
Swimming Downstream
Plans for Topics in GlueX Tracking

Mark M. Ito

Jefferson Lab

December 7, 2007

M. Ito (JLab) Swimming Downstream December 7, 2007 1 / 15



Overview

Overall goal: least-squares track fitting framework
I non-uniform magnetic field
I geometry independent

swimming

fitting

M. Ito (JLab) Swimming Downstream December 7, 2007 2 / 15



choices for swimming

EGS

geant3

geant4

DTrajectory

google

M. Ito (JLab) Swimming Downstream December 7, 2007 3 / 15



Michel’s scheme
F. Curtis Michel, “Numerical integration of trajectories in static magnetic
fields,” http://cnx.org/content/m12765/latest/
Start with Eq. (1) of Ref. 1.

F = e(E + v × B)

If E = 0
dp

dt
= e(v × B)

Also
p = γmv.

If we let k1 = e∆t/γm then

∆v = k1(v̄ × B)

where ∆v = v′ − v and v̄ = (v′ + v)/2. If we define the vector k = k1B/2,
then

v′ = v + [(v′ + v)× k]

M. Ito (JLab) Swimming Downstream December 7, 2007 4 / 15



the x-component of this equation is

v ′x = vx + (v ′y + vy )kz − (v ′z + vz)ky

recovering eq. (24) of Ref. 1. Rewriting this as

v ′x − v ′ykz + v ′zky = vx + vykz − vzky

we note that all three components in matrix notation can be written as 1 −kz ky

kz 1 −kx

−ky kx 1

 v ′x
v ′y
v ′z

 =

 1 kz −ky

−kz 1 kx

ky −kx 1

 vx

vy

vz


recovering Eq. (25) (without the typo). We can write this as

(I + A)v′ = (I − A)v

where the anti-symmetric matrix

A =

 0 −kz ky

kz 0 −kx

−ky kx 0


and I is the identity matrix.

M. Ito (JLab) Swimming Downstream December 7, 2007 5 / 15



Let M = (I + A)−1(I − A) and v = (r1 − r0)/∆t and v′ = (r2 − r1)/∆t.
Then we have

r2 = r1 + M(r1 − r0)

which we can iterate.
comments:

more accurate than Rutta-Kunge

simple implementation

time-of-flight info for free

M. Ito (JLab) Swimming Downstream December 7, 2007 6 / 15



B = 4 T, p = 1 GeV/c , x vs. z

M. Ito (JLab) Swimming Downstream December 7, 2007 7 / 15



B = 4 T, p = 1 GeV/c , y vs. z

M. Ito (JLab) Swimming Downstream December 7, 2007 8 / 15



B = 4 T, p = 1 GeV/c , x vs. y

M. Ito (JLab) Swimming Downstream December 7, 2007 9 / 15



MyTrajectory C++ class

base class

class MyTrajectory {
public:
MyTrajectory();
void swim(HepVector startingPoint,

double theta, double phi);
double doca(HepVector& spacePoint);

...

derived class

class MyTrajectoryHelix : public MyTrajectory {
public:
MyTrajectoryHelix(HepVector B);
void swim(double charge, HepVector startingPoint,

double p, double theta, double phi);
...

M. Ito (JLab) Swimming Downstream December 7, 2007 11 / 15



swimming future

B-field map

comparison with others methods

M. Ito (JLab) Swimming Downstream December 7, 2007 12 / 15



fitting: distance of closest approach (DOCA) member
function

iterated parabolic
interpolation

I independent of
functional form

point-to-trajectory
done

I good for FDC
pseudo-points

line-to-trajectory to
do

M. Ito (JLab) Swimming Downstream December 7, 2007 13 / 15



fitting: χ2 minimizer

GNU Scientific Library (GSL) non-linear least squares fitter
I method name???
I weighted or unweighted
I depends on (weighted) residuals only
I implemented in C

C++ wrapper written, being tested
I ugly work around for C++
I problem with C callback to C++ member functions
I ROOT also has wrapper

M. Ito (JLab) Swimming Downstream December 7, 2007 14 / 15



fitting: to do...put pieces together

swimmer

DOCA

GSL χ2 fitter

M. Ito (JLab) Swimming Downstream December 7, 2007 15 / 15


