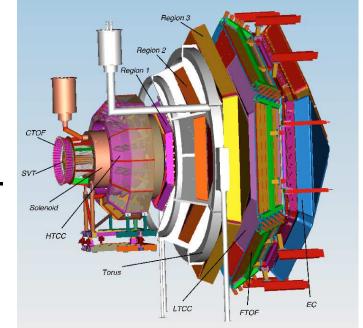
CLAS12 Software Readiness Review

Jerry Gilfoyle (for the CLAS12 Software Group) Physics Department, University of Richmond, Virginia


- Outline: 1. Introduction
 - 2. Software Framework
 - 3. Management
 - 4. Requirements
 - 5. Manpower
 - 6. Conclusions

Introduction

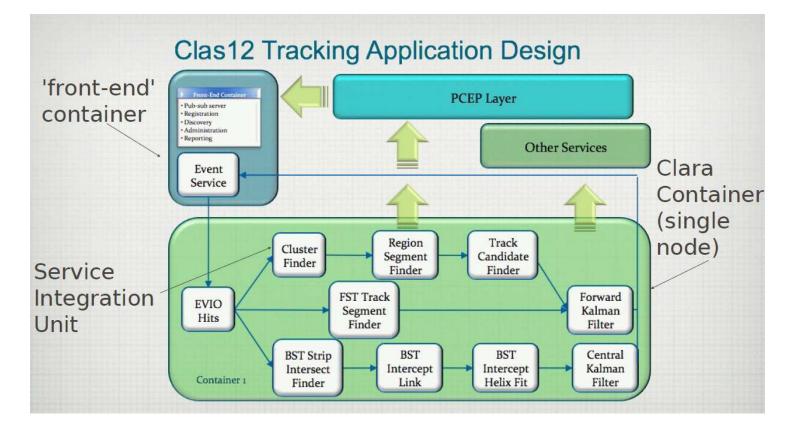
- CLAS12 Large acceptance spectrometer based on CLAS6.
- Luminosity increases by a factor of ten over CLAS6 ($L = 10^{35} \ cm^{-2}s^{-1}$).
- Software Goal:

Ready to analyze data at turn on (October, 2014).

- Software development is far along.
- Planning has been ongoing.

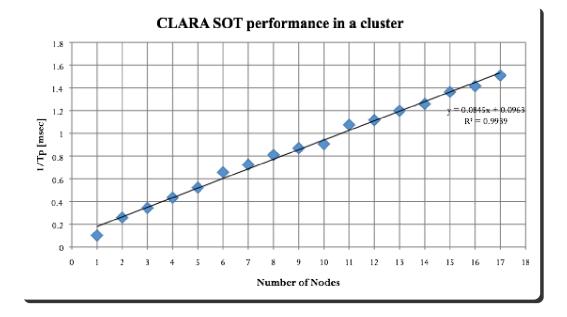
	Forward	Central
$ heta_{track}$	$5^{\circ} - 40^{\circ}$	$35^{\circ} - 135^{\circ}$
$ heta_{photon}$	$2.5^\circ - 40^\circ$	
$\Delta p/p$	< 0.01	< 0.05
$\Delta \theta$	< 1 mr	$< 10 - 20 \ mr$
$\Delta \phi$	< 3 mr	< 3 - 5 mr

Software Framework

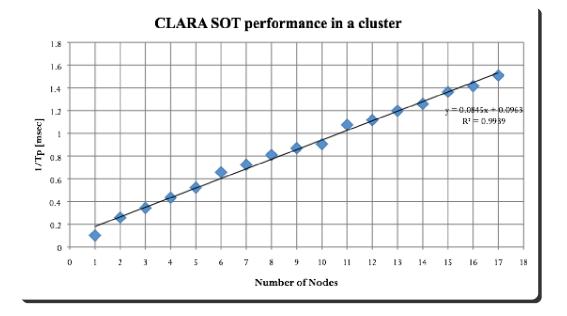

- CLAS12 Reconstruction and Analysis Framework (CLARA)
 - Service Oriented Architecture build/maintain complex, distributed software system.
 - Example: CERN Technical Infrastructure Monitoring.
- SCons
 - Open Source software construction tool.
 - Improved, cross-platform substitute for Make.
- SVN
 - Open source software versioning and revision control.
 - Successor to CVS.
- Already adopted SCons and SVN for CLAS6.

CLARA

- Service Oriented Architecture (SOA) for physics data processing multi-threaded, distributed environment.
- The fundamental unit is the 'Service' physically independent software programs with a common interface.
- Services are loosely coupled, and may participate in a variety of algorithms.
- Interface.
 - Specifies a set of methods an object can perform but not the implementation of those methods.
 - Promote flexibility and reusability in code by connecting objects in terms of what they can do rather than how they do it.


CLARA/SOA Example - 1

- Service Integration Unit allows user applications to be presented as CLARA services.
- PCEP layer Physics Complex Event Processing.
- Services can originate on different nodes.


CLARA/SOA Example - 2

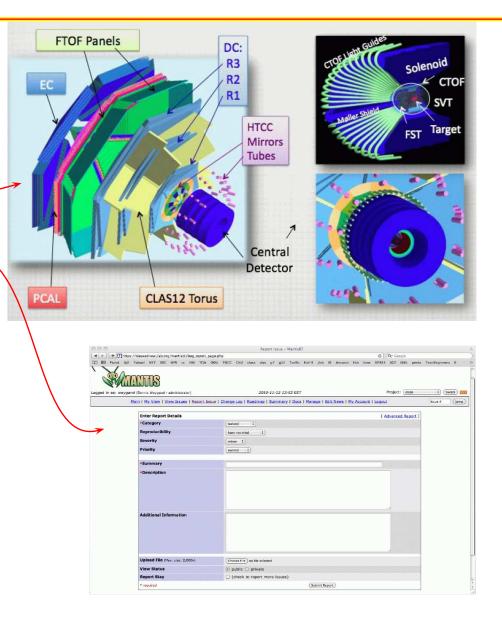
- Testing the CLAS12 tracking service.
- Tested on Spiderwulf University of Richmond Nuclear and Astro-Physics Cluster: 17 nodes, Xeon, 2×6 Westmere nodes.
- Electron events generated from CLAS12 simulation gemc.

CLARA/SOA Example - 2

- Testing the CLAS12 tracking service.
- Tested on Spiderwulf University of Richmond Nuclear and Astro-Physics Cluster: 17 nodes, Xeon, 2×6 Westmere nodes.
- Electron events generated from CLAS12 simulation gemc.

ONGOING ISSUE: CLARA access at JLab blocked by security barriers.

Management

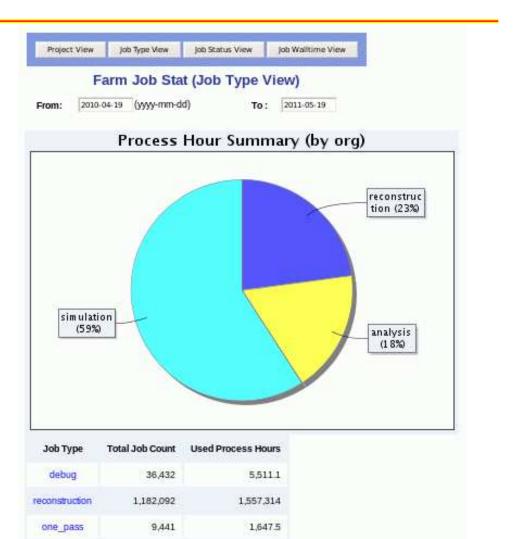

CLAS12 Software Group (leader: Dennis Weygand).

Wiki		article discussion edit history
	Hall B	CLARA
		= Introduction
	navigation	Tutorials
		Programmers guide
	 Main Page Community portal 	Proposed CLARA Computer Specs
	 Current events Recent changes 	Current production version is 1.3.1

- Tutorials to set up services in C++ and Java.
- Collaborations with Hall D and DAQ group.
 - JANA
 - Database
 - Event display
 - EVIO
 - cMsg

Management

- Tools:
 - Interfaces of calibration database to JANA, C++, MySQL,
 - Simulation: gemc
 - Bug reporting Mantis
- Policies in place:
 - Regular builds of CLAS6 and CLAS12.
 - test histograms.
 - data challenges.



Requirements

- Calculations follow format from Graham Heyes.
- Assume an October, 2014 start date.
- Will present the major assumptions and results for:
 - data acquisition
 - calibration
 - simulation
 - reconstruction (formerly analysis in spreadsheet)
 - analysis

Ratio of Simulation: Reconstruction: Analysis

Process hours from Computer Center for the last year.

1,221,338.2

4,033,710.9

6,825,032.7

5,511.1

Last opdated: Thursday May 19, 11:14:03 ED-T 2013

2,002,900

1,046,276

4,313,573

36,432

analysis

test simulation

Total

Data Acquisition

Event rate	10 kHz	Weeks running	30
Event size	10 kBytes	24 hour duty factor	60%

- Data Rate = Event Rate \times Event Size = 100 MByte/s
- Average 24-hour rate = Data Rate \times 24 hour duty factor = 60 MByte/s

$$\label{eq:Events/year} \begin{split} \text{Events/year} &= \text{Event Rate} \times \text{Weeks Running} \ \times \text{24 hour duty factor} \quad \ (2) \\ &= 1.1 \times 10^{11} \ \text{Events/yr} \end{split}$$

Data Volume/year = Events/year
$$\times$$
 Event size (3)
= 1100 TByte/yr

(1)

Calibration - 1

CPU-time/event-core	67 ms	High-priority fraction	1%
Data passes	5	Desired processing time	20 min
Data fraction used	10%	Output size/input set size	5
Data set size	2 GB	Event size	10 kBytes

Events/priority data set =
$$\frac{\text{Data set size}}{\text{Event Size}}$$
 (4)
= 2×10^5 events
CPU time/priority data set = Events/priority data set × (5)
CPU-time/event-core
= 1.3×10^4 s
Cores/data set for priority = $\frac{\text{CPU time/priority data set}}{\text{Desired processing time}}$ (6)
= 11 cores

Calibration - 2

CPU-time/event-core	67 ms	High-priority fraction	1%
Data passes	5	Desired processing time	20 min
Data fraction used	10%	Output size/input set size	5
Data set size	2 GB	Event size	10 kBytes

Output data set = Data set size \times Output size/input set size (7) = 10 GByte

Non-priority CPU time/year = Events/year \times CPU-time/event-core \times (8) Data fraction used \times Data passes = 3.6×10^9 s Cores for non priority = $\frac{\text{Non-priority CPU time/year}}{\text{one year in seconds}}$ (9) = 116 cores

Simulation - 1

CPU-sim-time/event-core	400 ms	Fraction to disk	2%
Sim-events/year	7×10^{10}	Fraction to tape	10%
Output event size	50 kBytes		

CPU-time/year = CPU-time/event-core \times Sim-events/year (10) = 3×10^{10} s

Dedicated farm cores =
$$\frac{\text{CPU-time/year}}{\text{one year in seconds}}$$
 (11)
= 828 cores

Work disk = Sim-events/year \times Output event size \times (12) Fraction to disk

= 65 TBytes

Simulation - 2

CPU-sim-time/event-core	400 ms	Fraction to disk	2%
Sim-events/year	7×10^{10}	Fraction to tape	10%
Output event size	50 kBytes		

Tape storage = Events/year \times Output event size \times (13) Fraction to tape = 326 TBytes/year

Average bandwidth = $\frac{\text{Output event size} \times \text{Dedicated farm cores}}{\text{CPU-sim-time/event-core}}$ (14) = 104 MByte/s

Reconstruction - 1

CPU-data-time/event-core	67 ms	Output size/input size	2
Data passes	1.7	Output fraction on work disk	10%
Event Size	10 kBytes	Events/year	$1.1 imes 10^{11}$
Data volume/year	1.1 PBytes/yr		

CPU time per year = Events/year × CPU-data-time/event-core (15) × Data passes = 1.2×10^{10} s

Dedicated farm cores
$$=$$
 $\frac{\text{CPU time per year}}{\text{one year in seconds}}$ (16)
 $= 393 \text{ cores}$

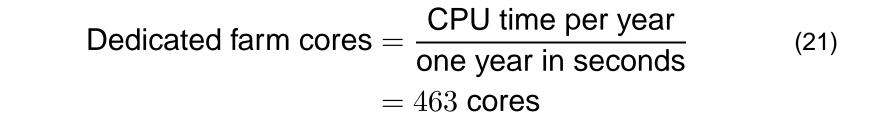
Cooked data to tape = Data Volume/year
$$\times$$
 Data passes (17)
 \times Output size/input size
= 3700 TByte/yr

Reconstruction - 2

CPU-data-time/event-core	67 ms	Output size/input size	2
Data passes	1.7	Output fraction on work disk	10%
Event Size	10 kBytes	Events/year	1.1×10^{11}
Data volume/year	1.1 PBytes/yr		

Disk storage =
$$\frac{\text{Cooked data to tape}}{10}$$
 (18)
= 370 TByte
Average bandwidth = Event size × (1 + Output size/input size)× (19)

Dedicated farm cores


CPU-data-time/event-core

= 176 MBytes/s

Post-Reconstruction Analysis

CPU-data-time/event-core	67 ms	Fraction of desired events	20
Data passes	10	Work disk space	370 TBytes
Tape storage	370		

CPU time per year = Fraction desired \times Events/year \times (20) CPU-data-time/event-core \times Data passes = 1.5×10^{10} s

Requirements Summary

	Cores	Disk (TByte)	Tape (TByte/yr)
DAQ	-	-	1100
Calibration	127	-	-
Simulation	828	65	327
Reconstruction	393	370	3700
Analysis	463	370	370
Sum	1811	805	5497

CLAS/CLAS12 Software Manpower (Preliminary)

	Function	Name
1	Management and Framework (CLAS)	Weygand, Gyurjyan, Heddle
2	Management and Framework (others)	Wolin, Lawrence, Abbott, Timmer, Lee
3	Core Developers (CLAS)	Ungaro, Gilfoyle, Wood, Pro- cureur, Goetz
4	Developers (undergraduates)	Paul, Carbonneau, Frasier, Moog, Musalo,
5	Users	$\approx 10~{\rm FTEs}$ listed in SoS statements

Names listed in rows 1-3 provide ≈ 5 FTEs focused on CLAS12 software.

Conclusions

- Software framework is being developed; considerable progress in last year CLARA, svn, SCons.
- Management tools are in place and a core group exists exploiting overlaps with DAQ and Hall D.
- **DAQ** $\approx 10^{11}$ events/year $\rightarrow 1$ petabyte/yr.
- Calibration about 130 cores required.
- Simulation 276 cores required with 109 TBytes/year of tape storage.
- Reconstruction about 400 cores required with 3.7 PByte/yr of cooked data to tape.
- Post-reconstruction analysis about 460 cores required.
- Manpower is still limited to a small group of core developers.

Conclusions and Questions

- Software framework is being developed; considerable progress in last year CLARA, svn, SCons.
- Management tools are in place and a core group exists exploiting overlaps with DAQ and Hall D.
- **DAQ** $\approx 10^{11}$ events/year $\rightarrow 1$ petabyte/yr.
- Calibration about 130 cores required.
- Simulation 828 cores required with 91 TBytes/year of tape storage.
- Reconstruction about 400 cores required with 3.7 PByte/yr of cooked data to tape.
- Post-reconstruction analysis about 460 cores required.
- Manpower is still limited to a small group of core developers.
- O Ratio of simulated events to data collected?
- O Speed of simulation?
- O Effect of user computing resources?

Additional Slides

Simulation - 1b: Sim events = data events

CPU-sim-time/event-core	400 ms	Fraction to disk	2%
Sim-events/year	10^{11}	Fraction to tape	10%
Output event size	50 kBytes		

CPU-time/year = CPU-time/event-core \times Sim-events/year (22) = 4.4×10^{10} s

- Dedicated farm cores = $\frac{\text{CPU-time/year}}{\text{one year in seconds}}$ (23) = 1, 381 cores
- Work disk = Sim-events/year \times Output event size \times (24) Fraction to disk

= 109 TBytes

Simulation - 2b: Sim events = data events

CPU-sim-time/event-core	400 ms	Fraction to disk	2%
Sim-events/year	2×10^{10}	Fraction to tape	10%
Output event size	50 kBytes		

Tape storage = Events/year \times Output event size \times (25) Fraction to tape = 544 TBytes/year

Average bandwidth = $\frac{\text{Output event size} \times \text{Dedicated farm cores}}{\text{CPU-sim-time/event-core}}$ (26) = 173 MByte/s