FCAL Efficiency Report

7/23/19
Jon Zarling

Overview

- Goal:
- Determine efficiency as function of E, θ, ϕ
- Check to see that data and MC agree
- Physics Analysis WG charge: 5\% uncertainty
- Photon gun MC simulation
- Develop intuition
- Determine dominant sources of inefficiency
- $\omega \rightarrow 3 \pi$ topology:
- Data and MC comparisons

Overview, cont.

- This talk: mostly summarizing https://halldweb.jlab.org/doc-private/DocDB/ShowDocument?docid=4025
- Code repository:
- https://github.com/JeffersonLab/hd utilities
- Contains code for both photon gun and $\omega \rightarrow 3 \pi$ analyses

Photon Gun Studies

- Fire photon gun from target
- Fix θ, scan over different points of E_{γ} (or vice versa)
- What are the dominant sources of inefficiency at high photon energy?
- photon_gun_hists plugin (in hd_utilities)

Efficiency Parameterization

- Gaussian $+2^{\text {nd }}$ order polynomial
- Good photons: gaussian portion of E_{γ}
- $\epsilon=\frac{N_{\text {gaus core }}}{N_{\text {gen }}}$

Efficiency: Energy Scan

- Fixed $\theta=6^{\circ}$, uniform in ϕ

Efficiency: θ Scan

- Fixed $\theta=6^{\circ}$, uniform in ϕ

Where/how are photons lost?

- Check at $E_{\gamma}=800 \mathrm{MeV}, \theta=6^{\circ}$

Where/how are photons lost?

- Check at $E_{\gamma}=800 \mathrm{MeV}, \theta=6^{\circ}$

Upstream photon conversion

- Causes low E tail. Few acceptable showers

TOF conversions

- Energy shifted, but almost all are still in peaking portion

Photons surviving to FCAL

Embedded Samples

- Embed photon gun in simulated topologies:
$\circ \gamma p \rightarrow \gamma p$
○ $\gamma \rightarrow \gamma \pi^{+} \pi^{-} p$
- π^{+}, π^{-}, and p kinematics from ω phase space
- Look for γ in tight region of $\Delta \theta, \Delta \phi$
- Allows for full physics reconstruction

Low Level Efficiency Comparison

Photon Efficiency at $\theta=6$ degrees

Comparison: Full Event Reconstruction

Photon Efficiency at $\theta=6$ degrees

- Blue is default in halld_recon.
-Real physic events may have less geometry overlap, less effect?

Take Away Messages

- Can calculate precise efficiencies with photon gun
- In efficient regions of detector + high E, conversion upstream of TOF/FCAL dominate inefficiency
- Relative measurement generally agrees with absolute efficiency
- Hadronic vetoing may also contribute to inefficiency, but magnitude uncertain

$\omega \rightarrow 3 \pi$ Method

- Don't have a photon gun for actual data
- Next best thing: exclusive physics reactions
- Use as a way to "tag" photons
- $\omega \rightarrow \pi^{+} \pi^{-} \pi^{0}$ offers good statistics, good purity, and reasonable (E, θ) coverage.
- Efficiency:

$$
\epsilon=\frac{N_{\omega \rightarrow \pi^{+} \pi^{-} \gamma \gamma}}{N_{\omega \rightarrow \pi^{+} \pi^{-} \gamma(\gamma)}}
$$

Comments on Event Selection

- Goal: make sample as pure as possible, without cutting into statistics too much
-1C kinematic fit: missing mass $=0$
- No more than two neutral candidates allowed
- Cut around missing π^{0} mass (recoil against $\pi^{+} \pi^{-} p$)
- Spectator photon: $E_{\gamma}>500 \mathrm{MeV}$ should remove trigger considerations

Parameterization \#1

Numerator:
Exactly two neutrals
$m_{\gamma \gamma}<0.25 \mathrm{GeV}$

Denominator:
One or two neutrals

$$
\epsilon=\frac{\omega_{n u m}}{\omega_{\text {den }}}
$$

Parameterization \#2

$$
\epsilon=\frac{\omega_{e f f .}}{\omega_{e f f .}+\omega_{\text {ineff }}}
$$

Efficient:

Inefficient

Pros/Cons

- Method 1:
- Pro: uses same quantity (recoil mass) in both distributions
o Con: $\gamma \gamma$ inv. mass cut might affect data/MC differently?
- Method 2:
- Pro: inv. mass in numerator
- Con: fitting two quantities. Recoil mass undercounts compared to invariant mass (hopefully less than 1\%)

Efficiency over E_{γ}

Tagged photon: $3.5^{\circ}<\theta_{(\gamma)}<9.5^{\circ}$

Method 1

Method 2

Efficiency over θ

Tagged photon: $E_{(\gamma)}>800 \mathrm{MeV}$

Method 1

Method 2

Does Efficiency Make Sense?

Compare to similar photon gun sample:
θ distributed over ω phase space with event selection

Does Efficiency Make Sense?

Fix $\theta=3^{\circ}$, roughly highest efficiency angle

Does Efficiency Make Sense?

Maybe accepting too many bad showers?
Add very tight geometry cuts to remove

Does Efficiency Make Sense?

Does $\pi^{ \pm}$Efficiency Have Same Issue?

- I think so
- Reported to analysis \& production WG

Summary

- Photon gun: efficiency driven by upstream conversions
- Track vetoing: also plays a role. Not well quantified yet.
- Study with $\omega \rightarrow 3 \pi$:
- Reasonable data/MC agreement, except at low θ
\circ Too high to agree with photon gun. Normalization issue?

Future Work

- Incorporate fiducial volume cuts
- Check pre-kinfit $\omega_{i n v}$
- Study efficiency over ϕ
- Apply to BCAL

Backup: Sources of Inefficiency

- Potential sources:
- Upstream conversion, absorption, or scattering
- Detector geometry
- Energy turn-on
- Clusterizing issues
- E < 100 MeV rejection
- Dead channels
- Accidentally associated with charged particle
- PID Δt cuts
- Other ANALYSIS or PID library cuts?

