Lepton Pair Production

Michael Roberts

July 30, 2015

Motivation

- An accurate calculation of the muon photoproduction cross section will be useful in normalizing the pion cross section.
- Lepton pair production can be used as a polarimeter for high energy photons.

Multi-photon Exchange Pair Production

FIG. 1. A diagram with N photons, exchanged in the t channel. Diagrams of this type contribute to the leading asymptotic of lepton pair production by a high energy photon.

Sudakov's Parameterization

Momenta are decomposed into the light-like vectors $k=\omega(1,1,0,0), \tilde{P}=(M / 2)(1,-1,0,0)$, and two-dimensional vectors transverse to the photon direction.

$$
\begin{aligned}
q & =\alpha_{q} k+\beta_{q} \tilde{P}+\mathbf{q} \\
p_{1} & =x_{1} k+y_{1} \tilde{P}+\mathbf{p}_{1} \\
p_{2} & =x_{2} k+y_{2} \tilde{P}+\mathbf{p}_{2}
\end{aligned}
$$

Amplitude

The amplitude for the single photon exchange pair production process can be obtained from the Feynmann rules:

$$
M_{1}=\frac{i e^{3}}{q^{2}} \bar{u}\left(p_{1}\right)\left[\notin \frac{1}{k-\not p_{1}-m} \gamma^{\mu}+\gamma^{\mu} \frac{1}{k-\not p_{2}-m} \notin\right] v\left(p_{2}\right)\left(\bar{\Psi}\left(P^{\prime}\right) \gamma_{\mu} \Psi(P)\right)
$$

The result for the N photon exhange is

$$
M_{N}=-i^{N} s \frac{8 \pi^{2}(e Z)^{N}}{N!} \int \prod_{i=1}^{N} \frac{\mathrm{~d}^{2} q_{i}}{(2 \pi)^{2}} \frac{F\left(q_{i}^{2}\right)}{\mathbf{q}_{i}^{2}} \delta^{(2)}\left(\Sigma q_{i}-q\right) J_{\gamma \rightarrow l l^{\prime}}^{(N)}
$$

The factor $J_{\gamma \rightarrow l l^{\prime}}^{(N)}$ is called the impact factor:

The functions $S^{(N)}$ and $\vec{T}^{(N)}$ satisfy recursion relations. From $J_{\gamma \rightarrow l l^{\prime}}^{(N)}$ we form the following functions

$$
\begin{aligned}
J_{S}^{(N)} & =\int \prod_{i=1}^{N} \frac{\mathrm{~d}^{2} q_{i} F\left(q_{i}^{2}\right)}{\mathbf{q}_{i}^{2}} S^{(N)} \delta^{(2)}\left(\Sigma \mathbf{q}_{i}-\mathbf{q}\right) \\
\vec{J}_{T}^{(N)} & =\int \prod_{i=1}^{N} \frac{\mathrm{~d}^{2} q_{i} F\left(q_{i}^{2}\right)}{\mathbf{q}_{i}^{2}} \vec{T}^{(N)} \delta^{(2)}\left(\Sigma \mathbf{q}_{i}-\mathbf{q}\right)
\end{aligned}
$$

The recursion relations depend on the function

$$
\phi\left(\mathbf{r}_{1}, \mathbf{r}_{2}\right)=\frac{1}{\pi} \int\left(\mathrm{e}^{i q \cdot r_{2}}-\mathrm{e}^{i q \cdot r_{1}}\right) \frac{\mathrm{d}^{2} q F\left(q^{2}\right)}{\mathbf{q}^{2}}
$$

Form Factors

For a point-like Coloumb nucleus, $F\left(q^{2}\right)=1$ and $\phi^{c}=\ln \left(\frac{\mathbf{r}_{1}^{2}}{\mathbf{r}_{2}^{2}}\right)$.

Including the atomic screening by the Moliere approximation

$$
\begin{aligned}
\frac{F\left(q^{2}\right)}{\mathbf{q}^{2}} & =\frac{1-F_{A}}{\mathbf{q}^{2}}=\sum_{i=1}^{3} \frac{\alpha_{i}}{\mu_{i}^{2}+\mathbf{q}^{2}} \\
\phi\left(\mathbf{r}_{1}, \mathbf{r}_{2}\right) & =2 \sum_{i=1}^{3} \alpha_{i}\left(K_{0}\left(\mu_{i}\left|\mathbf{r}_{2}\right|\right)-K_{0}\left(\mu_{i}\left|\mathbf{r}_{1}\right|\right)\right)
\end{aligned}
$$

Also the nuclear charge form factor can be included $F_{N}\left(q^{2}\right)=\frac{1}{6} q^{2}<r^{2}>_{A}$, where $<r^{2}>_{A}$ is the mean square radius of the nucleus.

Cross Section

The resulting cross section is

$$
\begin{aligned}
\mathrm{d} \sigma & =\frac{2 \alpha \nu^{2}}{\pi^{2}}\left[W_{u n p}+\xi_{3} W_{p o l} \cos (2 \varphi)\right] \mathrm{d} x \mathrm{~d}^{2} p_{1} \mathrm{~d}^{2} p_{2} \\
W_{u n p} & =\left.\left[x^{2}+(1-x)^{2}\right]\left|\vec{J}_{\left.T\right|^{2}}+m^{2}\right| J_{s}\right|^{2} \\
W_{\text {pol }} & =-2 x(1-x)\left|\vec{J}_{T}\right|^{2}
\end{aligned}
$$

To determine the cross section, the following functions will be numerically calculated:

$$
\begin{aligned}
J_{s}\left(\mathbf{p}_{1}, \mathbf{p}_{2}\right) & =\frac{i}{2 \nu} \int \frac{\mathrm{~d}^{2} r_{1} \mathrm{~d}^{2} r_{2}}{(2 \pi)^{2}} \mathrm{e}^{-i\left(p_{1} \cdot r_{1}+p_{2} \cdot r_{2}\right)} K_{0}\left(m\left|\mathbf{r}_{1}-\mathbf{r}_{2}\right|\right) \nu\left[\mathrm{e}^{-i \nu \phi}-1\right] \\
\vec{J}_{T}\left(\mathbf{p}_{1}, \mathbf{p}_{2}\right) & =\frac{-1}{2 \nu} \int \frac{\mathrm{~d}^{2} r_{1} \mathrm{~d}^{2} r_{2}}{(2 \pi)^{2}} \mathrm{e}^{-i\left(p_{1} \cdot r_{1}+p_{2} \cdot r_{2}\right)} \frac{m\left(\mathbf{r}_{1}-\mathbf{r}_{2}\right)}{2\left|\mathbf{r}_{1}-\mathbf{r}_{2}\right|} K_{1}\left(m\left|\mathbf{r}_{1}-\mathbf{r}_{2}\right|\right)\left[\mathrm{e}^{-i \nu \phi}-1\right]
\end{aligned}
$$

Algorithm

- Break $J_{S}\left(\mathbf{p}_{1}, \mathbf{p}_{2}\right)$ into its real and imaginary parts:

$$
\begin{aligned}
& \operatorname{Re} J_{S}=\frac{1}{8 \pi} \int \mathrm{~d}^{2} r_{1} \mathrm{~d}^{2} r_{2} K_{0}\left(m\left|r_{1}-r_{2}\right|\right)(\sin \alpha(\cos \nu \phi-1)+\cos \alpha \sin \nu \phi) \\
& I m J_{s}=\frac{1}{8 \pi} \int \mathrm{~d}^{2} r_{1} \mathrm{~d}^{2} r_{2} K_{0}\left(m\left|r_{1}-r_{2}\right|\right)(\cos \alpha(\cos \nu \phi-1)-\sin \alpha \sin \nu \phi)
\end{aligned}
$$

- Select values of \mathbf{p}_{1} and \mathbf{p}_{2}
- for (lowerLimit $<i, j, k, l<$ upperLimit)

Compute $\alpha=\mathbf{p}_{1} \cdot r_{1}+\mathbf{p}_{2} \cdot r_{2}$
Get values of K_{0} from a look-up table $R e J_{s}+=(\Delta r)^{4} * \ldots$

References

囯 S．Bakmaev et al．Physics Letters B 660， 494 （2008）．
䍰 A．Korchin．Kharkov Institute of Physics and Technology， Ukraine．

圃 D．Ivanov and K．Melnikov．Phys．Rev．D 57， 4025 （1998）．

