```
for(UInt_t LOC_i = O; LOC__ < Get_NumCombos(); ++LOC_i)
    dComboWrapper->Set comboIndex(Loc_i);
    if(dCombowrapper - >G Get_IsComboCut (\overline{)}
    continue;
```



```
        l/step O
    Int_t locBeamID = dComboBeamWrapper->Get_BeamID()
    Int_t locPiPlusTrackID = dPiPluswrapper->Get_TrackID()
    Int_t locPiMinusTrackID = dPiMinusWrapper->Get_TrackID()
    Int_t locProtonTrackID = dProtonWrapper->Get_TrackID()
    l*********************************************** GET FOMUR-MOMENTUM
    //Get P4's: //is kinfit if kinfit performed, else is measured
    //dTargetP4 is target p4
    /step O
    TLorentzVector locBeamP4= dComboBeamWrapper->Get_p4()
    TLorentzVector locPiPlusP4 = dPiPluswrapper->Get.P4 ()
    TLorentzVector locPiMinusP4 = dPiMinuswrapper->Get_P4()
    TLorentzVector locProtonP4 = dProtonWrapper->Get _P4()
    TLorentzVector LocMissingNeutronP4 = dMissingNeutronWrapper->Get_p4();
    /l Get Measured P4's:
    /step O
    TLorentzVector LocBeamP4 Measured = dComboBeamWrapper->Get p4 Measured();
    TLorentzVector locPiPlusp4_Measured = dPiPlusWrapper->Get_p4_Measured();
    TLorentzVector locPiMinusP4 Measured = dPiMMinuswrapper->Get_p4_Measured();
    TLorentzVector LocProtonP4_Measured = dProtonWrapper->Get_p4_Measured();
TLorentzVector locPiPlusX4_Measured = dPiPluswrapper->Get_X4_Measured();
TLorentzvector locPiMinus\times4_Measured = dPiMinuswrapper->Get_X4_Measured();
TLorentzVector LocProton\times4 Measured = dProtonWrapper->Get X4 Measured();
```


Accidental Subtraction

```
TLorentzVector locBeamX4_Measured = dComboBeamWrapper->Get_X4_Measured();
TLorentzVector locBeamX4 =dComboBeamWrapper->Get_X4();
Double t locBunchPeriod = dAnalysisUtilities.Get BeamBunchPeriod(Get RunNumber());
    Double t locDeltaT_RF = dAnalysisUtilities.Get_DeltaT_RF(Get_RunNumber(), locBeamX4_Measured, dComboWrapper);
    Int_t locRelBeamBucket = dAnalysisUtilities.Get_RelativeBeamBucket(Get_RunNumber(), locBeamX4_Measured, dComboWrapper); // 0 for in-ti
    Int_t locNumOutOfTimeBunchesInTree = 4; //YOU need to specify this number
    //Number of out-of-time beam bunches in tree (on a single side, so that total number out-of-time bunches accepted is 2 times this num
    Bool_t locSkipNearestOutOfTimeBunch = true; // True: skip events from nearest out-of-time bunch on either side (recommended)
    Int }\overline{t}\mathrm{ locNumOutOfTimeBunchesToUse = locSkipNearestOutOfTimeBunch ? locNumOutOfTimeBunchesInTree-1:locNumOutOfTimeBunchesInTree;
    Double t locAccidentalScalingFactor = dAnalysisUtilities.Get AccidentalScalingFactor(Get RunNumber(), locBeamP4.E(), dIsMC); // Ideal
    Double_t locAccidentalScalingFactorError = dAnalysisUtilities.Get_AccidentalScalingFactorError(Get_RunNumber(), locBeamP4.E()); // Ide
    Double_t locAccWeight = locRelBeamBucket==0 ? 1 : -locAccidentalScalingFactor/(2*locNumOutOfTimeBunchesToUse); // Weight by 1 for in
    if(loc\overline{SkipNearestOutOfTimeBunch && abs(locRelBeamBucket)==1) { // Skip nearest out-of-time bunch: tails of in-time distribution also}
    dComboWrapper->Set IsComboCut(true);
    continue;
}
```


Defining Variable of our interest

```
/*********************************************** COMBINE FOUR-MOMENTUM
// Combine 4-vectors
TLorentzVector locMissingP4 Measured = locBeamP4 Measured + dTargetP4;
locMissingP4_Measured -= locPiPlusP4_Measured + locPiMinusP4_Measured + locProtonP4_Measured;
//Kinfit
TLorentzVector locMissingP4 = locBeamP4 + dTargetP4;
locMissingP4 -= locPiPlusP4 + locPiMinusP4 + locProtonP4;
///////////////////Measured Value/////////////////////////
TLorentzVector locPimProt_Measured = locPiMinusP4_Measured +locProtonP4_Measured;
TLorentzVector locPipProt Measured = locProtonP4 Measured+locPiPlusP4 Measured;
TLorentzVector loc2Pi_Measured = locPiPlusP4_Measured +locPiMinusP4_Measured;
    ////////////////////////////Kinfit///////////////////////
TLorentzVector locPimProt = locPiMinusP4 +locProtonP4;
TLorentzVector locPipProt = locProtonP4+locPiPlusP4;
TLorentzVector loc2Pi = locPiPlusP4 +locPiMinusP4
```


Applying Vertex and Energy Cut

```
    /****************************************** EXAMPLE: PID CUT ACTION **************************************************/
    if (fabs(locBeamX4.Z() - 65) > 13)
    dComboWrapper->Set_IsComboCut(true)
    continue;
    }
    if (fabs(locProtonX4_Measured.Z() - 65) > 13)
    dComboWrapper->Set_IsComboCut(true);
    continue;
    }
if(sqrt(pow(locBeamX4.X(),2) + pow(locBeamX4.Y(),2)) > 1.0)
    {
    dComboWrapper->Set_IsComboCut(true);
    continue;
    }
```

```
if (locBeamP4.E() < 6.5)
dComboWrapper->Set IsComboCut(true)
continue;
```


Defining variable and cuts

```
//Variable Define:
// double locKinFit = dComboWrapper->Get_ConfidenceLevel_KinFit("");
//double BeamVertex = locBeamX4.Z();
double minus t = -((locBeamP4 - loc2Pi).M2());
double minus u = -((locBeamP4 - locProtonP4).M2());
double RadToDeg = (180.0/TMath::Pi());
double Coplaniraty = (fabs(loc2Pi.Phi()-locProtonP4.Phi())*RadToDeg);
    Bool_t KinFitcut = (locKinFit_CL > 0.005);
//Bool_t BeamEnergycut =(locBeamP4.E() > 6.5)
Bool t MissingMassSquaredcut = (locMissingP4_Measured.M2() > 0.5) && (locMissingP4_Measured.M2() < 1.3);
Bool_t PipProtcut = (locPipProt_Measured.M()}>> 1.8)
Bool_t PimProtcut = (locPimProt_Measured.M() > 1.8);
Bool_t PipPimcut = (loc2Pi_Measured.M() > 0.62) && (loc2Pi_Measured.M()< 0.92);
Bool t Coplaniratycut = (Coplaniraty > 165) && (Coplaniraty < 195);
Bool_t MissingEnergycut = (locMissingP4_Measured.E() > 0.65) && (locMissingP4_Measured.E() < 1.3);
    Bool_t FittedMasscut = (locPipProt.M() > 1.8) && (locPimProt.M() > 1.8);
    // Bool t Neutralcut = (locMissingNeutronP4.P()< 0.3);
Bool_t tcut_118=(fabs(minus_t)> 1) && (fabs(minus_t) < 18);
Bool_t ucut = (fabs(minus_u) > 1) && (fabs(minus_u) < 18)
Bool_t tcut_12 = (fabs(minus t) > 1) && (fabs(minus t) < 1.5);
Bool_t tcut_23 = (fabs(minus_t) > 1.5) && (fabs(minus_t) < 2);
Bool_t tcut_34=(fabs(minus_t) > 2) && (fabs(minus_t) < 4);
Bool_t tcut_45 = (fabs(minus_t) > 4) && (fabs(minus_t) < 18);
```


Filling Histogram

```
//Histogram beam energy (if haven't already)
    if(locUsedSoFar_BeamEnergy.find(locBeamID) == locUsedSoFar_BeamEnergy.end())
    {
        dHist_BeamEnergy->Fill(locBeamP4.E(),locAccWeight);
        dHist_BeamEnergy_Measured->Fill(locBeamP4_Measured.E(),locAccWeight);
        dHist_ME_Measured->Fill(locMissingP4_Measured.E(),locAccWeight);
        locUsedSoFar_BeamEnergy.insert(locBeamID);
    }
```


Filling Invariant Mass and |t| distribution

```
map<Particle_t, set<Int_t> > locUsedThisCombo_MissingMass;
locUsedThisCombo_MissingMass[Unknown].insert(locBeamID); //beam
locUsedThisCombo_MissingMass[PiPlus].insert(locPiPlusTrackID);
locUsedThisCombo_MissingMass[PiMinus].insert(locPiMinusTrackID);
locUsedThisCombo_MissingMass[Proton].insert(locProtonTrackID);
//compare to what's been used so far
if(locUsedSoFar_MissingMass.find(locUsedThisCombo_MissingMass) == locUsedSoFar_MissingMass.end())
    {
    if (tcut_118 && ucut &&Coplaniratycut && FittedMasscut && MissingMassSquaredcut && KinFitcut && MissingEnergycut)
    {
        //dHist MM2 Measured_1->Fill(locMissingP4 Measured.M2(),locAccWeight);
        //dHist MM2 Measured_1->Fill(locMissingP4.M2(),locAccWeight);
    dHist_2Pi_Measured_1->Fill(loc2Pi_Measured.M(),locAccWeight);
    dHist_2Pi_1->Fill(loc2Pi.M(), locAcchWeight);
    dHist_t 1->Fill(minus_t,locAccWeight);
    dHist_ME Measured_1->Fill(locMissingP4_Measured.E(),locAccWeight);
    //dHist_ME_Measured_1->Fill(locMissing\overline{P}4.E(),locAccWeight);
```

