Forward PID detector for GlueX

Baptiste GUEGAN

Introduction

- Using both DIRC and threshold Cherenkov detectors to cover the whole momentum range
 - \rightarrow DIRC bars from BaBar experiment:
 - covering from ~2GeV(TOF) to ~4GeV (3 σ separation for π/K)
 - $\rightarrow~$ Regular threshold Cherenkov C4F10
 - covering from ~ 3 GeV to ~ 8 GeV
- Using the same read-out for both systems

Introduction

Different designs are possible

- Focusing mirror #2 more difficult
- Ambiguity signals

• Focusing light is easier

Different designs are possible

A first draft (top view)

A first draft

Backup slides

Design and requirements

Efficiency

- Water transmission (1.2m)
- Mirror reflectivity
- ▲ Internal reflection coeff. (365 bounces)
- ★ Epotek 301-2 transmission (25µm)
- EMI PMT 9215B quantum efficiency (Q.E.)
- □ PMT Q.E. ⊗ PMT window transmission
- △ Final Cherenkov photon detection efficiency

- 80% of the light is maintained after multiple bounces along the bars
- The expected number of photoelectrons (Npe) is ~ 25 for a $\beta = 1$ particle entering normal to the surface at the center of a bar, and increases by over a factor of two in the forward and backward directions.

Angular Resolution

- 1. Imaging (bar dimension) (~ 4.2 mrad in BaBar)
- 2. Detection (granularity) (~ 6.2 mrad)
- 3. Chromatic smearing (n = $n(\lambda)$) (~ 5.4 mrad
- 4. Photon transport in bar (~1 mrad)
- ... added in quadrature $\rightarrow \sigma_{\theta\gamma}$ = 9.3 mrad in BaBar

→
$$\sigma_{\theta\gamma} \approx 6 \text{ mrac}$$

Expect 25 photons (N_y) or more \rightarrow total resolution/track, σ_{θ_c} : $\sigma_{\theta_c} \approx \sigma_{\theta_y} / \sqrt{N_y} \oplus \sigma_{track}$

 \approx 1.2 mrad $\oplus \sigma_{\text{track}}$

Kaon Identification

The characteristics of pion - kaon identification (separation) versus momentum with the track reconstructed in the FCDC for three different *Cherenkov angle resolutions in a DIRC* :

- 1.2 mrad : the best achievable
- 1.7 mrad : a design close to the BaBar DIRC
- 2.0 mrad : pessimistic scenario

The mean kaon selection efficiency and pion misidentification are $\sim 95\%$ and < 10% resp.

