

1

Amplitude analysis of GlueX $(p\eta'\pi^0)$ data

Florida International University 2020

Mariana Khachatryan

Generated 60*10⁶ $(p\eta'\pi^0)$ flat events with AmpTools

 $p\gamma \rightarrow p\eta' \pi^0,$ $\eta' \rightarrow \pi^+ \pi^- \eta,$ $\eta \rightarrow \gamma\gamma$

- Flat in $\cos \theta_{GJ}$
- Flat in $M(\eta \pi^0)$

Generated $30^*10^6 (p\eta'\pi^0)$ flat events with AmpTools

- 1. Fitting entire GlueX phase 1 data for four γ polarization plane angles relative to horizontal (0, 45, 90, 135°) using loop statement in AmpTools (not using amorphous data)
- 2. Fitting using new feature in Amptools that does multiple fits with randomized initial parameters (100 fits), to choose good starting parameters
- 3. Fit intensity with different wave sets:
 - $S_0, P_{0,1}, D_{0,1,2} \in +1$
 - $S_0, P_{0,1}, D_{0,1,2} \epsilon = \pm 1$
 - $S_0, P_{0,\pm 1}, D_{0,\pm 1,\pm 2} \epsilon = \pm 1$
- 1. Invariant mass bin size of 75 MeV/ c^2 , momentum transfer bin size of 0.6 (GeV/c)²

Plot acceptance uncorrected results

19259 GlueX $(p\eta'\pi^0)$ events for 4 γ polarization plane angles relative to horizontal (0, 45, 90, 135°)

0 Deg. $P_{\gamma} = 0.3519$ 45 Deg. $P_{\gamma} = 0.3374$ 90 Deg. $P_{\gamma} = 0.3303$ 135 Deg. $P_{\gamma} = 0.3375$ Number of signal events 7691

Signal-Background separation using Probabilistic Weighing Method Reaction $\gamma p \rightarrow p \eta' \pi^0$ $\eta' \rightarrow \pi^+ \pi^- \eta$, $\eta \rightarrow \gamma \gamma$

18482 GlueX $(p\eta'\pi^0)$ events for 4 γ polarization plane angles relative to horizontal (0, 45, 90, 135°) + amorphous data

Fit with $S_0, P_{0,1}, D_{0,1,2} \in \pm 1$

400 C

350

300

250

200 E

150

100E

50

1.1 1.2 1.3

Fit with $S_0, P_{0,1}, D_{0,1,2} \in \pm 1$

400

350

300

250

200

150

100

50

1.1 1.2 1.3

Acceptance uncorrected

D0mi

 $D_0^{(-)}$

400 -

1.6

1.5

1.4

1.7

1.8 1.9

2

D1pl

Fit with S_0 , $P_{0,\pm 1}$, $D_{0,\pm 1,\pm 2} \epsilon = \pm 1$

Acceptance uncorrected

Fit with S_0 , $P_{0,\pm 1}$, $D_{0,\pm 1,\pm 2} \epsilon = \pm 1$

Acceptance uncorrected D0pl 400 $D_{0}^{(+)}$ 350-300-250 200-150 100-50 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 1.1

Fit with S_0 , $P_{0,\pm 1}$, $D_{0,\pm 1,\pm 2} \epsilon = \pm 1$

Acceptance uncorrected

20000

10000

0

Ŧ

Acceptance corrected

2

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9

Comparison of moments from different fit results

0.1<t<0.7 (GeV/c)²

12

Comparison of moments from different fit results

13

Comparison of moments from different fit results 0.1<t<0.7 (GeV/c)²

Moments from fit results with all M, ε agree with moments from fit with $M \ge 0, \varepsilon = \pm 1$