### ρ Meson Spin-Density Matrix Elements $γ p \rightarrow ρ(770)p$

**Alexander Austregesilo** 

Amplitude Analysis WG Meeting October 5, 2020







 Full angular distribution of vector meson production and decay is described by spin-density matrix elements \(\rho\_{ii}^k\)

Linear beam polarization provides access to nine linearly independent SDMEs

• Intensity *W* is expressed as function of angles  $\cos \vartheta$ ,  $\varphi$ ,  $\Phi$  and degree of polarization *P*<sub> $\gamma$ </sub>



$$W(\cos\vartheta,\varphi,\Phi) = W^{0}(\cos\vartheta,\varphi) - P_{\gamma}\cos(2\Phi)W^{1}(\cos\vartheta,\varphi) - P_{\gamma}\sin(2\Phi)W^{2}(\cos\vartheta,\varphi)$$

$$\begin{split} W^{0}(\cos\vartheta,\varphi) &= \frac{3}{4\pi} \left( \frac{1}{2} (1-\rho_{00}^{0}) + \frac{1}{2} (3\rho_{00}^{0}-1) \cos^{2}\vartheta - \sqrt{2} \operatorname{Re}\rho_{10}^{0} \sin 2\vartheta \cos\varphi - \rho_{1-1}^{0} \sin^{2}\vartheta \cos 2\varphi \right) \\ W^{1}(\cos\vartheta,\varphi) &= \frac{3}{4\pi} \left( \rho_{11}^{1} \sin^{2}\vartheta + \rho_{00}^{1} \cos^{2}\vartheta - \sqrt{2} \operatorname{Re}\rho_{10}^{1} \sin 2\vartheta \cos\varphi - \rho_{1-1}^{1} \sin^{2}\vartheta \cos 2\varphi \right) \\ W^{2}(\cos\vartheta,\varphi) &= \frac{3}{4\pi} \left( \sqrt{2} \operatorname{Im}\rho_{10}^{2} \sin 2\vartheta \sin\varphi + \operatorname{Im}\rho_{1-1}^{2} \sin^{2}\vartheta \sin 2\varphi \right) \end{split}$$

Schilling et al. [Nucl. Phy. B, 15 (1970) 397]

### **Extraction of SDMEs**



$$W(\cos\vartheta,\varphi,\Phi) = W^{0}(\cos\vartheta,\varphi) - P_{\gamma}\cos(2\Phi)W^{1}(\cos\vartheta,\varphi) - P_{\gamma}\sin(2\Phi)W^{2}(\cos\vartheta,\varphi)$$

Measured Intensity  $I(\Omega) \propto W(\cos \vartheta, \varphi, \Phi)$ 

Extended Maximum-Likelihood Fit

$$\ln L = \underbrace{\sum_{i=1}^{N} \ln I(\Omega_i)}_{\text{Signal Events}} - \underbrace{\sum_{j=1}^{M} \ln I(\Omega_j)}_{\text{Background}} - \underbrace{\int d\Omega I(\Omega) \eta(\Omega)}_{\text{Normalization Integral}}$$

Maximize by choosing SDMEs such that the intensity fits the observed N events

- Accidental background subtracted in likelihood
- Normalization integral evaluated by a phase-space Monte Carlo sample with the acceptance  $\eta(\Omega) = 0/1$

### Problem Presented in May $\gamma p \rightarrow \rho(770)p$





**EXERCISE** A. Austregesilo (aaustreg@jlab.org) —  $\rho$  Meson SDMEs

# Kinematic Fit $\gamma p \rightarrow \rho(770)p$





# No Kinematic Fit $\gamma p \rightarrow \rho(770)p$





**EXAMPLE 1** A. Austregesilo (aaustreg@jlab.org) —  $\rho$  Meson SDMEs

#### Pull Distributions As a function of $\phi$





### Next Steps



#### Summary

- Modify detector positions in MC to reproduce effect in simulation (Simon)
- Study tracking bias in more detail to understand the source of the problem