

- "physics" distribution in θ symmetric when integrated on symmetric range in ϕ like here

• accuracy in integrals here is limited on purpose to reflect experimental issues when σ increase very fast (limited statistic, bin size, resolution...)

⇒ if a difference exists between the 2 pics
 ≡ region to avoid

cross sections at $\theta=27^{\circ}/153^{\circ}$

no φ cut: $\sigma(BH)=0.24 / 3.0$ nb φ cut of (0,π) ±20°: $\sigma=0.065 / 0.062$ nb φ cut of (0,π) ±30°: $\sigma=0.042 / 0.042$ nb

• To avoid singularities, angular cuts with kinematic dependence (Q'², t, E):

 $\theta_{min} < \theta < \theta_{max}$ (30°< ϕ <150° & 210°< ϕ <330°) above/below $\theta_{min, max}$, then extentable to [10°, 170°] (I checked) \Rightarrow has to be taken account for "experimental observable" of integrated cross section

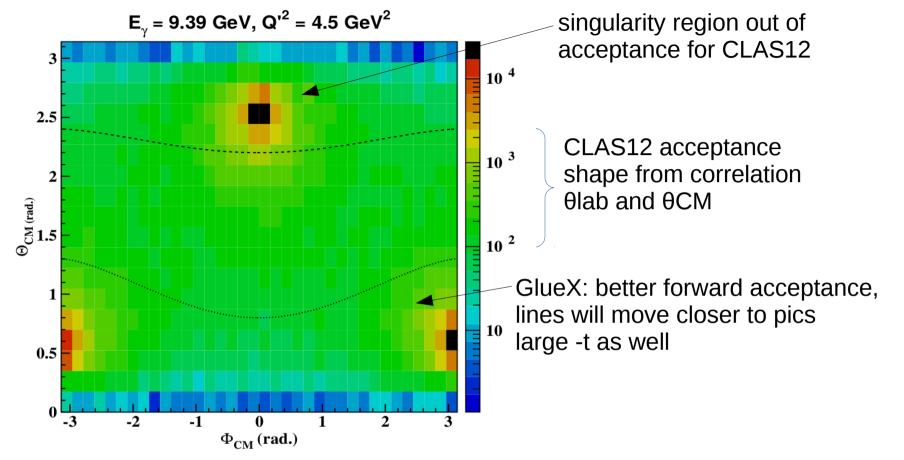
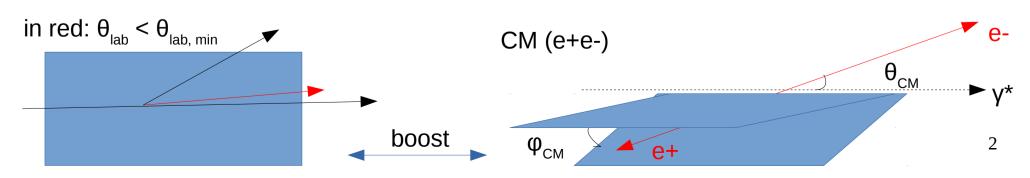

 \Rightarrow Impact on statistics and gain within acceptance need to be studied for extended cut (cost in systematics)

 Table: 	(units GeV)	E	-t	Q'2	θ_{min}	$(\theta_{\max} = \pi - \theta_{\min})$
	example line:	9.5	0.27	4.9	35	


done: table & mapping of angular limits over the full phase space with various φ cuts **to do**: table with E dependence, **relation \thetaCM vs \thetalab and acceptance**, map of TCS rates + various corrections to match "experimental" cross section

Marie Boër, Feb. 1st, 2018, GlueX dileptons meeting

Example with CLAS12 (from E12-12-001 experiment)

Are additional cuts necessary to avoid singularities? To do: generate this figure for GlueX with $\theta_{lab} > \theta_{lab, min}$

