$$P_{\sigma} = \frac{\sigma^N - \sigma^U}{\sigma^N + \sigma^U} \,.$$

At high energies

$$P_{\sigma} = 2\rho_{1}^{1} - \rho_{00}^{1} . \tag{4}$$

Note that P_{σ} is invariant under rotations around the normal to the production plane; e.g., it is the same in the three systems described above. We also point out that P_{σ} is sensitive to possible ρ^{0} helicity or spin-flip terms (contributing to ρ_{00}^{1}) which are not usually measured in counter experiments. Counter experiments of the type of Refs. 40 and 41 measure the asymmetry Σ defined as

$$\Sigma = \frac{\sigma_{\parallel} - \sigma_{\perp}}{\sigma_{\parallel} + \sigma_{\perp}} = \frac{\rho_{\perp 1}^{1} + \rho_{\perp}^{1}}{\rho_{\perp 1}^{0} + \rho_{\perp}^{0}} \,. \tag{5}$$

Here σ_{\parallel} and σ_{\perp} are the cross sections for the pions from symmetric ρ decay $(\theta = \frac{1}{2}\pi, \phi = \frac{1}{2}\pi)$ to emerge in the plane of the photon polarization $(\Phi = \frac{1}{2}\pi)$ and perpendicular to it $(\Phi = 0)$. When the helicity-flip terms, ρ_{00}^1 , ρ_{11}^1 , ρ_{00}^0 , ρ_{1-1}^0 are zero, Σ is equal to P_{σ} .

The ρ^0 decay distribution may be simplified if we use the angle $\Psi = \phi - \Phi$ which, in the forward direction, is the angle between the photon polarization and the ρ^0 decay plane. If the ρ^0 production mechanism conserves *s*-channel helicity, i.e., the ρ is transverse and linearly polarized like the photon, then in the helicity system

$$\rho_{1-1}^{1} = -\mathrm{Im}\rho_{1-1}^{2} = \frac{1}{2} \tag{6}$$

and all other ρ_{ik}^{α} in Eq. (2) are 0. In these circumstances Ψ is the azimuthal angle in the helicity system of the decay π^+ with respect to the ρ^0 polarization plane and the decay angular distribution is proportional to $\sin^2\theta\cos^2\Psi$. The distribution of Ψ is also related to P_{σ} if the helicity-flip terms are zero: For 100% linear polarization the decay is $\sin^2\theta\cos^2\Psi$ for $P_{\sigma} = +1$ while for $P_{\sigma} = -1$ the decay distribution is $\sin^2\theta\sin^2\Psi$.

4. The Moments, Y_{l}^{m} , of the Dipion System

Figure 13 shows the distributions of the polar angle θ and the angle Ψ in the helicity system for events in the ρ^0 mass region (0.60–0.85 GeV) with |t|<0.4 GeV². This figure shows that the ρ^0 decay has a simple description in terms of θ and Ψ in the helicity system, viz., the ρ^0 is well described by a $\sin^2\theta \cos^2\Psi$ angular distribution for |t|<0.4 GeV². Consequently, in order to give an over-all description of the characteristics of the decay angular distribution of the $\pi^+\pi^-$ system, we present in Fig. 14 the moment sums, $\sum \operatorname{Re} Y_{l}^{m}(\theta, \Psi)$, of the $\pi^+\pi^$ system in the helicity frame as a function of $\pi^+\pi^$ mass for |t|<0.4 GeV². Only those moments are

1.0 0.6 cos θ_{H} 0.2 -0.2 - 0.6 -1.0 0° 90° 270° 360 1809 40 20 0 8 Ψ_{H} NUMBER OF EVENTS/0.05 70 NUMBER OF EVENTS/10° 0 2 0 0 0 0 0 0 (a) γp→ pπ+π E_γ=2.8 GeV $0.60 < M_{\pi\pi} < 0.85 \text{ GeV}$ 0.02<111<0.4 GeV2 1236 EVENTS 0 0° 909 270° 360 180° Ψ_{H} 1.0 0.6 cos BH 0.2 -0.2 -0.6 -1.00 909 270° 360° 0 180° 6 20 80 NUMBER OF EVENTS/0.05 Ψ_{H} 80 NUMBER OF EVENTS/104 (b) $\gamma p \rightarrow p \pi^+ \pi^-$ 60 E₂=4.7 GeV $0.60 < M_{\pi\pi} < 0.85 \text{ GeV}$ 40 0.02<111<0.4 GeV2 20 1457 EVENTS 0 0° 90° 180° 270° 360 Ψ_{H}

FIG. 13. Reaction $\gamma p \rightarrow p \rho^0$ at (a) 2.8 GeV and (b) 4.7 GeV, respectively. ρ -decay angular distributions in the helicity system without background subtraction. The curves are proportional to $\sin^2 \theta_H$ and $(1 + P_{\gamma} \cos 2\Psi_H)$.

shown which have a significant deviation from zero in either the 2.8- or 4.7-GeV data; other moments can be found in Ref. 17. From the moments we conclude that:

(a) Strong Y_2^0 and Y_2^2 moments are present in the ρ^0 region which follow the asymmetric ρ^0 shape. This and the small values of higher even moments demonstrates that *it is the p-wave part of the mass*

564