1. Reconciling the NN response plot from training with the classification of π^0 electrons *as pions* (bottom green plot).

2018 GlueX data containing Dalitz decay. Select for pions and see how many e+e- pairs from π^0 get through.

University of Massachusetts Amherst

xp/Np (N/l)

γ e⁺e⁻ kinfit invariant mass (GeV/c²)

1. Reconciling the NN response plot from training with the classification of π^0 electrons *as pions* (bottom green plot).

Forget about these plots/numbers. They are from an old NN where the training pions had no strict cuts on the rho0 invariant mass the training sample was likely riddled with e+e- contamination.

Let's do the study again with updated training!

Suppose we wanted to only look at pions with a NN response above 0.9. In the training sample, do we have perfect separation from electrons?

If we were to do the pi0 study again, where we classify the pi0->ge+e- peak, selecting for pions, how many misclassified electrons could we expect to see above 0.9?

Simulated electrons (used in training) MLP Neural net response values.

$$\frac{\int_{37}^{40} N_{BH}(x) dx}{\int_{1}^{40} N_{BH}(x) dx} = \frac{0.030926548}{39.999664} = 0.0010840325$$

University of Massachusetts

Amherst

Simulated positrons (used in training) MLP Neural net response values.

Likelihood of e- track getting misclassified as π - = 0.1% Likelihood of e+ track getting misclassified as π + = 0.06%

$0.1\% \times 0.06\% = 0.006\%$

Classifying pi0->ge+e-

Selecting	for Pions	
NN cut	omega->pi0pi+pi- (%)	pi0->ge+e- (%)
NN > 0.9	89.27888272	0
NN > 0.6	92.98702496	0
NN > 0.55	93.35576502	0.006298419097
NN > 0.4	94.32370768	0.01259683819

LIKELIHOOD OF MISCLASSIFICATION AT NN > 0.9 WAS $0.1\% \times 0.06\% = 0.006\%$ ZERO PI0 events surviving does not contradict this prediction.

Can actually set NN response cut for pions much lower than I originally thought.

Pions have a pileup under electron peak in two separate training sample sources (BH MC/rho vs omega/pi0)

a.) Are the number of events of the low NN response pions the same between the two training sample sources?

b.) Contamination? Physics?

LET'S CALL EVERYTHING BELOW BIN 5 THE "LOW NN RESPONSE REGION" OR NNR = 0.12

University of Massachusetts

Amherst

2. Low NN response PIONS

a.) Are the number of events of the low NN response pions the same between the two training sample sources?

Integral procedure: MVA response histograms have **40 bins**.

Background peak integral: bins 1 to 5 Signal peak integral: bins 31 to 40

I keep the bounds of integration the same for both rho0 and omega(782)

LET'S CALL EVERYTHING BELOW BIN 5 THE "LOW NN RESPONSE REGION" OR NNR = 0.12

University of Massachusetts

Amherst

Integration of 3 complementary regions: how many pion events have at least 1 track in the extreme e+e- NN response territory?

Trained on simulated BH pairs and $\rho^0 \rightarrow \pi^+\pi^-$ events Classifing $\omega(782) \rightarrow \pi^0\pi^+\pi^-$ events

University of Massachusetts Amherst

3.5% of events *need to be accounted for*.

1. Double low NN response

0.04 % of $\omega(782) \rightarrow \pi^0 \pi^+ \pi^-$ events have both tracks with low NN response values.

Let's assume (for no good reason other than playing a game) that this is contamination. Now 3.46% events need to be accounted for.

3.46% of events *need to be accounted for*.

2. One high NN response, one low. (NN1 > 0.9, NN2 < 0.12)

$$\frac{618 + 842}{43391} = 0.033647531$$

Let's assume (again, for no good reason) 3.3% of events have charge exchange reaction (π + or π -)

Now 0.16% of events need to be accounted for.

This leaves 0.16% of events left populating "no man's land"

2. "No man's land"

Massachusetts

Amherst

Actually let's pair 0.16% with the 0.04% that we called contamination into a 0.2% group

Is it reasonable?

3.3% total charge exchange reaction (π + and π -) 0.2% contamination/unknown

Selecting for Electrons			
NN cut	omega->pi0pi+pi- (%)	pi0->ge+e- (%)	
NN < 0.1	0.03917863151	89.98866285	
NN < 0.05	0.03456938075	78.32713989	
NN < 0.025	0.0276555046	57.59904264	
NN < 0.005	0.009218501533	5.375700699	

