Expected sensitivity on the coupling between quarks and a dark scalar gauge boson

Igal Jaeglé

Thomas Jefferson National Accelerator Facility

for the GlueX and JEF experiments

08.05.2020

Table of contents

Baryonic fine structure constant

Baryonic fine structure constant

 $\alpha_{B'}$ using the equation for the partial width ratio $\Gamma(\eta \to B'\gamma)/\Gamma(\eta \to \gamma\gamma)$ from S. Tulin, PRD 89, 114008 (2014) as:

$$\alpha_{U'} = \left[\frac{\alpha}{2} \left(1 - \frac{m_{B'}^2}{m_{\eta}^2} \right)^{-3} \middle| \mathcal{F}(m_{B'}^2) \middle|^{-2} \frac{1}{\mathcal{B}(B' \to \pi^0 \gamma)} \right]$$

$$\times \left[\frac{\Gamma(\eta \to \gamma \pi^0 \gamma)}{\Gamma(\eta \to \gamma \gamma)} \right]$$

$$\times \left[\frac{\Gamma(\eta \to B' \gamma \to \gamma \pi^0 \gamma)}{\Gamma(\eta \to \pi^0 \gamma \gamma)} \right],$$

$$(1)$$

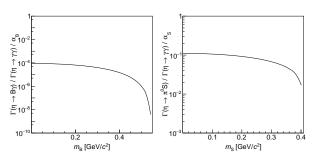
where α is the electromagnetic fine structure constant. The first factor in Eq. (1), which is purely theoretical, contains the phase space, the form factor $\mathcal{F}(m_{U'}^2)$, and the branching fraction of $B' \to \pi^0 \gamma$ decay. The branching fraction provided in S. Tulin. The second factor is obtained from the latest measurements PDG. The third factor is determined from the η and B' yields and reconstruction efficiencies $(N_{B'}/\varepsilon(\eta \to B'\gamma \to \pi^0\gamma\gamma))/(N_{\eta}/\varepsilon(\eta \to \pi^0\gamma\gamma))$.

Baryonic fine structure constant

 $lpha_S$ using the equation for the partial width ratio $\Gamma(\eta o S\pi^0)/\Gamma(\eta o \gamma\gamma)$

$$\alpha_{S} = \left[\frac{\alpha}{2} \left(1 - \frac{m_{S}^{2}}{m_{\eta}^{2}} \right)^{-3} \middle| \mathcal{F}(m_{S}^{2}) \middle|^{-2} \frac{1}{\mathcal{B}(S \to \gamma \gamma)} \right]$$

$$\times \left[\frac{\Gamma(\eta \to \gamma \pi^{0} \gamma)}{\Gamma(\eta \to \gamma \gamma)} \right]$$

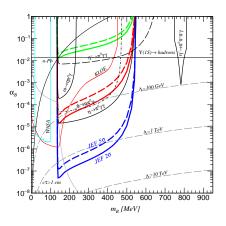

$$\times \left[\frac{\Gamma(\eta \to S \pi^{0} \to \gamma \pi^{0} \gamma)}{\Gamma(\eta \to \pi^{0} \gamma \gamma)} \right],$$
(2)

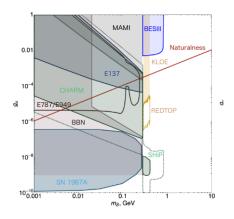
where α is the electromagnetic fine structure constant. The first factor in Eq. (2), which is purely theoretical, contains the phase space, the form factor $\mathcal{F}(m_S^2)$, and the branching fraction of $S \to \gamma \gamma$ decay. The branching fraction provided in arXiv:1812.05103v1. The second factor is obtained from the latest measurements PDG. The third factor is determined from the η and S yields and reconstruction efficiencies $(N_S/\varepsilon(\eta \to S\pi^0 \to \pi^0\gamma\gamma))/(N_\eta/\varepsilon(\eta \to \pi^0\gamma\gamma))$.

Recasting

$$\frac{\alpha_{S}}{\alpha_{B'}} = \left[\frac{\mathcal{B}(B' \to \pi^{0} \gamma)}{\mathcal{B}(S \to \gamma \gamma)} \right] \\
\times \left[\frac{\Gamma(\eta \to S\pi^{0} \to \gamma \pi^{0} \gamma)}{\Gamma(\eta \to B' \gamma \to \gamma \pi^{0} \gamma)} \right] \\
\times \left[\frac{\Delta M_{\gamma \gamma}}{\Delta M_{\gamma \pi^{0}}} \right]^{1/4}$$
(3)

The first term can be considered equal to 1.




Expected sensitivity

• Red curve: α_S

• Green curve: $g_u = \sqrt{4\pi\alpha_S}$

Appears not competitif wrt BESIII

