Guer

FCAL Efficiency Report

7/23/19

Jon Zarling

Overview

- Goal:
 - o Determine efficiency as function of E, heta, ϕ
 - O Check to see that data and MC agree
 - o Physics Analysis WG charge: 5% uncertainty
- Photon gun MC simulation
 - O Develop intuition
 - Determine dominant sources of inefficiency
- $\omega \rightarrow 3\pi$ topology:

o Data and MC comparisons

Overview, cont.

• This talk: mostly summarizing

https://halldweb.jlab.org/doc-private/DocDB/ShowDocument?docid=4025

- Code repository:
 - o <u>https://github.com/JeffersonLab/hd_utilities</u>
 - o Contains code for both photon gun and $\omega \rightarrow 3\pi$ analyses

Photon Gun Studies

- Fire photon gun from target
- Fix θ , scan over different points of E_{γ} (or vice versa)
- What are the dominant sources of inefficiency at high photon energy?
- photon_gun_hists plugin (in hd_utilities)

Efficiency Parameterization

GLUE

5

- Gaussian + 2nd order polynomial
- Good photons: gaussian portion of E_{γ}

Efficiency: Energy Scan

• Fixed $\theta = 6^{\circ}$, uniform in ϕ

Efficiency: θ Scan

• Fixed $\theta = 6^{\circ}$, uniform in ϕ

Where/how are photons lost?

• Check at $E_{\gamma} = 800 \ MeV$, $\theta = 6^{\circ}$

Where/how are photons lost?

• Check at $E_{\gamma} = 800 \ MeV$, $\theta = 6^{\circ}$

Upstream photon conversion

GLUE

Causes low E tail. Few acceptable showers

• Energy shifted, but almost all are still in peaking portion

Photons surviving to FCAL

Embedded Samples

- Embed photon gun in simulated topologies:
 - $\begin{array}{l} \circ \gamma \, p \ \rightarrow \gamma \, p \\ \circ \gamma \, p \ \rightarrow \gamma \, \pi^+ \pi^- \, p \end{array}$
- π^+, π^- , and p kinematics from ω phase space
- Look for γ in tight region of $\Delta\theta$, $\Delta\phi$
- Allows for full physics reconstruction

Low Level Efficiency Comparison

Photon Efficiency at $\theta = 6$ degrees

Comparison: Full Event Reconstruction

GLUE

Photon Efficiency at $\theta = 6$ degrees

- Blue is default in halld_recon.
- Real physic events may have less geometry overlap, less effect?

Take Away Messages

- Can calculate precise efficiencies with photon gun
- In efficient regions of detector + high E, conversion upstream of TOF/FCAL dominate inefficiency
- Relative measurement generally agrees with absolute efficiency
- Hadronic vetoing may also contribute to inefficiency, but magnitude uncertain

$\omega \rightarrow 3\pi$ Method

- Don't have a photon gun for actual data
- Next best thing: exclusive physics reactions
 O Use as a way to "tag" photons
- $\omega \rightarrow \pi^+ \pi^- \pi^0$ offers good statistics, good purity, and reasonable (E, θ) coverage.
- Efficiency:

$$\epsilon = \frac{N_{\omega \to \pi^+ \pi^- \gamma \gamma}}{N_{\omega \to \pi^+ \pi^- \gamma(\gamma)}}$$

Comments on Event Selection

- Goal: make sample as pure as possible, without cutting into statistics too much
- 1C kinematic fit: missing mass = 0
- No more than two neutral candidates allowed
- Cut around missing π^0 mass (recoil against $\pi^+\pi^-p$)
- Spectator photon: $E_{\gamma} > 500 \text{ MeV}$ should remove trigger considerations

Parameterization #1

3gaus+2nd order poly bkg

Parameterization #2

 $\frac{\omega_{eff.}}{\omega_{eff.} + \omega_{ineff.}}$ $\epsilon = -$

Efficient:

Inefficient

GLUE

3gaus+2nd order poly bkg

- Method 1:
 - Pro: uses same quantity (recoil mass) in both distributions
 - o Con: $\gamma\gamma$ inv. mass cut might affect data/MC differently?
- Method 2:
 - Pro: inv. mass in numerator
 - Con: fitting two quantities. Recoil mass undercounts compared to invariant mass (hopefully less than 1%)

Efficiency over heta

Tagged photon: $E_{(\gamma)} > 800 \text{ MeV}$

Compare to similar photon gun sample: θ distributed over ω phase space with event selection

Fix $\theta = 3^{\circ}$, roughly highest efficiency angle

Maybe accepting too many bad showers? Add very tight geometry cuts to remove

27

Does π^{\pm} Efficiency Have Same Issue?

- I think so
- Reported to analysis & production WG

Photon gun: efficiency driven by upstream conversions

• Track vetoing: also plays a role. Not well quantified yet.

• Study with $\omega \rightarrow 3\pi$:

 \circ Reasonable data/MC agreement, except at low θ

• Too high to agree with photon gun. Normalization issue?

Future Work

- Incorporate fiducial volume cuts
- Check pre-kinfit ω_{inv}
- Study efficiency over ϕ
- Apply to BCAL

Backup: Sources of Inefficiency

- Potential sources:
 - Upstream conversion, absorption, or scattering
 - Detector geometry
 - O Energy turn-on
 - O Clusterizing issues
 - o E < 100 MeV rejection</p>
 - o Dead channels
 - Accidentally associated with charged particle
 - \circ PID Δt cuts
 - Other ANALYSIS or PID library cuts?