Start Counter Attenuation Update

Mahmoud Kamel

Jefferson Lab

Proton-Pion Separation comparison (16 files of run 30279)

No Attenuation Correction

Attenuation Correction using bench data

Attenuation Correction using beam data??? (first set of constants)

Pulse integral/dx Plots for paddle 15 using several runs

Each paddle is divided into 12 intervals along z starting from $z=55.8 \mathrm{~cm}$. Each interval is about 3.5 cm in length.

Fit the empirical function $f(x)=P_{3}\left(e^{-p 0(x-M e a n)}\right)\left(1+\tanh \left(p_{2}(x-M e a n)\right)\right)$ to the data

Pulse Integral divided by path length Channel 15 Section 4

Pulse Integral divided by path length Channel 15 Section 5

Pulse integral/dx Plots for paddle 15

Last 6 intervals

Pulse Integral divided by path length Channel 15 Section 9

MPV of PCPI/dx Vs Z

Fit exponential function to get the attenuation constants for each paddle (paddle 15 is an examople), $\mathrm{dE} / \mathrm{dx}$ after correction is shown.

MPV of PCPI/dx Vs Z

paddles $10,13,25$, and 29 are not problems any more

Paddle 13

Paddle 29

Jefferson Lab ${ }^{6}$

My Local CCDB Constants

As double	Bs double	An double	Bn double	Cn double	Zc double	GM double
6999.70055	-0.01247	21.82650	0.10178	2989.80813	39.89598	1.07766
7430.47510	-0.01090	50.44675	0.09130	2947.73319	39.61658	1.14398
7257.66807	-0.01045	23.77085	0.10454	3297.21174	39.64471	1.11738
6850.45291	-0.01036	4.97718	0.12979	3818.10286	38.79044	1.05468
7306.38249	-0.01374	12.03450	0.11275	3288.17155	39.06053	1.12488
6569.43955	-0.01237	5.44954	0.12441	3349.81866	39.05571	1.01142
6308.86060	-0.00844	10.26812	0.11525	3586.07650	39.23363	0.97130
6297.58801	-0.00903	17.59390	0.10592	3171.42318	39.99905	0.96957
6044.22527	-0.00930	15.47619	0.10677	3097.27522	39.74884	0.93056
6150.12298	-0.00740	39.78100	0.09232	2911.30949	40.35323	0.94686
6722.76151	-0.00891	14.68749	0.10817	3608.31562	39.92179	1.03503
6494.00997	-0.00695	4.89424	0.12941	4079.74299	39.80289	0.99981
6185.60629	-0.00666	34.93726	0.09249	3419.80553	39.41603	0.95233
6424.27314	-0.00639	27.01988	0.09879	3596.31253	39.84642	0.98907
6495.26276	-0.00718	41.25926	0.09129	3224.41108	40.32259	1.00000
5892.10924	-0.00646	8.17330	0.11652	3709.23489	39.82730	0.90714
6128.56818	-0.00900	11.03781	0.10983	3392.66943	39.92169	0.94354
7033.03146	-0.00611	23.00749	0.10204	4109.49406	40.20336	1.08279
6051.66782	-0.00535	22.34991	0.10193	3427.60508	40.84354	0.93170
5861.48804	-0.00817	15.90258	0.10572	3136.29473	39.99892	0.90243
6285.81954	-0.00971	22.68157	0.09806	3112.67237	40.02146	0.96775
6336.70231	-0.00828	8.94759	0.11763	3572.48658	39.93233	0.97559
6862.37818	-0.00953	20.28097	0.10525	3287.25686	40.18055	1.05652
7321.92169	-0.01008	55.34815	0.08865	2922.48407	40.22813	1.12727
7286.73660	-0.01256	31.01377	0.09764	2889.52976	39.89186	1.12185
7272.40389	-0.01062	15.73442	0.10986	3587.32189	39.43225	1.11965
7514.65356	-0.01215	19.83125	0.10655	3241.37747	39.86766	1.15694
7134.51530	-0.01431	40.36033	0.09058	2554.25987	39.79079	1.09842
6761.94068	-0.00885	139.44241	0.07469	1841.60395	40.54891	1.04106
6628.51663	-0.01266	8.74252	0.11669	3217.92228	38.99916	1.02052

