Event Selection

Reaction Filter Stage

 $\gamma A \rightarrow \pi^+ \pi^- p(X)$ Flags: Vertex and Momentum constrained, 4 beam bunches on each sides of prompt peak, 2 Extra tracks and 5 extra shower: **B4F4T2S5**

DSelector Stage

Loose cuts

CL > 0.0001, beam energy > 6.0 GeV, Extra tracks = 0, Missing Momentum < 350 MeV, 2 accidental peak on each side of prompt peak.

Base Criteria

- Confidence Level > 0.001
- Beam Energy [6.5,10.8 GeV]
- Extra Tracks = 0
- Numbers of Shower = 5
- Proton Vertex [52,78] cm
- Missing Momentum < 300 MeV/c</p>

t_min	t_max	Proton angle
1	1.2	> 25 degree
1.2	1.4	> 25 degree
1.4	1.8	> 25 degree
1.8	2.6	> 25 degree
2.6	3.4	> 25 degree
3.4	4.6	> 20 degree

Selection cuts have been applied consistently to both data and reconstructed simulations.

Invariant Mass Distribution of Deuterium Data

Invariant Mass Distribution of Deuterium Data

Efficiency

Formula

Luminosity =	flux	* Target	Length *	Number	Density
	,	0	U		

Nucleus	Tagged Photon Flux (10 ¹²)	Tagged Luminosity (pb ⁻¹ ·nucleon)
Deuterium	13.17	33.98
Helium	30.8	63.80
Carbon	49.46	97.73

$$\sigma = \frac{N_{signal}}{\mathcal{L} \times \epsilon \times B(\rho^0 \to \pi^+ \pi^-)}$$

$$T(^{4}\text{He}) = \frac{\sigma_{(^{4}\text{He})}}{\sigma_{(^{2}\text{H})}}$$
$$T(^{12}\text{C}) = \frac{\sigma_{(^{12}\text{C})}}{\sigma_{(^{2}\text{H})}}$$

Table :Tagged flux and luminosity for each target, with beam photons having energies between 6.5 and 10.8 GeV

Number Density =
$$\rho_N = \frac{N_{\text{Avogadro}}(\text{particle/mole}) \times \text{target mass density}(\text{gm/cm}^3)}{\text{atomic weight of proton}(\text{gm/mole})} \times \frac{1\text{cm}^2}{1 \times 10^{24} \text{ barns}}$$
Source: Hao Li's Dissertation (Glue X)

Cross-Sectional Ratio.

Only statistical uncertainties from data yields are considered for this calculation.

Results: before and after TOF MC improvement

Efficiency:After

Bhesha Devkota SRC/CT MEETING Efficiency of ²H

Efficiency of ⁴He

Efficiency of ¹²C

+ ⁴He/²H

+ ¹²C/²H

3.5

Systematic uncertainties: Event Selection.

t_min	t_max	Proton angle	Confidence level	Missing Momentum
1.0	1.2	> (25 , 27.5, 22.5) degree	> (0.001 , 0.0011, 0.0009)	< (300 , 270, 330) MeV
1.2	1.4	> (25 , 27.5, 22.5) degree	> (0.001 , 0.0011, 0.0009)	< (300 , 270, 330) MeV
1.4	1.8	> (25 , 27.5, 22.5) degree	> (0.001 , 0.0011, 0.0009)	< (300 , 270, 330) MeV
1.8	2.6	> (25 , 27.5, 22.5) degree	> (0.001 , 0.0011, 0.0009)	< (300 , 270, 330) MeV
2.6	3.4	> (25 , 27.5, 22.5) degree	> (0.001 , 0.0011, 0.0009)	< (300 , 270, 330) MeV
3.4	4.6	> (20 , 27.5, 22.5) degree	> (0.001 , 0.0011, 0.0009)	< (300 , 270, 330) MeV

Data: Invariant Mass distribution of Carbon for (1.0 < t < 1.2)

Data: Invariant Mass distribution of Carbon for (1.8 < t < 2.6)

Variation in the Integral Range:

Range for calculating yields.

- > (0.62-0.92)
- > (0.54-0.92)
- > (0.66-0.92)
- (0.6-0.828)
- (0.6-1.012)

Current Status:

- Currently addressing systematic uncertainties.
- Next step: Reviewing background generator (bggen) data.
- Concurrently working on the analysis note.
- Also in progress: Documenting scripts.

PID Selection Timing Cuts

	Timing Offset				
Particle ID	BCAL/RF	TOF/RF	FCAL/RF	SC/RF	
Charged Pions	± 1.0 ns	± 0.5 ns	± 2.0 ns	± 2.5 ns	
Protons	± 1.0 ns	± 0.6 ns	± 2.0 ns	± 2.5 ns	

Particle ID	CDC dE/dx Cut (keV/cm)	Combined dE/dx Cut (FDC,SC,TOF)
Charged Pions	$(< 3 + \exp(-7 \mathbf{p}) + 6.2$	Not applied
Protons	$(> 2.25 + \exp(-4 \mathbf{p}) + 1$	Not applied

Kinfit and vertex cut

Missing Momentum

Plot: Missing Momentum distribution.

$$P_{\rm miss} = (E_{\rm miss}, \vec{p}_{\rm miss})$$

$$P_{\text{miss}} = (P_{\pi^+} + P_{\pi^-} + P_p - P_\gamma)$$

 P_{γ} : Four momentum of the photon beam,

 $P_{\pi^+}, P_{\pi^-}, P_p$: Four momenta of detected final state particles.

Looking for events only for the mean-field region.

Selecting missing momentum less than 300 MeV to remove events originating from the Short-Range Correlation(SRC) region.

Invariant Mass distribution of Reconstructed MC

Plot: Invariant Mass distribution of simulated events for helium targets before applying angular cuts on proton candidate

Invariant mass distribution after applying angular cuts on proton

Plot: Invariant mass distribution of simulated events for helium targets after applying selection cuts on proton candidate

