ρ (770) Meson Spin-Density Matrix Elements

Discussion of Uncertainties

Alexander Austregesilo

Curtis A. Meyer Naomi S. Jarvis

Amplitude Analysis WG Meeting October 17, 2022

Linear beam polarization provides access to nine linearly independent SDMEs

• Intensity *W* is expressed as function of angles $\cos \vartheta$, φ , Φ and degree of polarization *P*_{γ}

$$W(\cos\vartheta,\varphi,\Phi) = W^{0}(\cos\vartheta,\varphi) - P_{\gamma}\cos(2\Phi)W^{1}(\cos\vartheta,\varphi) - P_{\gamma}\sin(2\Phi)W^{2}(\cos\vartheta,\varphi)$$

$$\begin{split} W^{0}(\cos\vartheta,\varphi) &= \frac{3}{4\pi} \left(\frac{1}{2} (1-\rho_{00}^{0}) + \frac{1}{2} (3\rho_{00}^{0}-1) \cos^{2}\vartheta - \sqrt{2} \operatorname{Re}\rho_{10}^{0} \sin 2\vartheta \cos\varphi - \rho_{1-1}^{0} \sin^{2}\vartheta \cos 2\varphi \right) \\ W^{1}(\cos\vartheta,\varphi) &= \frac{3}{4\pi} \left(\rho_{11}^{1} \sin^{2}\vartheta + \rho_{00}^{1} \cos^{2}\vartheta - \sqrt{2} \operatorname{Re}\rho_{10}^{1} \sin 2\vartheta \cos\varphi - \rho_{1-1}^{1} \sin^{2}\vartheta \cos 2\varphi \right) \\ W^{2}(\cos\vartheta,\varphi) &= \frac{3}{4\pi} \left(\sqrt{2} \operatorname{Im}\rho_{10}^{2} \sin 2\vartheta \sin\varphi + \operatorname{Im}\rho_{1-1}^{2} \sin^{2}\vartheta \sin 2\varphi \right) \end{split}$$

Schilling et al. [Nucl. Phy. B, 15 (1970) 397]

Extraction of SDMEs

$$W(\cos\vartheta,\varphi,\Phi) = W^{0}(\cos\vartheta,\varphi) - P_{\gamma}\cos(2\Phi)W^{1}(\cos\vartheta,\varphi) - P_{\gamma}\sin(2\Phi)W^{2}(\cos\vartheta,\varphi)$$

Measured Intensity $I(\Omega) \propto W(\cos \vartheta, \varphi, \Phi)$

Extended Maximum-Likelihood Fit

$$\ln L = \underbrace{\sum_{i=1}^{N} \ln I(\Omega_i)}_{\text{Signal Events}} - \underbrace{\sum_{j=1}^{M} \ln I(\Omega_j)}_{\text{Background}} - \underbrace{\int d\Omega I(\Omega) \eta(\Omega)}_{\text{Normalization Integral}}$$

Maximize by choosing SDMEs such that the intensity fits the observed N events

- Accidental background subtracted in likelihood
- Normalization integral evaluated by a phase-space Monte Carlo sample with the acceptance $\eta(\Omega) = 0/1$

 $\begin{array}{c} \mathsf{Result} \\ \gamma p \to \rho(770) p \end{array}$

- Combined fit of 4 orientations with constraints
- Excellent agreement with JPAC for $t < 0.5 \,\mathrm{GeV}^2$
- Statistical uncertainties only
- Systematic studies presented today

Statistical Uncertainties: Bootstrapping

- Repeat fit 200 times by resampling the datasets
- Determine mean and variance via Gaussian fit, use for final result
- Gaussian variance $\approx 25\%$ larger than Minuit uncertainty

Input/Output Test with Signal MC

Input/Output Test with Signal MC

- Significant effect for ρ_{1-1}^0 for full *t* range
- Smaller effect on ρ_{10}^0 near t = 0.1
- Nearly independent from other SDMEs
- Add deviation to systematic uncertainty

Barlow's Significance Test

$$B = \frac{\Delta}{\sigma_B} = \frac{\rho - \rho_i}{\sqrt{|\sigma^2 - \sigma_i^2|}}$$

- Gauge statistical significance suggested by Barlow
- If B < 1: not significant
- If B > 4: take into account
- Else: discuss

arXiv:hep-ex/0207026

Kinematic Fit

• Default: $\chi^2/\mathrm{ndf} < 5$

- Variation: ± 2 corresponds roughly to $\pm 10\%$ data
- Unpolarized ρ^0 s clearly fail significance test

Kinematic Fit

- Default: $\chi^2/\mathrm{ndf} < 5$
- Variation: ± 2 corresponds roughly to $\pm 10\%$ data
- Unpolarized ρ^0 s clearly fail significance test
- Compute standard deviation from variations and use as systematic uncertainty

 $p\pi^+$ Invariant Mass

 $p\pi^{-}$ Invariant Mass

• Nearly no evidence for baryon excitations after selection of $\rho(770)$ mass region

• Systematic study: cuts at $M(p\pi^{\pm}) > 1.35, 1.5 \,\text{GeV}/c^2$, data reduction maximal 0.6%

Effect of Target Excitation

- Unpolarized ρ^0 s clearly fail significance test
- Compute standard deviation from variations and use as systematic uncertainty

Invariant Mass

- Variation: ±150, 300MeV/c² corresponds to maximum of ±10% data
- Several SDMEs fail significance test
- Compute standard deviation from variations and use as systematic uncertainty

EXAMPLE 1 A. Austregesilo (aaustreg@jlab.org) — ρ Meson SDMEs

Invariant Mass

- Variation: ±150, 300MeV/c² corresponds to maximum of ±10% data
- Several SDMEs fail significance test
- Compute standard deviation from variations and use as systematic uncertainty

Beam Polarization and Summary

- Individual contributions added quadratically (plot has to be checked)
- 2.1% systematic uncertainty on P_γ added quadratically to ρ^{1,2}s only
- Uncertainty from Input/Output test not yet added
- No significant contribution from orientations of polarization

Excursion: Mass Dependence

Soding, Phys. Lett. 19, 702 (1966)

 Breit-Wigner Mass observed to be 18 MeV/c² lower than PDG value

- Consistent with earlier observations
- Explained by interference with non-resonant processes (b) and (c)

Excursion: Mass Dependence

- Extract SDMEs as a function of $\pi^+\pi^-$ mass for each *t* bin
- Mass dependence increases with t as S-wave background increases
- ρ¹₁₁ shows largest mass dependence, but effect seen in all
- Physics result instead of systematic error
- Narrower mass bin will increase statistical uncertainty

Excursion: Polarized Reflectivity Amplitudes Jefferson Lab

Definition:

$$Z^m_\ell(\Omega, \Phi) \equiv Y^m_\ell(\Omega) e^{-i\Phi}.$$

• Final formulation of intensity:

$$I(\Omega, \Phi) = 2\kappa \sum_{k} \left\{ (1 - P_{\gamma}) \left| \sum_{\ell, m} [\ell]_{m;k}^{(-)} \operatorname{Re}[Z_{\ell}^{m}(\Omega, \Phi)] \right|^{2} + (1 - P_{\gamma}) \left| \sum_{\ell, m} [\ell]_{m;k}^{(+)} \operatorname{Im}[Z_{\ell}^{m}(\Omega, \Phi)] \right|^{2} + (1 + P_{\gamma}) \left| \sum_{\ell, m} [\ell]_{m;k}^{(-)} \operatorname{Im}[Z_{\ell}^{m}(\Omega, \Phi)] \right|^{2} \right\}.$$

- Absorb factor $\sqrt{1 \pm P_{\gamma}}$ into amplitude
- Repeated $[I]_{m;k}^{\pm}$ have to be constrained
- Equivalent to decomposition into SDMEs

Excursion: Polarized Reflectivity Amplitudes Jefferson Lab

Excursion: Polarized Reflectivity Amplitudes Jefferson Lab

Summary

Systematic Studies

- Analysis note revised and updated
- Presented proposal for systematic uncertainties
- Take out mass dependence from systematics, since it is physics?
- Additional sources?

Physics Results for Paper

- Main result are SDMEs as a function of t, comparison with JPAC
- Linear combinations for natural/unnatural parity exchange contribution
- Relationship and constraints between individual SDMEs
- Mass dependence of SDMEs and interference with S-wave
- Connection to polarized reflectivity amplitudes

(Un)Natural Parity Exchange

Jefferson Lab

SDMEs Expressed in Amplitudes

V. Mathieu, [Phys.Rev.D 100 (2019) 5, 054017]

$$\rho_{mm'}^{\alpha,\ell\ell'} = {}^{(+)}\rho_{mm'}^{\alpha,\ell\ell'} + {}^{(-)}\rho_{mm'}^{\alpha,\ell\ell'} .$$

$${}^{(\epsilon)}\rho_{mm'}^{0,\ell\ell'} = \kappa \sum_{k} \left([\ell]_{m;k}^{(\epsilon)} [\ell']_{m';k}^{(\epsilon)*} + (-1)^{m-m'} [\ell]_{-m;k}^{(\epsilon)} [\ell']_{-m';k}^{(\epsilon)*} \right) , \quad (D8a)$$

$${}^{(\epsilon)}\rho_{mm'}^{1,\ell\ell'} = -\epsilon\kappa \sum_{k} \left((-1)^{m} [\ell]_{-m;k}^{(\epsilon)} [\ell']_{m';k}^{(\epsilon)*} + (-1)^{m'} [\ell]_{m;k}^{(\epsilon)} [\ell']_{-m';k}^{(\epsilon)*} \right) , \quad (D8b)$$

$${}^{(\epsilon)}\rho_{mm'}^{2,\ell\ell'} = -i\epsilon\kappa \sum_{k} \left((-1)^{m} [\ell]_{-m;k}^{(\epsilon)} [\ell']_{m';k}^{(\epsilon)*} - (-1)^{m'} [\ell]_{-m;k}^{(\epsilon)} [\ell']_{m';k}^{(\epsilon)*} \right) , \quad (D8b)$$