Forward PID detector for GlueX

Baptiste GUEGAN

Introduction

- Using both DIRC and threshold Cherenkov detectors to cover the whole momentum range
\rightarrow DIRC bars from BaBar experiment:
- covering from $\sim 2 \mathrm{GeV}$ (TOF) to $\sim 4 \mathrm{GeV}$ (3σ separation for π / K)
\rightarrow Regular threshold Cherenkov C4F10
- covering from $\sim 3 \mathrm{GeV}$ to $\sim 8 \mathrm{GeV}$
- Using the same read-out for both systems

Introduction

Different designs are possible

Using the 4.9 m long bars (as the one used by Babar)
with one read-out:

- Less expensive
- Focusing mirror $\# 2$ more difficult
- Ambiguity signals
with two read-out:

- More expensive
- Focusing light is easier

Different designs are possible

Using the 2.45 m long bars (cut in two parts)

with one read-out:

Compared to the 4.9 m bars: _focusing is easier _only need 32 Babar's bars (cut in two)
__box more compact, less gas needed reduce the light attenuation

A first draft (top view)

A first draft

Backup slides

Design and requirements

Efficiency

○ Water transmission (1.2m)

- Mirror reflectivity

A Internal reflection coeff. (365 bounces)
\star Epotek 301-2 transmission ($25 \mu \mathrm{~m}$)
\leftrightarrows EMI PMT 9215B quantum efficiency (Q.E.)
\square PMT Q.E. \otimes PMT window transmission
Δ Final Cherenkov photon detection efficiency

- 80% of the light is maintained after multiple bounces along the bars
- The expected number of photoelectrons (Npe) is ~ 25 for a $\beta=1$ particle entering normal to the surface at the center of a bar, and increases by over a factor of two in the forward and backward directions.

Angular Resolution

The angle resolution of a single Cherenkov photon is dominated by

1. Imaging (bar dimension) (~ 4.2 mrad in BaBar)
2. Detection (granularity) ($\sim 6.2 \mathrm{mrad})$
3. Chromatic smearing $(n=n(\lambda))(\sim 5.4 \mathrm{mrad})$
4. Photon transport in bar $\quad(\sim 1 \mathrm{mrad})$
... added in quadrature $\rightarrow \sigma_{\theta y}=9.3 \mathrm{mrad}$ in BaBar
With a different imaging (e.g. focus) limited by 3 . and 4.
$\rightarrow \quad \sigma_{\theta \gamma} \approx 6 \mathrm{mrad}$
Expect 25 photons $\left(\mathrm{N}_{y}\right)$ or more
\rightarrow total resolution/track, $\sigma_{\theta_{C}}$:

$$
\sigma_{\theta_{C}} \approx \sigma_{\theta \gamma} / \sqrt{ } \mathrm{N}_{\gamma} \oplus \sigma_{\text {track }}
$$

$\approx 1.2 \mathrm{mrad} \oplus \sigma_{\text {track }}$

Kaon Identification

The characteristics of pion - kaon identification (separation) versus momentum with the track reconstructed in the FCDC for three different Cherenkov angle resolutions in a DIRC :
-1.2 mrad : the best achievable

- 1.7 mrad : a design close to the BaBar DIRC
- 2.0 mrad : pessimistic scenario

The mean kaon selection efficiency and pion misidentification are $\sim 95 \%$ and $<10 \%$ resp.

