. Ilieva,⁸ H.-S. Jo,⁴ P. Khetarpal,⁹ F.J. Klein,¹ V. Kubarovsky,² A. Marti,⁴ C. Munoz Camacho,⁴ P. Nadel-Turonski^{*†},² S. Niccolai,⁴ R. Paremuzyan^{*},^{4,3} B. Pire,¹⁰ F. Sabatié,¹¹ C. Salgado,¹² P. Schweitzer,¹³ A. Simonyan,³ D. Sokhan,⁴ S. Stepanyan^{*},² L. Szymanowski,¹⁴ H. Voskanyan,³ E. Voutier,¹⁵ J. Wagner,¹⁴ C. Weiss,² N. Zachariou,⁸ and the CLAS Collaboration. ¹Catholic University of America, Washington, D.C. 20064 ²Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606 ³Yerevan Physics Institute, 375036 Yerevan, Armenia ⁴Institut de Physique Nucleaire d'Orsay, IN2P3, BP 1, 91406 Orsay, France ⁵Hampton University, Hampton, Virginia 23668 ⁶Ohio University, Athens, Ohio 45701 ⁷Old Dominion University, Norfolk, Virginia 23529 ⁸University of South Carolina, Columbia, South Carolina 29208 ⁹Florida International University, Miami, Florida 33199 ¹⁰CPhT, École Polytechnique, 91128 Palaiseau, France ¹¹CEA. Centre de Saclay, Irfu/Service de Physique Nucléaire, 91191 Gif-sur-Yvette, France ¹²Norfolk State University, Norfolk, Virginia 23504 ¹³University of Connecticut, Storrs, Connecticut 06269 ¹⁴National Center for Nuclear Research (NCBJ), Warsaw, Poland ¹⁵LPSC Grenoble, 38000 Grenoble, France (Dated: May 4, 2012)

*Co-spokesperson

[†]Contact person: turonski@jlab.org

The CLAS12 detector

The CLAS12 detector

CLAS12 parameters (at max torus field)

Parameters	Forward Detector	Central Detector				
Charged tracks:						
polar angular range (θ)	5° to 35°	35° to 125°				
resolution:						
polar angle $(\delta \theta)$	< 1 mr	$<10~{\rm mr}$ to 20 ${\rm mr}$				
azimuthal angle $(\delta \phi)$	< 4 mr	< 5 mr				
momentum $(\delta p/p)$	<1% at 5 GeV/c	< 5% at 1.5 GeV/c				
Neutral particles:						
angular range (θ)	5° to 40°	40° to 125° (neutrons)				
angular resolution $(\delta \theta)$	< 4 mr	< 10 mr				
Energy resolution	$< 0.1/\sqrt{(E)}$	< 5%				
PID:						
e/π	full momentum range	NA				
π/p	full momentum range	< 1.25 GeV/c				
K/π	$< 3 { m GeV/c}$	$< 0.65 { m ~GeV/c}$				
K/p	< 4 GeV/c	$< 1 { m GeV/c}$				

J/ψ mass resolution in CLAS12

• The CLAS12 resolution is good for J/ψ for fields at half field or above.

Exclusive quasi-real photoproduction in CLAS12

- Low-Q² events are reconstructed by applying cuts on the transverse momentum of the missing beam electron.
- Exclusivity is ensured by detection of all produced final-state particles, and application of an additional missing mass cut.

Exclusive quasi-real photoproduction in CLAS (data)

Detection of the exclusive final state in CLAS12

 10^{2}

10

D

CLAS12 mass resolution as a function of the torus field

• Mass resolution of the detected "p-J/ ψ " system

CLAS12 acceptance for pe⁺e⁻

• CLAS12 has excellent acceptance for photoproduction of lepton pairs with a large invariant mass over a wide range of photon energies.

Projected results – "inclusive" J/ ψ production (no p)

- Excellent benchmark for studies of detector efficiency
 - Nominal acceptance for $e^+ e^-$ final state identical for both torus polarities

Projected results – exclusive J/ψ production

Uncertainties for the total cross section assuming the most conservative prediction (smaller than point side except for the three lowest points) t-dependence in narrow bins of *s* for a total cross section given by the lower curve on the left

Conservative J/ ψ yield projections in two sample bins

Reaction e+p→e⁺+e⁺+p+(e⁻) at 11 GeV with CLAS12

Complementarity between CLAS12 and GlueX

CLAS12

- Good invariant-mass resolution and electron ID
 - Clean J/ ψ signal
- High luminosity for quasi-real photoproduction and > 10% acceptance for pe⁺e⁻
 - Good for a proton target and coherent production on nuclei, but tricky to reconstruct Eγ if not all final-state particles detected
- Small-angle (low-Q2) electron tagger available, but lower rate
 - ~2° minimum electron angle
 - May not always be available

GlueX

High photon energy
 12 vs 11 GeV in CLAS12

- Good and uniform acceptance
 - Great for complex final states

- Good E_{γ} resolution (from tagger)
 - Does not need to detect all nuclear fragments

Approved beam time for nuclear targets in CLAS12

Proposal	Physics	Contact	Rating	Days	Group	New equipment	Energy	Run Group	Target
E12-06-108	Hard exclusive electro-production of π^{0},η	Stoler	В	80		RICH (1 sector)			liquid
E12-06-112	Proton's quark dynamics in SIDIS pion production	Avakian	A	60		Forward tagger			H ₂
E12-06-119	Deeply Virtual Compton Scattering	Sabatie	A	80					
E12-09-003	Excitation of nucleon resonances at high Q ²	Gothe	B+	40				E Baharit	
E12-11-005	Hadron spectroscopy with forward tagger	Battaglieri	A-	119	139		n	P. Sabatte	
E12-12-001	Timelike Compton Scatt. & J/ψ production in e+e-	Nadel-Turonski	A-	120					
E12-12-007	Exclusive ϕ meson electroproduction with CLAS12	Stoler, Weiss	B+	60					
PR12-12-008	Photoproduction of the very strangest baryon	Guo	-	80					
E12-07-104	Neutron magnetic form factor	Gilfoyle	A-	30		Neutron		/	liquid
PR12-11-109 (a)	Dihadron DIS production	Avakian	-	•	90	RICH (1 sector)	11	в/	D ₂ target
E12-09-007a	Study of partonic distributions in SIDIS kaon production	Hafidi	A-	56		Forward tagger		K. Haliyi	
E12-09-008	Boer-Mulders asymmetry in K SIDIS w/ H and D targets	Contalbrigo	A-	TBA					
E12-11-003	DVCS on neutron target	Niccolai	A	90					
E12-06-109	Longitudinal Spin Structure of the Nucleon	Kuhn	А	80		Polarized target			NHa
E12-06- 119(b)	DVCS on longitudinally polarized proton target	Sabatie	А	120		Forward tagger			ND ₀
E12-07-107	Spin-Orbit Correl, with Longitudinally polarized target	Avakian	A-	103	170		11	с	
PR12-11-109 (b)	Dihadron studies on long, polarized target	Avakian						S. Kuhn	
E12-09-007(b)	Study of partonic distributions using SIDIS K production	Hafidi	A-	110					
E12-09-009	Spin-Orbit correlations in K production w/ pol. targets	Avakian	B+	103					
E12-06-106	Color transparency in exclusive vector meson production	Hafidi	B+	60	60		11	D	Nuclear
E12-06-117	Quark propagation and hadron formation	Brooks	A-	60	60		11	E	Nuclear
E12-10-102	Fine Neutron structure at large x	Bueltman	A	40	40	Radial TPC	- 11	F	Gas D ₂
TOTAL approved	TOTAL approved run time (PAC days)								

J/ψ from nuclear targets in CLAS12

- Significant beam time already approved for nuclear targets:
 - Unpolarized deuterium (90+40 days)
 - Ammonia from polarized targets (170 days)
 - Heavier nuclear targets (60+60 days)
- Run group proposals for nuclear J/ψ will be submitted!
- But heavier nuclei may not be scheduled in CLAS12 for quite a long time
- Together with limitations in quasi-real photoproduction in CLAS12 for nuclei where all particles in the final state are not detected and a good accepance in GlueX, this creates an opportunity for complementary program for J/ψ production on nuclear targets in GlueX!

Summary

CLAS12 experiment E12-12-001 will measure J/ψ on the proton

- Also Timelike Compton Scattering
- A LOI will be submitted to this PAC for J/ψ with muons

Extensions to J/ψ production on nuclei natural

- Lot of beam time already approved can submit run group proposals
- Need theory guidance!

Nuclear J/ψ program has natural complementarity with GlueX!

Backup

CLAS12 baseline PID

