Project sequence	Project	Number needed	Number completed	Project finished
1	Epoxy G10 slats to wire plates	8	8	~
2	Epoxy G10 slats to spacer plates	8	5	
3	Attach HV capacitors to preamp boards, modify preamp boards if needed, test	48	0	
4	Epoxy preamp and HV bias boards to wire plates	8	0	
5	(a) Attach wire plate onto spacer plate, (b) attach wheels, (c) move to Physical Science Building (PSB)	8	0	
6	PSB clean-room: (a) string carbon- tube sense wires and in-between field wires, (b) HV test, (c) string remainder of sense and field wires, (d) close detector, flow gas, bias HV and LV, fix problems	8	0	
7	Prepare MWPCs for shipment to JLab	8	0	

Proposed analysis project

• My understanding is that the standard GlueX ρ° analysis is fully exclusive, requires detection of the recoil proton, π^+ and π^- . Energy to satisfy the trigger requirement comes from the proton, pions, or both.

> The problem with this analysis is that it doesn't get to very low t.

- Propose looking for events with 2 charged tracks going into FCAL, where the energy deposited in FCAL is over trigger threshold.
 - > We know that pions sometimes shower in FCAL, so we trigger on some fraction of forward going $\pi^+\pi^-$ pairs.
 - The GlueX data are for proton target, where coherent processes are weak compared to a nuclear target. Nevertheless, in the invariant mass distribution can expect to see:
 - i. The low-mass, low-t tail of the ρ^0
 - ii. Bethe-Heitler e⁺e⁻ pairs, and not muon pairs since muons don't shower
 - u. $π^+π^-$ Primakoff events. Depending on what we get out of the data, this could be a nice paper for us.