Start Counter Attenuation Corrections

Mahmoud Kamel
Tracks selection and applied Cuts

• Get a quality charged track with the following cuts:
 • Number of Hits per track ≥ 14
 • Track_FOM $\geq 2.69 \times 10^{-3}$
 • $|\text{vertex}_z - \text{target center}| \leq 15$ cm
 • Radial cut < 1 cm

• Define t_0 as the time based track time

• Loop over the ADC digihit object and get the hit time, sector, and pulse integral corrected for pedestal.

• Plot the time difference between the hit time and t_0.
Timing Cut

- $0 \leq t-t_0 < 4 \text{ ns}$

250K events of run30279

<table>
<thead>
<tr>
<th>h_pulse_time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entries</td>
</tr>
<tr>
<td>Mean</td>
</tr>
<tr>
<td>Std Dev</td>
</tr>
</tbody>
</table>

Counts

- $t-t_0$

Graph showing the distribution of $t-t_0$ with counts on the y-axis and time (in ns) on the x-axis.
Track sector is the same as hit sector.
MPV of PCPI Vs Z

Starting from $z = 65$ cm, divide each start counter geometrical section into two intervals.

Fit the peak using vavilov function (The fit range adjusted manually)
To do list

• Run the plugin for 1 full run.

• Get the MPV vs Z for each individual paddle.

• Apply the attenuation corrections and compare dEdx before and after corrections.

• Create the calibration figures for the NIM paper.