$\gamma p \rightarrow \gamma \gamma p$

Beam Asymmetry

Zhenyu Zhang, Wuhan University

Mar. 14, 2016 JEF Group Meeting

Acknowledgements: Justin Stevens, Dave Mack, Simon Taylor, Liping Gan, and Eugene Chudakov

Outline

- Data sets
- Events selection and variant Distributions
- Background study
- Systematic Study
- Beam Asymmetry
- Summary and next to do

Data sample

- Data: 2016 spring Run 10491-10498
 - ~500M events
 - Perp: 10492, 10494, 10496
 - Para: 10493, 10495, 10497, 10498
 - Amorphous: 10491
- Inclusive MC: 2016 spring Run 10000
 - ~? events

Events Selection for $\gamma p \to \gamma \gamma p$

Pre-selection conditions

- No kinematic fit
- $\Delta t = t_{\gamma \text{Max}} t_{\text{RF}} < 2.004 ns$

 $\Delta t = (t_{\rm TOF} - t_{\rm RF}) < 1.0$ ns $\Delta t = (t_{\rm BCAL} - t_{\rm RF}) < 10.0$ ns $\Delta t = (t_{\rm FCAL} - t_{\rm RF}) < 10.0$ ns

- p>0.25 GeV and 49<z<76 cm, r<1 cm
- minimum photon energy cut: 0.3GeV in the BCAL & 0.5GeV in the FCAL

Selection conditions

 $\begin{array}{ll} {\rm dE/dx} & |(\phi_{2\gamma}-\phi_p)-180.0| < 5.0\,^\circ & -0.01 < MM^2 < 0.01\,{\rm GeV^2} \\ -0.15 < ME < 0.65\,\,{\rm GeV} & BE > 4\,\,{\rm GeV} \\ {\rm UnusedEnergy} < 0.08\,\,{\rm GeV} & MM(\gamma p \rightarrow pX) > 0.85\,\,{\rm or} \ < 0.7\,\,{\rm GeV} \end{array}$

PID dE/dx cut : empirical exponential function veto $\pi/e/k$

Before Cut 0

After Cut 0

 $|(\phi_{2\gamma} - \phi_p) - 180.0| < 5.0^{\circ}$

Before Cut 2 After Cut 2 $-0.01 < MM^2 < 0.01 \text{ GeV}^2$

Before Cut 3 After Cut 3 -0.15 < ME < 0.65 GeV

Before Cut 4

After Cut 4

BE > 4 GeV

Before Cut 5

After Cut 5

UnusedEnergy < 0.08 GeV

Only two photons events are selected.

Cut flow:

Cuts number	Cuts conditions	Events in Data	Events in MC
No Cuts		2.2×10^8	2.8×10^8
Cut0	dE/dx cut	1.4×10^8	1.2×10^8
Cut1	$ (\phi_{2\gamma} - \phi_p) - 180.0 < 5.0$	$7.8 imes 10^6$	5.7×10^6
Cut2	$-0.01 < MM^2 < 0.01$	1.5×10^5	4.7×10^4
Cut3	-0.15 < ME < 0.65	$7.0 imes 10^4$	2.6×10^4
Cut4	BE > 4	4.0×10^4	2.3×10^4
Cut5	UnusedEnergy < 0.08	3.2×10^4	1.3×10^4
Cut6	$MM(\gamma p \rightarrow pX) > 0.85 \text{ or } < 0.7$	3.0×10^4	1.2×10^4

Bishnu's MC analysis

Simon's multi-photon analysis

Background study Definition of True Signal

- Two reconstructed photons matched to 2 generator level photons
- The first track is proton and only 2 generated photons in final states at generator level
- [Missing Mass squared(γp→γγp)] < 0.01 GeV at generator level (no extra generated particles in final state)
- True Beam particle (having correct beam photon which generates this event) for correct time of interaction.

Background study

hMass2gamma_Reaction

Background study

hMass2gamma_Reaction

Systematic Study

- A systematic study on the 2016 spring data Run 10389-10465 has been done and put in the docDB: <u>http://argus.phys.uregina.ca/cgi-bin/private/</u> <u>DocDB/ShowDocument?docid=2970</u>
- The systematic studies will be updated with the new data taking in this spring.

Understanding FCAL Splits theta1 vs theta2 with m_2g <0.04 GeV

Beam Asymmetry for π^0

24 hour data Run 10491-10498

 $P_{\perp}\Sigma = 0.47 \pm 0.04$

 $d\sigma_{\perp} \sim 1 - P_{\perp} \Sigma \cdot \cos 2\psi$

0

3.09

3.947

Beam Asymmetry for n

24 hour data Run 10491-10498

-t distributions for π^0 and η

Summary

- The variant distributions are compared between 2016 new data and new inclusive MC under different cut conditions.
- A primary background analysis shows the main background channels come from $p\pi^+\pi^-\pi^0$, $p\pi^0\pi^0$, $p\gamma\pi^0$.
- A first look on the systematic study on the new data has been done and will be updated with the new data taking.
- Beam asymmetry for π^0 and η photoproduction are studied. The parameter $P\Sigma = 0.39 \pm 0.03$ for π^0 and $P\Sigma = 0.4 \pm 0.1$ for η .
- -t distribution for π^0 shows a dip which is different from the one for $\eta.$

Next to do

- The timing cutting conditions studies
- The cutting conditions dependence
- Background studies
- Systematic studies
- Signal MC studies

Thanks