

Extraction of polarized moments for generated $(p\eta'\pi^0)$ data with GlueX acceptance

Florida International University 2020

Mariana Khachatryan

Generated 5*10⁶ $(p\eta'\pi^0)$ events with AmpTools

Generated amplitudes are

- $P1/\pi_1(1600 \text{ MeV})$ (exotic)
- D/a₂ (1320 MeV)
- D/a₂' (1700 MeV)

Φ=1.77 Deg.

×10³

300

250

200

150

100

50

0

8

8.2

8.4

 $P_{\gamma} = 0.3$

	J	М	ε	Real	Imaginary	BW Mass	BW Width
	1	0,1	+1	70	70	1.564	0.492
	2	0,1,2	+1	350	350	1.306	0.114
	2	0,1,2	+1	150	150	1.722	0.247
		×1 500 - - - - - - - - - - - - - - - -	0 ³		 180 160 140 	3 CO	sθ
,					 100 80 60		
8.6			1 1.5	$\Lambda(n\pi^0)$ [GeV	 40 20 20 0 3 -1 -1	-0.8 -0.6 -0.4 -0.2 (0.2 0.4 0.6 0.8

Generated 5*10⁶ $(p\eta'\pi^0)$ events with AmpTools

Generated 5*10⁶ $(p\eta'\pi^0)$ events with AmpTools

 φ 4

Generated 30*10⁶ $(p\eta'\pi^0)$ flat events with AmpTools

- Flat in $\cos \theta_{GJ}$
- Flat in $M(\eta \pi^0)$

Generated $30^*10^6 (p\eta'\pi^0)$ flat events with AmpTools

Generated 30*10⁶ $(p\eta'\pi^0)$ flat events with AmpTools

Analysis strategy

- 1. Assume perfect acceptance and fit intensity to extract partial waves and calculate moments (generated moments).
- 2. Compare to the moments extracted with the GlueX acceptance
 - Process generated data through GlueX detector to have the effect of acceptance on it
 - Process reconstructed events through analysis code to apply particle identification cuts
 - Repeat the steps for generated flat (in M and angles) MC sample to obtain accepted MC sample. Both MC samples are used in MC integration of Intensity in Amptools.

Cuts applied on reconstructed data (Rupeshes analysis cuts)

- 1. Kinfit confidence level cut
- 2. Check if combo has already been used with all the particles in it
- 3. Missing mass squared, coherent beam energy and timing selection (select prompt peak)
- 4. Reject major $\pi^0 \pi^0$ events
- 5. Select eta and pi0 mass region in the $M_{\gamma\gamma}$
- 6. Select η' mass window in the $M_{\pi^+\pi^-\eta}$

Acceptance with flat data

- 1. Generate data and pass through the GlueX detector to study acceptance (\mathcal{E})
- 2. Turning off all decay channels of final state particles but that of interest ($\eta' \rightarrow \pi^+ \pi^- \eta$ (~42.6%), $\eta \rightarrow \gamma \gamma$ (~39.4%)) to obtain correct acceptance for the reaction $\gamma p \rightarrow p \eta' \pi^0$
 - Have generated 5*10⁶ events
 - ~8.5% got reconstructed and have passed analysis cuts (have used Rupeshes analysis code)

We select -t>0.1 (GeV/c)² to cut events, where p had such low -t, that it couldn't get out of the target.

Fit results for generated data

Fitting with amplitude set: S0+, P0+, P1+, D0+, D1+, D2+.

Fit with GlueX acceptance

Fitting with amplitude set: S0+, P0+, P1+, D0+, D1+, D2+.

14

Uncertainties from bootstrapping

Repeating previous analysis now using generated 4-vectors for reconstructed data both in obtaining the acceptance and in fitting (there is no $2\pi^0$ and ω cut on reconstructed data) to understand discrepancy between the moments at M~1.3 for H⁰(11)

We select -t>0.1 (GeV/c)² to cut events, where p had such low -t, that it couldn't get out of the target.

We select -t>0.1 (GeV/c)² to cut events, where p had such low -t, that it couldn't get out of the target.

We select -t>0.1 (GeV/c)² to cut events, where p had such low –t, that it couldn't get out of the target. Using generated P4 for reconstructed data for reconstructed data

We select -t>0.1 (GeV/c)² to cut events, where p had such low -t, that it couldn't get out of the target. Using generated P4 for Using reconstructed P4 reconstructed data for reconstructed data -0.1 ε $\cos \theta_{HX}$ Е 0.08 0.08 05 0.5 -0.06 0.06 0.04 0.04 -0.5 0.02 -0.5 0.02 1.032 1.272 1.512 1.752 1.992 1.5 2

 $M(\eta'\pi^0)$ [GeV/c²]

cosθ

Fit results for generated data

Fitting with amplitude set: S0+, P0+, P1+, D0+, D1+, D2+.

Fit with GlueX acceptance

Fitting with amplitude set: S0+, P0+, P1+, D0+, D1+, D2+.

24

Polarized moments calculated with partial waves and GlueX acceptance don't agree with generated moments ainties from 0<t<0.3 (GeV/c)²

Uncertainties from bootstrapping

Summary

- The polarized moments extracted with GlueX acceptance agree with generated moments within bootstrapping uncertainties.
- Though the small intensity, interference with even waves gives a strong exotic signal in odd L moments.
- The spiky structure seen in the acceptance at lower M is due to resolution difference between generated and accepted data and wrong reconstructed combos.

Acceptance with generated flat MC

Acceptance with generated flat MC

