$$
P_{\sigma}=\frac{\sigma^{N}-\sigma^{U}}{\sigma^{N}+\sigma^{U}} .
$$

At high energies

$$
\begin{equation*}
P_{\sigma}=2 \rho_{1-1}^{1}-\rho_{00}^{1} . \tag{4}
\end{equation*}
$$

Note that P_{σ} is invariant under rotations around the normal to the production plane; e.g., it is the same in the three systems described above. We also point out that P_{σ} is sensitive to possible ρ^{0} helicity or spin-flip terms (contributing to ρ_{00}^{1}) which are not usually measured in counter experiments. Counter experiments of the type of Refs. 40 and 41 measure the asymmetry Σ defined as

$$
\begin{equation*}
\Sigma=\frac{\sigma_{\| 1}-\sigma_{\perp}}{\sigma_{11}+\sigma_{\perp}}=\frac{\rho_{11}^{1}+\rho_{1-1}^{1}}{\rho_{11}^{0}+\rho_{1-1}^{0}} . \tag{5}
\end{equation*}
$$

Here $\sigma_{\|}$and σ_{\perp} are the cross sections for the pions from symmetric ρ decay ($\theta=\frac{1}{2} \pi, \quad \phi=\frac{1}{2} \pi$) to emerge in the plane of the photon polarization ($\Phi=\frac{1}{2} \pi$) and perpendicular to it ($\Phi=0$). When the helicity-flip terms, $\rho_{00}^{1}, \rho_{11}^{1}, \rho_{00}^{0}, \rho_{1-1}^{0}$ are zero, Σ is equal to P_{σ}.
The ρ^{0} decay distribution may be simplified if we use the angle $\Psi=\phi-\Phi$ which, in the forward direction, is the angle between the photon polarization and the ρ^{0} decay plane. If the ρ^{0} production mechanism conserves s-channel helicity, i.e., the ρ is transverse and linearly polarized like the photon, then in the helicity system

$$
\begin{equation*}
\rho_{1-1}^{1}=-\operatorname{Im} \rho_{1-1}^{2}=\frac{1}{2} \tag{6}
\end{equation*}
$$

and all other $\rho_{i k}^{\alpha}$ in Eq. (2) are 0 . In these circumstances Ψ is the azimuthal angle in the helicity system of the decay π^{+}with respect to the ρ^{0} polarization plane and the decay angular distribution is proportional to $\sin ^{2} \theta \cos ^{2} \Psi$. The distribution of Ψ is also related to P_{σ} if the helicity-flip terms are zero: For 100% linear polarization the decay is $\sin ^{2} \theta \cos ^{2} \Psi$ for $P_{\sigma}=+1$ while for $P_{\sigma}=-1$ the decay distribution is $\sin ^{2} \theta \sin ^{2} \Psi$.

4. The Moments, Y_{l}^{m}, of the Dipion System

Figure 13 shows the distributions of the polar angle θ and the angle Ψ in the helicity system for events in the ρ^{0} mass region ($0.60-0.85 \mathrm{GeV}$) with $|t|<0.4 \mathrm{GeV}^{2}$. This figure shows that the ρ^{0} decay has a simple description in terms of θ and Ψ in the helicity system, viz., the ρ^{0} is well described by a $\sin ^{2} \theta \cos ^{2} \Psi$ angular distribution for $|t|<0.4 \mathrm{GeV}^{2}$. Consequently, in order to give an over-all description of the characteristics of the decay angular distribution of the $\pi^{+} \pi^{-}$system, we present in Fig. 14 the moment sums, $\sum \operatorname{Re} Y_{l}^{m}(\theta, \Psi)$, of the $\pi^{+} \pi^{-}$ system in the helicity frame as a function of $\pi^{+} \pi^{-}$ mass for $|t|<0.4 \mathrm{GeV}^{2}$. Only those moments are

(a) $\gamma p-p \pi^{+} \pi^{-}$
$\mathrm{E}_{\boldsymbol{\gamma}}=2.8 \mathrm{GeV}$
$0.60<M_{\pi \pi}<0.85 \mathrm{GeV}$
$0.02<1+1<0.4 \mathrm{GeV}^{2}$ 1236 EVENTS

> (b) $\gamma \mathrm{p} \rightarrow \mathrm{p} \pi^{+} \pi^{-}$ $\mathrm{E}_{\gamma}=4.7 \mathrm{GeV}$
> $0.60<\mathrm{M}_{\pi} \pi^{<}<0.85 \mathrm{GeV}$ $0.02<1 \mid 1<0.4 \mathrm{GeV}^{2}$ 1457 EVENTS

FIG. 13. Reaction $\gamma p \rightarrow p \rho^{0}$ at (a) 2.8 GeV and (b) 4.7 GeV , respectively. ρ-decay angular distributions in the helicity system without background subtraction. The curves are proportional to $\sin ^{2} \theta_{H}$ and $\left(1+P_{\gamma} \cos 2 \Psi_{H}\right)$.
shown which have a significant deviation from zero in either the 2.8 - or $4.7-\mathrm{GeV}$ data; other moments can be found in Ref. 17. From the moments we conclude that:
(a) Strong Y_{2}^{0} and Y_{2}^{2} moments are present in the ρ^{0} region which follow the asymmetric ρ^{0} shape. This and the small values of higher even moments demonstrates that it is the p-wave part of the mass

