Update on the efficiency calculation of $(\gamma d \rightarrow \rho^0 p(n) \text{ and } (\gamma he4 \rightarrow \rho^0 p(trit) \text{ processes, and their ratio})$

Bhesha Devkota

Efficiency calculation

MethodA

- Obtain a |t| distribution for both the thrown and observed simulations for the mass range of [0.6 < Mrho <0.92].</p>
- Calculate the ratio of the |t| distribution to obtain the efficiency as a function of |t|.
 Thrown Data: Observed simulation
- Using mc_thrown plugin
- Generator: MF
- |t| > 0.7 && |u| > 0
- > In Selector |t| > 1 && |u| > 1

:Using Reactor_filter plugin

- :Generator: MF
- :|t| > 0.7 && |u| >0
 - In Dselector:: same cut applied on data

A. Efficiency for deuterium as a function of |t|.

Efficiency for deuterium as a function of |t|.

Ratio of efficiency between deuterium and helium

Calculation of efficiency from invariant mass of rho0

- My range for |t| distribution are as follows.
- ▶ 1 < |t| <= 1.5
- ▶ 1.5 <|t| <= 2
- ≻ 2 <|t| <= 3
- ≻ 3 <|t| <= 5
- ≻ 5 <|t| <= 9
- > $Efficiency_{helium}/Efficiency_{deuterium} = (observed_{he}/thrown_{he})/(observed_D/thrown_D)$

Yield of invariant mass of observed simulation Deuterium.

Yield of invariant mass of observed simulation Helium.

Ratio of efficiency He4/D

Efficiency ratio He⁴/D function of invariant mass and |t|