// This header include/tao/json/external/double.hpp contains // modified portions of the double-conversion library from // https://www.github.com/google/double-conversion // which is licensed as follows: // Copyright 2006-2011 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #ifndef TAOCPP_JSON_INCLUDE_EXTERNAL_DOUBLE_HPP #define TAOCPP_JSON_INCLUDE_EXTERNAL_DOUBLE_HPP #include #include #include #include #include #include #ifndef ASSERT #define ASSERT( eXPReSSioN ) ((void)0) #endif #ifndef UNIMPLEMENTED #define UNIMPLEMENTED() (abort()) #endif #ifndef UNREACHABLE #define UNREACHABLE() (abort()) #endif // Double operations detection based on target architecture. // Linux uses a 80bit wide floating point stack on x86. This induces double // rounding, which in turn leads to wrong results. // An easy way to test if the floating-point operations are correct is to // evaluate: 89255.0/1e22. If the floating-point stack is 64 bits wide then // the result is equal to 89255e-22. // The best way to test this, is to create a division-function and to compare // the output of the division with the expected result. (Inlining must be // disabled.) // On Linux,x86 89255e-22 != Div_double(89255.0/1e22) #if defined(_M_X64) || defined(__x86_64__) || \ defined(__ARMEL__) || defined(__avr32__) || \ defined(__hppa__) || defined(__ia64__) || \ defined(__mips__) || \ defined(__powerpc__) || defined(__ppc__) || defined(__ppc64__) || \ defined(_POWER) || defined(_ARCH_PPC) || defined(_ARCH_PPC64) || \ defined(__sparc__) || defined(__sparc) || defined(__s390__) || \ defined(__SH4__) || defined(__alpha__) || \ defined(_MIPS_ARCH_MIPS32R2) || \ defined(__AARCH64EL__) || defined(__aarch64__) #define DOUBLE_CONVERSION_CORRECT_DOUBLE_OPERATIONS 1 #elif defined(__mc68000__) #undef DOUBLE_CONVERSION_CORRECT_DOUBLE_OPERATIONS #elif defined(_M_IX86) || defined(__i386__) || defined(__i386) #if defined(_WIN32) // Windows uses a 64bit wide floating point stack. #define DOUBLE_CONVERSION_CORRECT_DOUBLE_OPERATIONS 1 #else #undef DOUBLE_CONVERSION_CORRECT_DOUBLE_OPERATIONS #endif // _WIN32 #else #error Target architecture was not detected as supported by Double-Conversion. #endif #if defined(__GNUC__) #define DOUBLE_CONVERSION_UNUSED __attribute__((unused)) #else #define DOUBLE_CONVERSION_UNUSED #endif #if defined(_WIN32) && !defined(__MINGW32__) typedef signed char int8_t; typedef unsigned char uint8_t; typedef short int16_t; // NOLINT typedef unsigned short uint16_t; // NOLINT typedef int int32_t; typedef unsigned int uint32_t; typedef __int64 int64_t; typedef unsigned __int64 uint64_t; // intptr_t and friends are defined in crtdefs.h through stdio.h. #else #include #endif typedef uint16_t uc16; #define UINT64_2PART_C(a, b) (((static_cast(a) << 32) + 0x##b##u)) #ifndef GDCV8_ARRAY_SIZE #define GDCV8_ARRAY_SIZE(a) \ ((sizeof(a) / sizeof(*(a))) / \ static_cast(!(sizeof(a) % sizeof(*(a))))) #endif #ifndef DISALLOW_COPY_AND_ASSIGN #define DISALLOW_COPY_AND_ASSIGN(TypeName) \ TypeName(const TypeName&) = delete; \ void operator=(const TypeName&) = delete #endif #ifndef DISALLOW_IMPLICIT_CONSTRUCTORS #define DISALLOW_IMPLICIT_CONSTRUCTORS(TypeName) \ TypeName() = delete; \ DISALLOW_COPY_AND_ASSIGN(TypeName) #endif namespace json_double_conversion { static const int kCharSize = sizeof( char ); template static T Max(T a, T b) { return a < b ? b : a; } template static T Min(T a, T b) { return a < b ? a : b; } inline int StrLength(const char* string) { size_t length = strlen(string); ASSERT(length == static_cast(static_cast(length))); return static_cast(length); } template class Vector { public: Vector() : start_(NULL), length_(0) {} Vector(T* data, int len) : start_(data), length_(len) { ASSERT(len == 0 || (len > 0 && data != NULL)); } Vector SubVector(int from, int to) { ASSERT(to <= length_); ASSERT(from < to); ASSERT(0 <= from); return Vector(start() + from, to - from); } int length() const { return length_; } bool is_empty() const { return length_ == 0; } T* start() const { return start_; } T& operator[](int index) const { ASSERT(0 <= index && index < length_); return start_[index]; } T& first() { return start_[0]; } T& last() { return start_[length_ - 1]; } private: T* start_; int length_; }; template inline Dest BitCast(const Source& source) { DOUBLE_CONVERSION_UNUSED typedef char VerifySizesAreEqual[sizeof(Dest) == sizeof(Source) ? 1 : -1]; Dest dest; memmove(&dest, &source, sizeof(dest)); return dest; } template inline Dest BitCast(Source* source) { return BitCast(reinterpret_cast(source)); } class Bignum { public: static const int kMaxSignificantBits = 3584; Bignum(); void AssignUInt16(uint16_t value); void AssignUInt64(uint64_t value); void AssignBignum(const Bignum& other); void AssignDecimalString(Vector value); void AssignHexString(Vector value); void AssignPowerUInt16(uint16_t base, int exponent); void AddUInt64(uint64_t operand); void AddBignum(const Bignum& other); void SubtractBignum(const Bignum& other); void Square(); void ShiftLeft(int shift_amount); void MultiplyByUInt32(uint32_t factor); void MultiplyByUInt64(uint64_t factor); void MultiplyByPowerOfTen(int exponent); void Times10() { return MultiplyByUInt32(10); } uint16_t DivideModuloIntBignum(const Bignum& other); bool ToHexString(char* buffer, int buffer_size) const; static int Compare(const Bignum& a, const Bignum& b); static bool Equal(const Bignum& a, const Bignum& b) { return Compare(a, b) == 0; } static bool LessEqual(const Bignum& a, const Bignum& b) { return Compare(a, b) <= 0; } static bool Less(const Bignum& a, const Bignum& b) { return Compare(a, b) < 0; } static int PlusCompare(const Bignum& a, const Bignum& b, const Bignum& c); static bool PlusEqual(const Bignum& a, const Bignum& b, const Bignum& c) { return PlusCompare(a, b, c) == 0; } static bool PlusLessEqual(const Bignum& a, const Bignum& b, const Bignum& c) { return PlusCompare(a, b, c) <= 0; } static bool PlusLess(const Bignum& a, const Bignum& b, const Bignum& c) { return PlusCompare(a, b, c) < 0; } private: typedef uint32_t Chunk; typedef uint64_t DoubleChunk; static const int kChunkSize = sizeof(Chunk) * 8; static const int kDoubleChunkSize = sizeof(DoubleChunk) * 8; static const int kBigitSize = 28; static const Chunk kBigitMask = (1 << kBigitSize) - 1; static const int kBigitCapacity = kMaxSignificantBits / kBigitSize; void EnsureCapacity(int size) { if (size > kBigitCapacity) { UNREACHABLE(); } } void Align(const Bignum& other); void Clamp(); bool IsClamped() const; void Zero(); void BigitsShiftLeft(int shift_amount); int BigitLength() const { return used_digits_ + exponent_; } Chunk BigitAt(int index) const; void SubtractTimes(const Bignum& other, int factor); Chunk bigits_buffer_[kBigitCapacity]; Vector bigits_; int used_digits_; int exponent_; Bignum( const Bignum & ) = delete; void operator= ( const Bignum & ) = delete; }; inline Bignum::Bignum() : bigits_(bigits_buffer_, kBigitCapacity), used_digits_(0), exponent_(0) { for (int i = 0; i < kBigitCapacity; ++i) { bigits_[i] = 0; } } template inline int BitSize(S value) { (void) value; // Mark variable as used. return 8 * sizeof(value); } inline void Bignum::AssignUInt16(uint16_t value) { ASSERT(kBigitSize >= BitSize(value)); Zero(); if (value == 0) return; EnsureCapacity(1); bigits_[0] = value; used_digits_ = 1; } inline void Bignum::AssignUInt64(uint64_t value) { const int kUInt64Size = 64; Zero(); if (value == 0) return; int needed_bigits = kUInt64Size / kBigitSize + 1; EnsureCapacity(needed_bigits); for (int i = 0; i < needed_bigits; ++i) { bigits_[i] = value & kBigitMask; value = value >> kBigitSize; } used_digits_ = needed_bigits; Clamp(); } inline void Bignum::AssignBignum(const Bignum& other) { exponent_ = other.exponent_; for (int i = 0; i < other.used_digits_; ++i) { bigits_[i] = other.bigits_[i]; } for (int i = other.used_digits_; i < used_digits_; ++i) { bigits_[i] = 0; } used_digits_ = other.used_digits_; } inline uint64_t ReadUInt64(Vector buffer, int from, int digits_to_read) { uint64_t result = 0; for (int i = from; i < from + digits_to_read; ++i) { int digit = buffer[i] - '0'; ASSERT(0 <= digit && digit <= 9); result = result * 10 + digit; } return result; } inline void Bignum::AssignDecimalString(Vector value) { const int kMaxUint64DecimalDigits = 19; Zero(); int length = value.length(); unsigned int pos = 0; while (length >= kMaxUint64DecimalDigits) { uint64_t digits = ReadUInt64(value, pos, kMaxUint64DecimalDigits); pos += kMaxUint64DecimalDigits; length -= kMaxUint64DecimalDigits; MultiplyByPowerOfTen(kMaxUint64DecimalDigits); AddUInt64(digits); } uint64_t digits = ReadUInt64(value, pos, length); MultiplyByPowerOfTen(length); AddUInt64(digits); Clamp(); } inline int HexCharValue(char c) { if ('0' <= c && c <= '9') return c - '0'; if ('a' <= c && c <= 'f') return 10 + c - 'a'; ASSERT('A' <= c && c <= 'F'); return 10 + c - 'A'; } inline void Bignum::AssignHexString(Vector value) { Zero(); int length = value.length(); int needed_bigits = length * 4 / kBigitSize + 1; EnsureCapacity(needed_bigits); int string_index = length - 1; for (int i = 0; i < needed_bigits - 1; ++i) { Chunk current_bigit = 0; for (int j = 0; j < kBigitSize / 4; j++) { current_bigit += HexCharValue(value[string_index--]) << (j * 4); } bigits_[i] = current_bigit; } used_digits_ = needed_bigits - 1; Chunk most_significant_bigit = 0; for (int j = 0; j <= string_index; ++j) { most_significant_bigit <<= 4; most_significant_bigit += HexCharValue(value[j]); } if (most_significant_bigit != 0) { bigits_[used_digits_] = most_significant_bigit; used_digits_++; } Clamp(); } inline void Bignum::AddUInt64(uint64_t operand) { if (operand == 0) return; Bignum other; other.AssignUInt64(operand); AddBignum(other); } inline void Bignum::AddBignum(const Bignum& other) { ASSERT(IsClamped()); ASSERT(other.IsClamped()); Align(other); EnsureCapacity(1 + Max(BigitLength(), other.BigitLength()) - exponent_); Chunk carry = 0; int bigit_pos = other.exponent_ - exponent_; ASSERT(bigit_pos >= 0); for (int i = 0; i < other.used_digits_; ++i) { Chunk sum = bigits_[bigit_pos] + other.bigits_[i] + carry; bigits_[bigit_pos] = sum & kBigitMask; carry = sum >> kBigitSize; bigit_pos++; } while (carry != 0) { Chunk sum = bigits_[bigit_pos] + carry; bigits_[bigit_pos] = sum & kBigitMask; carry = sum >> kBigitSize; bigit_pos++; } used_digits_ = Max(bigit_pos, used_digits_); ASSERT(IsClamped()); } inline void Bignum::SubtractBignum(const Bignum& other) { ASSERT(IsClamped()); ASSERT(other.IsClamped()); ASSERT(LessEqual(other, *this)); Align(other); int offset = other.exponent_ - exponent_; Chunk borrow = 0; int i; for (i = 0; i < other.used_digits_; ++i) { ASSERT((borrow == 0) || (borrow == 1)); Chunk difference = bigits_[i + offset] - other.bigits_[i] - borrow; bigits_[i + offset] = difference & kBigitMask; borrow = difference >> (kChunkSize - 1); } while (borrow != 0) { Chunk difference = bigits_[i + offset] - borrow; bigits_[i + offset] = difference & kBigitMask; borrow = difference >> (kChunkSize - 1); ++i; } Clamp(); } inline void Bignum::ShiftLeft(int shift_amount) { if (used_digits_ == 0) return; exponent_ += shift_amount / kBigitSize; int local_shift = shift_amount % kBigitSize; EnsureCapacity(used_digits_ + 1); BigitsShiftLeft(local_shift); } inline void Bignum::MultiplyByUInt32(uint32_t factor) { if (factor == 1) return; if (factor == 0) { Zero(); return; } if (used_digits_ == 0) return; ASSERT(kDoubleChunkSize >= kBigitSize + 32 + 1); DoubleChunk carry = 0; for (int i = 0; i < used_digits_; ++i) { DoubleChunk product = static_cast(factor) * bigits_[i] + carry; bigits_[i] = static_cast(product & kBigitMask); carry = (product >> kBigitSize); } while (carry != 0) { EnsureCapacity(used_digits_ + 1); bigits_[used_digits_] = carry & kBigitMask; used_digits_++; carry >>= kBigitSize; } } inline void Bignum::MultiplyByUInt64(uint64_t factor) { if (factor == 1) return; if (factor == 0) { Zero(); return; } ASSERT(kBigitSize < 32); uint64_t carry = 0; uint64_t low = factor & 0xFFFFFFFF; uint64_t high = factor >> 32; for (int i = 0; i < used_digits_; ++i) { uint64_t product_low = low * bigits_[i]; uint64_t product_high = high * bigits_[i]; uint64_t tmp = (carry & kBigitMask) + product_low; bigits_[i] = tmp & kBigitMask; carry = (carry >> kBigitSize) + (tmp >> kBigitSize) + (product_high << (32 - kBigitSize)); } while (carry != 0) { EnsureCapacity(used_digits_ + 1); bigits_[used_digits_] = carry & kBigitMask; used_digits_++; carry >>= kBigitSize; } } inline void Bignum::MultiplyByPowerOfTen(int exponent) { const uint64_t kFive27 = UINT64_2PART_C(0x6765c793, fa10079d); const uint16_t kFive1 = 5; const uint16_t kFive2 = kFive1 * 5; const uint16_t kFive3 = kFive2 * 5; const uint16_t kFive4 = kFive3 * 5; const uint16_t kFive5 = kFive4 * 5; const uint16_t kFive6 = kFive5 * 5; const uint32_t kFive7 = kFive6 * 5; const uint32_t kFive8 = kFive7 * 5; const uint32_t kFive9 = kFive8 * 5; const uint32_t kFive10 = kFive9 * 5; const uint32_t kFive11 = kFive10 * 5; const uint32_t kFive12 = kFive11 * 5; const uint32_t kFive13 = kFive12 * 5; const uint32_t kFive1_to_12[] = { kFive1, kFive2, kFive3, kFive4, kFive5, kFive6, kFive7, kFive8, kFive9, kFive10, kFive11, kFive12 }; ASSERT(exponent >= 0); if (exponent == 0) return; if (used_digits_ == 0) return; int remaining_exponent = exponent; while (remaining_exponent >= 27) { MultiplyByUInt64(kFive27); remaining_exponent -= 27; } while (remaining_exponent >= 13) { MultiplyByUInt32(kFive13); remaining_exponent -= 13; } if (remaining_exponent > 0) { MultiplyByUInt32(kFive1_to_12[remaining_exponent - 1]); } ShiftLeft(exponent); } inline void Bignum::Square() { ASSERT(IsClamped()); int product_length = 2 * used_digits_; EnsureCapacity(product_length); if ((1 << (2 * (kChunkSize - kBigitSize))) <= used_digits_) { UNIMPLEMENTED(); } DoubleChunk accumulator = 0; int copy_offset = used_digits_; for (int i = 0; i < used_digits_; ++i) { bigits_[copy_offset + i] = bigits_[i]; } for (int i = 0; i < used_digits_; ++i) { int bigit_index1 = i; int bigit_index2 = 0; while (bigit_index1 >= 0) { Chunk chunk1 = bigits_[copy_offset + bigit_index1]; Chunk chunk2 = bigits_[copy_offset + bigit_index2]; accumulator += static_cast(chunk1) * chunk2; bigit_index1--; bigit_index2++; } bigits_[i] = static_cast(accumulator) & kBigitMask; accumulator >>= kBigitSize; } for (int i = used_digits_; i < product_length; ++i) { int bigit_index1 = used_digits_ - 1; int bigit_index2 = i - bigit_index1; while (bigit_index2 < used_digits_) { Chunk chunk1 = bigits_[copy_offset + bigit_index1]; Chunk chunk2 = bigits_[copy_offset + bigit_index2]; accumulator += static_cast(chunk1) * chunk2; bigit_index1--; bigit_index2++; } bigits_[i] = static_cast(accumulator) & kBigitMask; accumulator >>= kBigitSize; } ASSERT(accumulator == 0); used_digits_ = product_length; exponent_ *= 2; Clamp(); } inline void Bignum::AssignPowerUInt16(uint16_t base, int power_exponent) { ASSERT(base != 0); ASSERT(power_exponent >= 0); if (power_exponent == 0) { AssignUInt16(1); return; } Zero(); int shifts = 0; while ((base & 1) == 0) { base >>= 1; shifts++; } int bit_size = 0; int tmp_base = base; while (tmp_base != 0) { tmp_base >>= 1; bit_size++; } int final_size = bit_size * power_exponent; EnsureCapacity(final_size / kBigitSize + 2); int mask = 1; while (power_exponent >= mask) mask <<= 1; mask >>= 2; uint64_t this_value = base; bool delayed_multipliciation = false; const uint64_t max_32bits = 0xFFFFFFFF; while (mask != 0 && this_value <= max_32bits) { this_value = this_value * this_value; if ((power_exponent & mask) != 0) { uint64_t base_bits_mask = ~((static_cast(1) << (64 - bit_size)) - 1); bool high_bits_zero = (this_value & base_bits_mask) == 0; if (high_bits_zero) { this_value *= base; } else { delayed_multipliciation = true; } } mask >>= 1; } AssignUInt64(this_value); if (delayed_multipliciation) { MultiplyByUInt32(base); } while (mask != 0) { Square(); if ((power_exponent & mask) != 0) { MultiplyByUInt32(base); } mask >>= 1; } ShiftLeft(shifts * power_exponent); } inline uint16_t Bignum::DivideModuloIntBignum(const Bignum& other) { ASSERT(IsClamped()); ASSERT(other.IsClamped()); ASSERT(other.used_digits_ > 0); if (BigitLength() < other.BigitLength()) { return 0; } Align(other); uint16_t result = 0; while (BigitLength() > other.BigitLength()) { ASSERT(other.bigits_[other.used_digits_ - 1] >= ((1 << kBigitSize) / 16)); ASSERT(bigits_[used_digits_ - 1] < 0x10000); result += static_cast(bigits_[used_digits_ - 1]); SubtractTimes(other, bigits_[used_digits_ - 1]); } ASSERT(BigitLength() == other.BigitLength()); Chunk this_bigit = bigits_[used_digits_ - 1]; Chunk other_bigit = other.bigits_[other.used_digits_ - 1]; if (other.used_digits_ == 1) { int quotient = this_bigit / other_bigit; bigits_[used_digits_ - 1] = this_bigit - other_bigit * quotient; ASSERT(quotient < 0x10000); result += static_cast(quotient); Clamp(); return result; } int division_estimate = this_bigit / (other_bigit + 1); ASSERT(division_estimate < 0x10000); result += static_cast(division_estimate); SubtractTimes(other, division_estimate); if (other_bigit * (division_estimate + 1) > this_bigit) { return result; } while (LessEqual(other, *this)) { SubtractBignum(other); result++; } return result; } template inline int SizeInHexChars(S number) { ASSERT(number > 0); int result = 0; while (number != 0) { number >>= 4; result++; } return result; } inline char HexCharOfValue(int value) { ASSERT(0 <= value && value <= 16); if (value < 10) return static_cast(value + '0'); return static_cast(value - 10 + 'A'); } inline bool Bignum::ToHexString(char* buffer, int buffer_size) const { ASSERT(IsClamped()); ASSERT(kBigitSize % 4 == 0); const int kHexCharsPerBigit = kBigitSize / 4; if (used_digits_ == 0) { if (buffer_size < 2) return false; buffer[0] = '0'; buffer[1] = '\0'; return true; } int needed_chars = (BigitLength() - 1) * kHexCharsPerBigit + SizeInHexChars(bigits_[used_digits_ - 1]) + 1; if (needed_chars > buffer_size) return false; int string_index = needed_chars - 1; buffer[string_index--] = '\0'; for (int i = 0; i < exponent_; ++i) { for (int j = 0; j < kHexCharsPerBigit; ++j) { buffer[string_index--] = '0'; } } for (int i = 0; i < used_digits_ - 1; ++i) { Chunk current_bigit = bigits_[i]; for (int j = 0; j < kHexCharsPerBigit; ++j) { buffer[string_index--] = HexCharOfValue(current_bigit & 0xF); current_bigit >>= 4; } } Chunk most_significant_bigit = bigits_[used_digits_ - 1]; while (most_significant_bigit != 0) { buffer[string_index--] = HexCharOfValue(most_significant_bigit & 0xF); most_significant_bigit >>= 4; } return true; } inline Bignum::Chunk Bignum::BigitAt(int index) const { if (index >= BigitLength()) return 0; if (index < exponent_) return 0; return bigits_[index - exponent_]; } inline int Bignum::Compare(const Bignum& a, const Bignum& b) { ASSERT(a.IsClamped()); ASSERT(b.IsClamped()); int bigit_length_a = a.BigitLength(); int bigit_length_b = b.BigitLength(); if (bigit_length_a < bigit_length_b) return -1; if (bigit_length_a > bigit_length_b) return +1; for (int i = bigit_length_a - 1; i >= Min(a.exponent_, b.exponent_); --i) { Chunk bigit_a = a.BigitAt(i); Chunk bigit_b = b.BigitAt(i); if (bigit_a < bigit_b) return -1; if (bigit_a > bigit_b) return +1; } return 0; } inline int Bignum::PlusCompare(const Bignum& a, const Bignum& b, const Bignum& c) { ASSERT(a.IsClamped()); ASSERT(b.IsClamped()); ASSERT(c.IsClamped()); if (a.BigitLength() < b.BigitLength()) { return PlusCompare(b, a, c); } if (a.BigitLength() + 1 < c.BigitLength()) return -1; if (a.BigitLength() > c.BigitLength()) return +1; if (a.exponent_ >= b.BigitLength() && a.BigitLength() < c.BigitLength()) { return -1; } Chunk borrow = 0; int min_exponent = Min(Min(a.exponent_, b.exponent_), c.exponent_); for (int i = c.BigitLength() - 1; i >= min_exponent; --i) { Chunk chunk_a = a.BigitAt(i); Chunk chunk_b = b.BigitAt(i); Chunk chunk_c = c.BigitAt(i); Chunk sum = chunk_a + chunk_b; if (sum > chunk_c + borrow) { return +1; } else { borrow = chunk_c + borrow - sum; if (borrow > 1) return -1; borrow <<= kBigitSize; } } if (borrow == 0) return 0; return -1; } inline void Bignum::Clamp() { while (used_digits_ > 0 && bigits_[used_digits_ - 1] == 0) { used_digits_--; } if (used_digits_ == 0) { exponent_ = 0; } } inline bool Bignum::IsClamped() const { return used_digits_ == 0 || bigits_[used_digits_ - 1] != 0; } inline void Bignum::Zero() { for (int i = 0; i < used_digits_; ++i) { bigits_[i] = 0; } used_digits_ = 0; exponent_ = 0; } inline void Bignum::Align(const Bignum& other) { if (exponent_ > other.exponent_) { int zero_digits = exponent_ - other.exponent_; EnsureCapacity(used_digits_ + zero_digits); for (int i = used_digits_ - 1; i >= 0; --i) { bigits_[i + zero_digits] = bigits_[i]; } for (int i = 0; i < zero_digits; ++i) { bigits_[i] = 0; } used_digits_ += zero_digits; exponent_ -= zero_digits; ASSERT(used_digits_ >= 0); ASSERT(exponent_ >= 0); } } inline void Bignum::BigitsShiftLeft(int shift_amount) { ASSERT(shift_amount < kBigitSize); ASSERT(shift_amount >= 0); Chunk carry = 0; for (int i = 0; i < used_digits_; ++i) { Chunk new_carry = bigits_[i] >> (kBigitSize - shift_amount); bigits_[i] = ((bigits_[i] << shift_amount) + carry) & kBigitMask; carry = new_carry; } if (carry != 0) { bigits_[used_digits_] = carry; used_digits_++; } } inline void Bignum::SubtractTimes(const Bignum& other, int factor) { ASSERT(exponent_ <= other.exponent_); if (factor < 3) { for (int i = 0; i < factor; ++i) { SubtractBignum(other); } return; } Chunk borrow = 0; int exponent_diff = other.exponent_ - exponent_; for (int i = 0; i < other.used_digits_; ++i) { DoubleChunk product = static_cast(factor) * other.bigits_[i]; DoubleChunk remove = borrow + product; Chunk difference = bigits_[i + exponent_diff] - (remove & kBigitMask); bigits_[i + exponent_diff] = difference & kBigitMask; borrow = static_cast((difference >> (kChunkSize - 1)) + (remove >> kBigitSize)); } for (int i = other.used_digits_ + exponent_diff; i < used_digits_; ++i) { if (borrow == 0) return; Chunk difference = bigits_[i] - borrow; bigits_[i] = difference & kBigitMask; borrow = difference >> (kChunkSize - 1); } Clamp(); } class DiyFp { public: static const int kSignificandSize = 64; DiyFp() : f_(0), e_(0) {} DiyFp(uint64_t significand, int exponent) : f_(significand), e_(exponent) {} void Subtract(const DiyFp& other) { ASSERT(e_ == other.e_); ASSERT(f_ >= other.f_); f_ -= other.f_; } static DiyFp Minus(const DiyFp& a, const DiyFp& b) { DiyFp result = a; result.Subtract(b); return result; } void Multiply(const DiyFp& other) { const uint64_t kM32 = 0xFFFFFFFFU; uint64_t a = f_ >> 32; uint64_t b = f_ & kM32; uint64_t c = other.f_ >> 32; uint64_t d = other.f_ & kM32; uint64_t ac = a * c; uint64_t bc = b * c; uint64_t ad = a * d; uint64_t bd = b * d; uint64_t tmp = (bd >> 32) + (ad & kM32) + (bc & kM32); tmp += 1U << 31; uint64_t result_f = ac + (ad >> 32) + (bc >> 32) + (tmp >> 32); e_ += other.e_ + 64; f_ = result_f; } static DiyFp Times(const DiyFp& a, const DiyFp& b) { DiyFp result = a; result.Multiply(b); return result; } void Normalize() { ASSERT(f_ != 0); uint64_t significand = f_; int exponent = e_; const uint64_t k10MSBits = UINT64_2PART_C(0xFFC00000, 00000000); while ((significand & k10MSBits) == 0) { significand <<= 10; exponent -= 10; } while ((significand & kUint64MSB) == 0) { significand <<= 1; exponent--; } f_ = significand; e_ = exponent; } static DiyFp Normalize(const DiyFp& a) { DiyFp result = a; result.Normalize(); return result; } uint64_t f() const { return f_; } int e() const { return e_; } void set_f(uint64_t new_value) { f_ = new_value; } void set_e(int new_value) { e_ = new_value; } private: static const uint64_t kUint64MSB = UINT64_2PART_C(0x80000000, 00000000); uint64_t f_; int e_; }; static uint64_t double_to_uint64(double d) { return BitCast(d); } static double uint64_to_double(uint64_t d64) { return BitCast(d64); } class Double { public: static const uint64_t kSignMask = UINT64_2PART_C(0x80000000, 00000000); static const uint64_t kExponentMask = UINT64_2PART_C(0x7FF00000, 00000000); static const uint64_t kSignificandMask = UINT64_2PART_C(0x000FFFFF, FFFFFFFF); static const uint64_t kHiddenBit = UINT64_2PART_C(0x00100000, 00000000); static const int kPhysicalSignificandSize = 52; static const int kSignificandSize = 53; Double() : d64_(0) {} explicit Double(double d) : d64_(double_to_uint64(d)) {} explicit Double(uint64_t d64) : d64_(d64) {} explicit Double(DiyFp diy_fp) : d64_(DiyFpToUint64(diy_fp)) {} DiyFp AsDiyFp() const { ASSERT(Sign() > 0); ASSERT(!IsSpecial()); return DiyFp(Significand(), Exponent()); } DiyFp AsNormalizedDiyFp() const { ASSERT(value() > 0.0); uint64_t f = Significand(); int e = Exponent(); while ((f & kHiddenBit) == 0) { f <<= 1; e--; } f <<= DiyFp::kSignificandSize - kSignificandSize; e -= DiyFp::kSignificandSize - kSignificandSize; return DiyFp(f, e); } uint64_t AsUint64() const { return d64_; } double NextDouble() const { if (d64_ == kInfinity) return Double(kInfinity).value(); if (Sign() < 0 && Significand() == 0) { return 0.0; } if (Sign() < 0) { return Double(d64_ - 1).value(); } else { return Double(d64_ + 1).value(); } } double PreviousDouble() const { if (d64_ == (kInfinity | kSignMask)) return -Double::Infinity(); if (Sign() < 0) { return Double(d64_ + 1).value(); } else { if (Significand() == 0) return -0.0; return Double(d64_ - 1).value(); } } int Exponent() const { if (IsDenormal()) return kDenormalExponent; uint64_t d64 = AsUint64(); int biased_e = static_cast((d64 & kExponentMask) >> kPhysicalSignificandSize); return biased_e - kExponentBias; } uint64_t Significand() const { uint64_t d64 = AsUint64(); uint64_t significand = d64 & kSignificandMask; if (!IsDenormal()) { return significand + kHiddenBit; } else { return significand; } } bool IsDenormal() const { uint64_t d64 = AsUint64(); return (d64 & kExponentMask) == 0; } bool IsSpecial() const { uint64_t d64 = AsUint64(); return (d64 & kExponentMask) == kExponentMask; } bool IsNan() const { uint64_t d64 = AsUint64(); return ((d64 & kExponentMask) == kExponentMask) && ((d64 & kSignificandMask) != 0); } bool IsInfinite() const { uint64_t d64 = AsUint64(); return ((d64 & kExponentMask) == kExponentMask) && ((d64 & kSignificandMask) == 0); } int Sign() const { uint64_t d64 = AsUint64(); return (d64 & kSignMask) == 0? 1: -1; } DiyFp UpperBoundary() const { ASSERT(Sign() > 0); return DiyFp(Significand() * 2 + 1, Exponent() - 1); } void NormalizedBoundaries(DiyFp* out_m_minus, DiyFp* out_m_plus) const { ASSERT(value() > 0.0); DiyFp v = this->AsDiyFp(); DiyFp m_plus = DiyFp::Normalize(DiyFp((v.f() << 1) + 1, v.e() - 1)); DiyFp m_minus; if (LowerBoundaryIsCloser()) { m_minus = DiyFp((v.f() << 2) - 1, v.e() - 2); } else { m_minus = DiyFp((v.f() << 1) - 1, v.e() - 1); } m_minus.set_f(m_minus.f() << (m_minus.e() - m_plus.e())); m_minus.set_e(m_plus.e()); *out_m_plus = m_plus; *out_m_minus = m_minus; } bool LowerBoundaryIsCloser() const { bool physical_significand_is_zero = ((AsUint64() & kSignificandMask) == 0); return physical_significand_is_zero && (Exponent() != kDenormalExponent); } double value() const { return uint64_to_double(d64_); } static int SignificandSizeForOrderOfMagnitude(int order) { if (order >= (kDenormalExponent + kSignificandSize)) { return kSignificandSize; } if (order <= kDenormalExponent) return 0; return order - kDenormalExponent; } static double Infinity() { return Double(kInfinity).value(); } static double NaN() { return Double(kNaN).value(); } private: static const int kExponentBias = 0x3FF + kPhysicalSignificandSize; static const int kDenormalExponent = -kExponentBias + 1; static const int kMaxExponent = 0x7FF - kExponentBias; static const uint64_t kInfinity = UINT64_2PART_C(0x7FF00000, 00000000); static const uint64_t kNaN = UINT64_2PART_C(0x7FF80000, 00000000); const uint64_t d64_; static uint64_t DiyFpToUint64(DiyFp diy_fp) { uint64_t significand = diy_fp.f(); int exponent = diy_fp.e(); while (significand > kHiddenBit + kSignificandMask) { significand >>= 1; exponent++; } if (exponent >= kMaxExponent) { return kInfinity; } if (exponent < kDenormalExponent) { return 0; } while (exponent > kDenormalExponent && (significand & kHiddenBit) == 0) { significand <<= 1; exponent--; } uint64_t biased_exponent; if (exponent == kDenormalExponent && (significand & kHiddenBit) == 0) { biased_exponent = 0; } else { biased_exponent = static_cast(exponent + kExponentBias); } return (significand & kSignificandMask) | (biased_exponent << kPhysicalSignificandSize); } DISALLOW_COPY_AND_ASSIGN(Double); }; struct PowersOfTenCache { static const int kDecimalExponentDistance = 8; static const int kMinDecimalExponent = -348; static const int kMaxDecimalExponent = 340; static void GetCachedPowerForBinaryExponentRange(int min_exponent, int max_exponent, DiyFp* power, int* decimal_exponent); static void GetCachedPowerForDecimalExponent(int requested_exponent, DiyFp* power, int* found_exponent); }; struct CachedPower { uint64_t significand; int16_t binary_exponent; int16_t decimal_exponent; }; static const CachedPower kCachedPowers[] = { {UINT64_2PART_C(0xfa8fd5a0, 081c0288), -1220, -348}, {UINT64_2PART_C(0xbaaee17f, a23ebf76), -1193, -340}, {UINT64_2PART_C(0x8b16fb20, 3055ac76), -1166, -332}, {UINT64_2PART_C(0xcf42894a, 5dce35ea), -1140, -324}, {UINT64_2PART_C(0x9a6bb0aa, 55653b2d), -1113, -316}, {UINT64_2PART_C(0xe61acf03, 3d1a45df), -1087, -308}, {UINT64_2PART_C(0xab70fe17, c79ac6ca), -1060, -300}, {UINT64_2PART_C(0xff77b1fc, bebcdc4f), -1034, -292}, {UINT64_2PART_C(0xbe5691ef, 416bd60c), -1007, -284}, {UINT64_2PART_C(0x8dd01fad, 907ffc3c), -980, -276}, {UINT64_2PART_C(0xd3515c28, 31559a83), -954, -268}, {UINT64_2PART_C(0x9d71ac8f, ada6c9b5), -927, -260}, {UINT64_2PART_C(0xea9c2277, 23ee8bcb), -901, -252}, {UINT64_2PART_C(0xaecc4991, 4078536d), -874, -244}, {UINT64_2PART_C(0x823c1279, 5db6ce57), -847, -236}, {UINT64_2PART_C(0xc2109436, 4dfb5637), -821, -228}, {UINT64_2PART_C(0x9096ea6f, 3848984f), -794, -220}, {UINT64_2PART_C(0xd77485cb, 25823ac7), -768, -212}, {UINT64_2PART_C(0xa086cfcd, 97bf97f4), -741, -204}, {UINT64_2PART_C(0xef340a98, 172aace5), -715, -196}, {UINT64_2PART_C(0xb23867fb, 2a35b28e), -688, -188}, {UINT64_2PART_C(0x84c8d4df, d2c63f3b), -661, -180}, {UINT64_2PART_C(0xc5dd4427, 1ad3cdba), -635, -172}, {UINT64_2PART_C(0x936b9fce, bb25c996), -608, -164}, {UINT64_2PART_C(0xdbac6c24, 7d62a584), -582, -156}, {UINT64_2PART_C(0xa3ab6658, 0d5fdaf6), -555, -148}, {UINT64_2PART_C(0xf3e2f893, dec3f126), -529, -140}, {UINT64_2PART_C(0xb5b5ada8, aaff80b8), -502, -132}, {UINT64_2PART_C(0x87625f05, 6c7c4a8b), -475, -124}, {UINT64_2PART_C(0xc9bcff60, 34c13053), -449, -116}, {UINT64_2PART_C(0x964e858c, 91ba2655), -422, -108}, {UINT64_2PART_C(0xdff97724, 70297ebd), -396, -100}, {UINT64_2PART_C(0xa6dfbd9f, b8e5b88f), -369, -92}, {UINT64_2PART_C(0xf8a95fcf, 88747d94), -343, -84}, {UINT64_2PART_C(0xb9447093, 8fa89bcf), -316, -76}, {UINT64_2PART_C(0x8a08f0f8, bf0f156b), -289, -68}, {UINT64_2PART_C(0xcdb02555, 653131b6), -263, -60}, {UINT64_2PART_C(0x993fe2c6, d07b7fac), -236, -52}, {UINT64_2PART_C(0xe45c10c4, 2a2b3b06), -210, -44}, {UINT64_2PART_C(0xaa242499, 697392d3), -183, -36}, {UINT64_2PART_C(0xfd87b5f2, 8300ca0e), -157, -28}, {UINT64_2PART_C(0xbce50864, 92111aeb), -130, -20}, {UINT64_2PART_C(0x8cbccc09, 6f5088cc), -103, -12}, {UINT64_2PART_C(0xd1b71758, e219652c), -77, -4}, {UINT64_2PART_C(0x9c400000, 00000000), -50, 4}, {UINT64_2PART_C(0xe8d4a510, 00000000), -24, 12}, {UINT64_2PART_C(0xad78ebc5, ac620000), 3, 20}, {UINT64_2PART_C(0x813f3978, f8940984), 30, 28}, {UINT64_2PART_C(0xc097ce7b, c90715b3), 56, 36}, {UINT64_2PART_C(0x8f7e32ce, 7bea5c70), 83, 44}, {UINT64_2PART_C(0xd5d238a4, abe98068), 109, 52}, {UINT64_2PART_C(0x9f4f2726, 179a2245), 136, 60}, {UINT64_2PART_C(0xed63a231, d4c4fb27), 162, 68}, {UINT64_2PART_C(0xb0de6538, 8cc8ada8), 189, 76}, {UINT64_2PART_C(0x83c7088e, 1aab65db), 216, 84}, {UINT64_2PART_C(0xc45d1df9, 42711d9a), 242, 92}, {UINT64_2PART_C(0x924d692c, a61be758), 269, 100}, {UINT64_2PART_C(0xda01ee64, 1a708dea), 295, 108}, {UINT64_2PART_C(0xa26da399, 9aef774a), 322, 116}, {UINT64_2PART_C(0xf209787b, b47d6b85), 348, 124}, {UINT64_2PART_C(0xb454e4a1, 79dd1877), 375, 132}, {UINT64_2PART_C(0x865b8692, 5b9bc5c2), 402, 140}, {UINT64_2PART_C(0xc83553c5, c8965d3d), 428, 148}, {UINT64_2PART_C(0x952ab45c, fa97a0b3), 455, 156}, {UINT64_2PART_C(0xde469fbd, 99a05fe3), 481, 164}, {UINT64_2PART_C(0xa59bc234, db398c25), 508, 172}, {UINT64_2PART_C(0xf6c69a72, a3989f5c), 534, 180}, {UINT64_2PART_C(0xb7dcbf53, 54e9bece), 561, 188}, {UINT64_2PART_C(0x88fcf317, f22241e2), 588, 196}, {UINT64_2PART_C(0xcc20ce9b, d35c78a5), 614, 204}, {UINT64_2PART_C(0x98165af3, 7b2153df), 641, 212}, {UINT64_2PART_C(0xe2a0b5dc, 971f303a), 667, 220}, {UINT64_2PART_C(0xa8d9d153, 5ce3b396), 694, 228}, {UINT64_2PART_C(0xfb9b7cd9, a4a7443c), 720, 236}, {UINT64_2PART_C(0xbb764c4c, a7a44410), 747, 244}, {UINT64_2PART_C(0x8bab8eef, b6409c1a), 774, 252}, {UINT64_2PART_C(0xd01fef10, a657842c), 800, 260}, {UINT64_2PART_C(0x9b10a4e5, e9913129), 827, 268}, {UINT64_2PART_C(0xe7109bfb, a19c0c9d), 853, 276}, {UINT64_2PART_C(0xac2820d9, 623bf429), 880, 284}, {UINT64_2PART_C(0x80444b5e, 7aa7cf85), 907, 292}, {UINT64_2PART_C(0xbf21e440, 03acdd2d), 933, 300}, {UINT64_2PART_C(0x8e679c2f, 5e44ff8f), 960, 308}, {UINT64_2PART_C(0xd433179d, 9c8cb841), 986, 316}, {UINT64_2PART_C(0x9e19db92, b4e31ba9), 1013, 324}, {UINT64_2PART_C(0xeb96bf6e, badf77d9), 1039, 332}, {UINT64_2PART_C(0xaf87023b, 9bf0ee6b), 1066, 340}, }; static const int kCachedPowersLength = GDCV8_ARRAY_SIZE(kCachedPowers); static const int kCachedPowersOffset = 348; static const double kD_1_LOG2_10 = 0.30102999566398114; inline void PowersOfTenCache::GetCachedPowerForBinaryExponentRange( int min_exponent, int max_exponent, DiyFp* power, int* decimal_exponent) { int kQ = DiyFp::kSignificandSize; double k = ceil((min_exponent + kQ - 1) * kD_1_LOG2_10); int foo = kCachedPowersOffset; int index = (foo + static_cast(k) - 1) / kDecimalExponentDistance + 1; ASSERT(0 <= index && index < kCachedPowersLength); CachedPower cached_power = kCachedPowers[index]; ASSERT(min_exponent <= cached_power.binary_exponent); (void) max_exponent; ASSERT(cached_power.binary_exponent <= max_exponent); *decimal_exponent = cached_power.decimal_exponent; *power = DiyFp(cached_power.significand, cached_power.binary_exponent); } inline void PowersOfTenCache::GetCachedPowerForDecimalExponent(int requested_exponent, DiyFp* power, int* found_exponent) { ASSERT(kMinDecimalExponent <= requested_exponent); ASSERT(requested_exponent < kMaxDecimalExponent + kDecimalExponentDistance); int index = (requested_exponent + kCachedPowersOffset) / kDecimalExponentDistance; CachedPower cached_power = kCachedPowers[index]; *power = DiyFp(cached_power.significand, cached_power.binary_exponent); *found_exponent = cached_power.decimal_exponent; ASSERT(*found_exponent <= requested_exponent); ASSERT(requested_exponent < *found_exponent + kDecimalExponentDistance); } static const int kMaxExactDoubleIntegerDecimalDigits = 15; static const int kMaxUint64DecimalDigits = 19; static const int kMaxDecimalPower = 309; static const int kMinDecimalPower = -324; static const uint64_t kMaxUint64 = UINT64_2PART_C(0xFFFFFFFF, FFFFFFFF); static const double exact_powers_of_ten[] = { 1.0, // 10^0 10.0, 100.0, 1000.0, 10000.0, 100000.0, 1000000.0, 10000000.0, 100000000.0, 1000000000.0, 10000000000.0, // 10^10 100000000000.0, 1000000000000.0, 10000000000000.0, 100000000000000.0, 1000000000000000.0, 10000000000000000.0, 100000000000000000.0, 1000000000000000000.0, 10000000000000000000.0, 100000000000000000000.0, // 10^20 1000000000000000000000.0, 10000000000000000000000.0 }; static const int kExactPowersOfTenSize = GDCV8_ARRAY_SIZE(exact_powers_of_ten); static const int kMaxSignificantDecimalDigits = 780; inline Vector TrimLeadingZeros(Vector buffer) { for (int i = 0; i < buffer.length(); i++) { if (buffer[i] != '0') { return buffer.SubVector(i, buffer.length()); } } return Vector(buffer.start(), 0); } inline Vector TrimTrailingZeros(Vector buffer) { for (int i = buffer.length() - 1; i >= 0; --i) { if (buffer[i] != '0') { return buffer.SubVector(0, i + 1); } } return Vector(buffer.start(), 0); } inline void CutToMaxSignificantDigits(Vector buffer, int exponent, char* significant_buffer, int* significant_exponent) { for (int i = 0; i < kMaxSignificantDecimalDigits - 1; ++i) { significant_buffer[i] = buffer[i]; } ASSERT(buffer[buffer.length() - 1] != '0'); significant_buffer[kMaxSignificantDecimalDigits - 1] = '1'; *significant_exponent = exponent + (buffer.length() - kMaxSignificantDecimalDigits); } inline void TrimAndCut(Vector buffer, int exponent, char* buffer_copy_space, int space_size, Vector* trimmed, int* updated_exponent) { Vector right_trimmed = TrimTrailingZeros(buffer); exponent -= right_trimmed.length(); if (right_trimmed.length() > kMaxSignificantDecimalDigits) { (void) space_size; ASSERT(space_size >= kMaxSignificantDecimalDigits); CutToMaxSignificantDigits(right_trimmed, exponent, buffer_copy_space, updated_exponent); *trimmed = Vector(buffer_copy_space, kMaxSignificantDecimalDigits); } else { *trimmed = right_trimmed; *updated_exponent = exponent; } } inline uint64_t ReadUint64(Vector buffer, int* number_of_read_digits) { uint64_t result = 0; int i = 0; while (i < buffer.length() && result <= (kMaxUint64 / 10 - 1)) { int digit = buffer[i++] - '0'; ASSERT(0 <= digit && digit <= 9); result = 10 * result + digit; } *number_of_read_digits = i; return result; } inline void ReadDiyFp(Vector buffer, DiyFp* result, int* remaining_decimals) { int read_digits; uint64_t significand = ReadUint64(buffer, &read_digits); if (buffer.length() == read_digits) { *result = DiyFp(significand, 0); *remaining_decimals = 0; } else { if (buffer[read_digits] >= '5') { significand++; } int exponent = 0; *result = DiyFp(significand, exponent); *remaining_decimals = buffer.length() - read_digits; } } inline bool DoubleStrtod(Vector trimmed, int exponent, double* result) { #if !defined(DOUBLE_CONVERSION_CORRECT_DOUBLE_OPERATIONS) // On x86 the floating-point stack can be 64 or 80 bits wide. If it is // 80 bits wide (as is the case on Linux) then double-rounding occurs and the // result is not accurate. // We know that Windows32 uses 64 bits and is therefore accurate. // Note that the ARM simulator is compiled for 32bits. It therefore exhibits // the same problem. return false; #endif if (trimmed.length() <= kMaxExactDoubleIntegerDecimalDigits) { int read_digits; if (exponent < 0 && -exponent < kExactPowersOfTenSize) { *result = static_cast(ReadUint64(trimmed, &read_digits)); ASSERT(read_digits == trimmed.length()); *result /= exact_powers_of_ten[-exponent]; return true; } if (0 <= exponent && exponent < kExactPowersOfTenSize) { *result = static_cast(ReadUint64(trimmed, &read_digits)); ASSERT(read_digits == trimmed.length()); *result *= exact_powers_of_ten[exponent]; return true; } int remaining_digits = kMaxExactDoubleIntegerDecimalDigits - trimmed.length(); if ((0 <= exponent) && (exponent - remaining_digits < kExactPowersOfTenSize)) { *result = static_cast(ReadUint64(trimmed, &read_digits)); ASSERT(read_digits == trimmed.length()); *result *= exact_powers_of_ten[remaining_digits]; *result *= exact_powers_of_ten[exponent - remaining_digits]; return true; } } return false; } inline DiyFp AdjustmentPowerOfTen(int exponent) { ASSERT(0 < exponent); ASSERT(exponent < PowersOfTenCache::kDecimalExponentDistance); ASSERT(PowersOfTenCache::kDecimalExponentDistance == 8); switch (exponent) { case 1: return DiyFp(UINT64_2PART_C(0xa0000000, 00000000), -60); case 2: return DiyFp(UINT64_2PART_C(0xc8000000, 00000000), -57); case 3: return DiyFp(UINT64_2PART_C(0xfa000000, 00000000), -54); case 4: return DiyFp(UINT64_2PART_C(0x9c400000, 00000000), -50); case 5: return DiyFp(UINT64_2PART_C(0xc3500000, 00000000), -47); case 6: return DiyFp(UINT64_2PART_C(0xf4240000, 00000000), -44); case 7: return DiyFp(UINT64_2PART_C(0x98968000, 00000000), -40); default: UNREACHABLE(); } } inline bool DiyFpStrtod(Vector buffer, int exponent, double* result) { DiyFp input; int remaining_decimals; ReadDiyFp(buffer, &input, &remaining_decimals); const int kDenominatorLog = 3; const int kDenominator = 1 << kDenominatorLog; exponent += remaining_decimals; uint64_t error = (remaining_decimals == 0 ? 0 : kDenominator / 2); int old_e = input.e(); input.Normalize(); error <<= old_e - input.e(); ASSERT(exponent <= PowersOfTenCache::kMaxDecimalExponent); if (exponent < PowersOfTenCache::kMinDecimalExponent) { *result = 0.0; return true; } DiyFp cached_power; int cached_decimal_exponent; PowersOfTenCache::GetCachedPowerForDecimalExponent(exponent, &cached_power, &cached_decimal_exponent); if (cached_decimal_exponent != exponent) { int adjustment_exponent = exponent - cached_decimal_exponent; DiyFp adjustment_power = AdjustmentPowerOfTen(adjustment_exponent); input.Multiply(adjustment_power); if (kMaxUint64DecimalDigits - buffer.length() >= adjustment_exponent) { ASSERT(DiyFp::kSignificandSize == 64); } else { error += kDenominator / 2; } } input.Multiply(cached_power); int error_b = kDenominator / 2; int error_ab = (error == 0 ? 0 : 1); int fixed_error = kDenominator / 2; error += error_b + error_ab + fixed_error; old_e = input.e(); input.Normalize(); error <<= old_e - input.e(); int order_of_magnitude = DiyFp::kSignificandSize + input.e(); int effective_significand_size = Double::SignificandSizeForOrderOfMagnitude(order_of_magnitude); int precision_digits_count = DiyFp::kSignificandSize - effective_significand_size; if (precision_digits_count + kDenominatorLog >= DiyFp::kSignificandSize) { int shift_amount = (precision_digits_count + kDenominatorLog) - DiyFp::kSignificandSize + 1; input.set_f(input.f() >> shift_amount); input.set_e(input.e() + shift_amount); error = (error >> shift_amount) + 1 + kDenominator; precision_digits_count -= shift_amount; } ASSERT(DiyFp::kSignificandSize == 64); ASSERT(precision_digits_count < 64); uint64_t one64 = 1; uint64_t precision_bits_mask = (one64 << precision_digits_count) - 1; uint64_t precision_bits = input.f() & precision_bits_mask; uint64_t half_way = one64 << (precision_digits_count - 1); precision_bits *= kDenominator; half_way *= kDenominator; DiyFp rounded_input(input.f() >> precision_digits_count, input.e() + precision_digits_count); if (precision_bits >= half_way + error) { rounded_input.set_f(rounded_input.f() + 1); } *result = Double(rounded_input).value(); if (half_way - error < precision_bits && precision_bits < half_way + error) { return false; } else { return true; } } inline int CompareBufferWithDiyFp(Vector buffer, int exponent, DiyFp diy_fp) { ASSERT(buffer.length() + exponent <= kMaxDecimalPower + 1); ASSERT(buffer.length() + exponent > kMinDecimalPower); ASSERT(buffer.length() <= kMaxSignificantDecimalDigits); ASSERT(((kMaxDecimalPower + 1) * 333 / 100) < Bignum::kMaxSignificantBits); Bignum buffer_bignum; Bignum diy_fp_bignum; buffer_bignum.AssignDecimalString(buffer); diy_fp_bignum.AssignUInt64(diy_fp.f()); if (exponent >= 0) { buffer_bignum.MultiplyByPowerOfTen(exponent); } else { diy_fp_bignum.MultiplyByPowerOfTen(-exponent); } if (diy_fp.e() > 0) { diy_fp_bignum.ShiftLeft(diy_fp.e()); } else { buffer_bignum.ShiftLeft(-diy_fp.e()); } return Bignum::Compare(buffer_bignum, diy_fp_bignum); } inline bool ComputeGuess(Vector trimmed, int exponent, double* guess) { if (trimmed.length() == 0) { *guess = 0.0; return true; } if (exponent + trimmed.length() - 1 >= kMaxDecimalPower) { *guess = Double::Infinity(); return true; } if (exponent + trimmed.length() <= kMinDecimalPower) { *guess = 0.0; return true; } if (DoubleStrtod(trimmed, exponent, guess) || DiyFpStrtod(trimmed, exponent, guess)) { return true; } if (*guess == Double::Infinity()) { return true; } return false; } inline double Strtod( Vector< const char > buffer, int exponent ) { double guess; if (ComputeGuess(buffer, exponent, &guess)) { return guess; } DiyFp upper_boundary = Double(guess).UpperBoundary(); int comparison = CompareBufferWithDiyFp(buffer, exponent, upper_boundary); if (comparison < 0) { return guess; } else if (comparison > 0) { return Double(guess).NextDouble(); } else if ((Double(guess).Significand() & 1) == 0) { return guess; } else { return Double(guess).NextDouble(); } } namespace { const int kBase10MaximalLength = 17; const int kMaxExponentialDigits = 120; const int kDecimalRepCapacity = kMaxExponentialDigits + 2; const int kFastDtoaMaximalLength = 17; const int kMinimalTargetExponent = -60; const int kMaximalTargetExponent = -32; const unsigned int kSmallPowersOfTen[] = {0, 1, 10, 100, 1000, 10000, 100000, 1000000, 10000000, 100000000, 1000000000}; } // inline void BiggestPowerTen(uint32_t number, int number_bits, uint32_t* power, int* exponent_plus_one) { ASSERT(number < (1u << (number_bits + 1))); int exponent_plus_one_guess = ((number_bits + 1) * 1233 >> 12); exponent_plus_one_guess++; if (number < kSmallPowersOfTen[exponent_plus_one_guess]) { exponent_plus_one_guess--; } *power = kSmallPowersOfTen[exponent_plus_one_guess]; *exponent_plus_one = exponent_plus_one_guess; } inline bool RoundWeed(Vector buffer, int length, uint64_t distance_too_high_w, uint64_t unsafe_interval, uint64_t rest, uint64_t ten_kappa, uint64_t unit) { uint64_t small_distance = distance_too_high_w - unit; uint64_t big_distance = distance_too_high_w + unit; ASSERT(rest <= unsafe_interval); while (rest < small_distance && unsafe_interval - rest >= ten_kappa && (rest + ten_kappa < small_distance || small_distance - rest >= rest + ten_kappa - small_distance)) { buffer[length - 1]--; rest += ten_kappa; } if (rest < big_distance && unsafe_interval - rest >= ten_kappa && (rest + ten_kappa < big_distance || big_distance - rest > rest + ten_kappa - big_distance)) { return false; } return (2 * unit <= rest) && (rest <= unsafe_interval - 4 * unit); } inline bool DigitGen(DiyFp low, DiyFp w, DiyFp high, Vector buffer, int* length, int* kappa) { ASSERT(low.e() == w.e() && w.e() == high.e()); ASSERT(low.f() + 1 <= high.f() - 1); ASSERT(kMinimalTargetExponent <= w.e() && w.e() <= kMaximalTargetExponent); uint64_t unit = 1; DiyFp too_low = DiyFp(low.f() - unit, low.e()); DiyFp too_high = DiyFp(high.f() + unit, high.e()); DiyFp unsafe_interval = DiyFp::Minus(too_high, too_low); DiyFp one = DiyFp(static_cast(1) << -w.e(), w.e()); uint32_t integrals = static_cast(too_high.f() >> -one.e()); uint64_t fractionals = too_high.f() & (one.f() - 1); uint32_t divisor; int divisor_exponent_plus_one; BiggestPowerTen(integrals, DiyFp::kSignificandSize - (-one.e()), &divisor, &divisor_exponent_plus_one); *kappa = divisor_exponent_plus_one; *length = 0; while (*kappa > 0) { int digit = integrals / divisor; ASSERT(digit <= 9); buffer[*length] = static_cast('0' + digit); (*length)++; integrals %= divisor; (*kappa)--; uint64_t rest = (static_cast(integrals) << -one.e()) + fractionals; if (rest < unsafe_interval.f()) { return RoundWeed(buffer, *length, DiyFp::Minus(too_high, w).f(), unsafe_interval.f(), rest, static_cast(divisor) << -one.e(), unit); } divisor /= 10; } ASSERT(one.e() >= -60); ASSERT(fractionals < one.f()); ASSERT(UINT64_2PART_C(0xFFFFFFFF, FFFFFFFF) / 10 >= one.f()); for (;;) { fractionals *= 10; unit *= 10; unsafe_interval.set_f(unsafe_interval.f() * 10); int digit = static_cast(fractionals >> -one.e()); ASSERT(digit <= 9); buffer[*length] = static_cast('0' + digit); (*length)++; fractionals &= one.f() - 1; (*kappa)--; if (fractionals < unsafe_interval.f()) { return RoundWeed(buffer, *length, DiyFp::Minus(too_high, w).f() * unit, unsafe_interval.f(), fractionals, one.f(), unit); } } } inline bool Grisu3( const double v, Vector buffer, int * length, int * decimal_exponent ) { DiyFp w = Double(v).AsNormalizedDiyFp(); DiyFp boundary_minus, boundary_plus; Double(v).NormalizedBoundaries(&boundary_minus, &boundary_plus); ASSERT(boundary_plus.e() == w.e()); DiyFp ten_mk; int mk; int ten_mk_minimal_binary_exponent = kMinimalTargetExponent - (w.e() + DiyFp::kSignificandSize); int ten_mk_maximal_binary_exponent = kMaximalTargetExponent - (w.e() + DiyFp::kSignificandSize); PowersOfTenCache::GetCachedPowerForBinaryExponentRange(ten_mk_minimal_binary_exponent, ten_mk_maximal_binary_exponent, &ten_mk, &mk); ASSERT((kMinimalTargetExponent <= w.e() + ten_mk.e() + DiyFp::kSignificandSize) && (kMaximalTargetExponent >= w.e() + ten_mk.e() + DiyFp::kSignificandSize)); DiyFp scaled_w = DiyFp::Times(w, ten_mk); ASSERT(scaled_w.e() == boundary_plus.e() + ten_mk.e() + DiyFp::kSignificandSize); DiyFp scaled_boundary_minus = DiyFp::Times(boundary_minus, ten_mk); DiyFp scaled_boundary_plus = DiyFp::Times(boundary_plus, ten_mk); int kappa; bool result = DigitGen(scaled_boundary_minus, scaled_w, scaled_boundary_plus, buffer, length, &kappa); *decimal_exponent = -mk + kappa; return result; } inline bool FastDtoa( const double v, Vector< char > buffer, int * length, int * decimal_point ) { int decimal_exponent = 0; if ( Grisu3(v, buffer, length, &decimal_exponent) ) { *decimal_point = *length + decimal_exponent; buffer[*length] = '\0'; return true; } return false; } static int NormalizedExponent(uint64_t significand, int exponent) { ASSERT(significand != 0); while ((significand & Double::kHiddenBit) == 0) { significand = significand << 1; exponent = exponent - 1; } return exponent; } inline int EstimatePower(int exponent) { const double k1Log10 = 0.30102999566398114; const int kSignificandSize = Double::kSignificandSize; double estimate = ceil((exponent + kSignificandSize - 1) * k1Log10 - 1e-10); return static_cast(estimate); } inline void InitialScaledStartValuesPositiveExponent(uint64_t significand, int exponent, int estimated_power, bool need_boundary_deltas, Bignum* numerator, Bignum* denominator, Bignum* delta_minus, Bignum* delta_plus) { ASSERT(estimated_power >= 0); numerator->AssignUInt64(significand); numerator->ShiftLeft(exponent); denominator->AssignPowerUInt16(10, estimated_power); if (need_boundary_deltas) { denominator->ShiftLeft(1); numerator->ShiftLeft(1); delta_plus->AssignUInt16(1); delta_plus->ShiftLeft(exponent); delta_minus->AssignUInt16(1); delta_minus->ShiftLeft(exponent); } } inline void InitialScaledStartValuesNegativeExponentPositivePower( uint64_t significand, int exponent, int estimated_power, bool need_boundary_deltas, Bignum* numerator, Bignum* denominator, Bignum* delta_minus, Bignum* delta_plus) { numerator->AssignUInt64(significand); denominator->AssignPowerUInt16(10, estimated_power); denominator->ShiftLeft(-exponent); if (need_boundary_deltas) { denominator->ShiftLeft(1); numerator->ShiftLeft(1); delta_plus->AssignUInt16(1); delta_minus->AssignUInt16(1); } } inline void InitialScaledStartValuesNegativeExponentNegativePower( uint64_t significand, int exponent, int estimated_power, bool need_boundary_deltas, Bignum* numerator, Bignum* denominator, Bignum* delta_minus, Bignum* delta_plus) { Bignum* power_ten = numerator; power_ten->AssignPowerUInt16(10, -estimated_power); if (need_boundary_deltas) { delta_plus->AssignBignum(*power_ten); delta_minus->AssignBignum(*power_ten); } ASSERT(numerator == power_ten); numerator->MultiplyByUInt64(significand); denominator->AssignUInt16(1); denominator->ShiftLeft(-exponent); if (need_boundary_deltas) { numerator->ShiftLeft(1); denominator->ShiftLeft(1); } } inline void InitialScaledStartValues(uint64_t significand, int exponent, bool lower_boundary_is_closer, int estimated_power, bool need_boundary_deltas, Bignum* numerator, Bignum* denominator, Bignum* delta_minus, Bignum* delta_plus) { if (exponent >= 0) { InitialScaledStartValuesPositiveExponent( significand, exponent, estimated_power, need_boundary_deltas, numerator, denominator, delta_minus, delta_plus); } else if (estimated_power >= 0) { InitialScaledStartValuesNegativeExponentPositivePower( significand, exponent, estimated_power, need_boundary_deltas, numerator, denominator, delta_minus, delta_plus); } else { InitialScaledStartValuesNegativeExponentNegativePower( significand, exponent, estimated_power, need_boundary_deltas, numerator, denominator, delta_minus, delta_plus); } if (need_boundary_deltas && lower_boundary_is_closer) { denominator->ShiftLeft(1); numerator->ShiftLeft(1); delta_plus->ShiftLeft(1); } } inline void GenerateShortestDigits(Bignum* numerator, Bignum* denominator, Bignum* delta_minus, Bignum* delta_plus, bool is_even, Vector buffer, int* length); inline void FixupMultiply10(int estimated_power, bool is_even, int* decimal_point, Bignum* numerator, Bignum* denominator, Bignum* delta_minus, Bignum* delta_plus) { bool in_range; if (is_even) { in_range = Bignum::PlusCompare(*numerator, *delta_plus, *denominator) >= 0; } else { in_range = Bignum::PlusCompare(*numerator, *delta_plus, *denominator) > 0; } if (in_range) { *decimal_point = estimated_power + 1; } else { *decimal_point = estimated_power; numerator->Times10(); if (Bignum::Equal(*delta_minus, *delta_plus)) { delta_minus->Times10(); delta_plus->AssignBignum(*delta_minus); } else { delta_minus->Times10(); delta_plus->Times10(); } } } inline void BignumDtoa(const double v, Vector buffer, int* length, int* decimal_point) { ASSERT(v > 0); ASSERT(!Double(v).IsSpecial()); uint64_t significand; int exponent; bool lower_boundary_is_closer; significand = Double(v).Significand(); exponent = Double(v).Exponent(); lower_boundary_is_closer = Double(v).LowerBoundaryIsCloser(); const bool need_boundary_deltas = true; bool is_even = (significand & 1) == 0; int normalized_exponent = NormalizedExponent(significand, exponent); int estimated_power = EstimatePower(normalized_exponent); Bignum numerator; Bignum denominator; Bignum delta_minus; Bignum delta_plus; ASSERT(Bignum::kMaxSignificantBits >= 324*4); InitialScaledStartValues(significand, exponent, lower_boundary_is_closer, estimated_power, need_boundary_deltas, &numerator, &denominator, &delta_minus, &delta_plus); FixupMultiply10(estimated_power, is_even, decimal_point, &numerator, &denominator, &delta_minus, &delta_plus); GenerateShortestDigits(&numerator, &denominator, &delta_minus, &delta_plus, is_even, buffer, length); buffer[*length] = '\0'; } inline void GenerateShortestDigits(Bignum* numerator, Bignum* denominator, Bignum* delta_minus, Bignum* delta_plus, bool is_even, Vector buffer, int* length) { if (Bignum::Equal(*delta_minus, *delta_plus)) { delta_plus = delta_minus; } *length = 0; for (;;) { uint16_t digit; digit = numerator->DivideModuloIntBignum(*denominator); ASSERT(digit <= 9); buffer[(*length)++] = static_cast(digit + '0'); bool in_delta_room_minus; bool in_delta_room_plus; if (is_even) { in_delta_room_minus = Bignum::LessEqual(*numerator, *delta_minus); } else { in_delta_room_minus = Bignum::Less(*numerator, *delta_minus); } if (is_even) { in_delta_room_plus = Bignum::PlusCompare(*numerator, *delta_plus, *denominator) >= 0; } else { in_delta_room_plus = Bignum::PlusCompare(*numerator, *delta_plus, *denominator) > 0; } if (!in_delta_room_minus && !in_delta_room_plus) { numerator->Times10(); delta_minus->Times10(); if (delta_minus != delta_plus) { delta_plus->Times10(); } } else if (in_delta_room_minus && in_delta_room_plus) { int compare = Bignum::PlusCompare(*numerator, *numerator, *denominator); if (compare < 0) { } else if (compare > 0) { ASSERT(buffer[(*length) - 1] != '9'); buffer[(*length) - 1]++; } else { if ((buffer[(*length) - 1] - '0') % 2 == 0) { } else { ASSERT(buffer[(*length) - 1] != '9'); buffer[(*length) - 1]++; } } return; } else if (in_delta_room_minus) { return; } else { ASSERT(buffer[(*length) -1] != '9'); buffer[(*length) - 1]++; return; } } } inline bool DoubleToAscii( double v, char * buffer, int buffer_length, std::ostream & oss, int * length, int * point ) { if ( Double( v ).Sign() < 0 ) { oss << '-'; v = -v; } if ( v == 0.0 ) { oss << "0.0"; return true; } Vector< char > vector( buffer, buffer_length ); if ( ! FastDtoa(v, vector, length, point) ) { BignumDtoa( v, vector, length, point ); vector[ * length ] = '\0'; } return false; } inline void CreateDecimalRepresentation(const char* decimal_digits, int length, int decimal_point, int digits_after_point, std::ostream & oss) { if (decimal_point <= 0) { oss << '0'; if (digits_after_point > 0) { oss << '.'; for ( int i = 0; i < -decimal_point; ++i ) { oss << '0'; } ASSERT(length <= digits_after_point - (-decimal_point)); oss.write( decimal_digits, length ); int remaining_digits = digits_after_point - (-decimal_point) - length; for ( int i = 0; i < remaining_digits; ++i ) { oss << '0'; } } } else if (decimal_point >= length) { oss.write( decimal_digits, length ); for ( int i = 0; i < decimal_point - length; ++i ) { oss << '0'; } if (digits_after_point > 0) { oss << '.'; for ( int i = 0; i < digits_after_point; ++i ) { oss << '0'; } } } else { ASSERT(digits_after_point > 0); oss.write( decimal_digits, decimal_point ); oss << '.'; ASSERT(length - decimal_point <= digits_after_point); oss.write( decimal_digits + decimal_point, length - decimal_point ); int remaining_digits = digits_after_point - (length - decimal_point); for ( int i = 0; i < remaining_digits; ++i ) { oss << '0'; } } if (digits_after_point == 0) { oss << '.'; oss << '0'; } } inline void CreateExponentialRepresentation(const char* decimal_digits, int length, int exponent, std::ostream & oss) { ASSERT(length != 0); oss << decimal_digits[ 0 ]; if (length != 1) { oss << '.'; oss.write( decimal_digits + 1, length - 1 ); } oss << 'e'; if (exponent < 0) { oss << '-'; exponent = -exponent; } else { // oss << '+'; } if (exponent == 0) { oss << '0'; return; } oss << exponent; } inline void Dtostr( std::ostream & oss, const double value ) { int decimal_point; const int kDecimalRepCapacity = kBase10MaximalLength + 1; // Plus 1 is '\0'. char decimal_rep[ kDecimalRepCapacity ]; int decimal_rep_length; if ( ! DoubleToAscii(value, decimal_rep, kDecimalRepCapacity, oss, &decimal_rep_length, &decimal_point) ) { const int exponent = decimal_point - 1; if ((-6 <= exponent) && (exponent < 21)) { CreateDecimalRepresentation(decimal_rep, decimal_rep_length, decimal_point, Max(0, decimal_rep_length - decimal_point), oss); } else { CreateExponentialRepresentation(decimal_rep, decimal_rep_length, exponent, oss); } } } } // json_double_conversion #endif